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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a pro-
gressive neurological disease that leads to de-
generation of motor neurons and, as a result,
inhibits the ability of the brain to control mus-
cle movements. Monitoring the progression
of ALS is of fundamental importance due to
the wide variability in disease outlook that ex-
ists across patients. This progression is typ-
ically tracked using the ALS functional rat-
ing scale - revised (ALSFRS-R), which is the
current clinical assessment of a patient’s level
of functional impairment including speech and
other motor tasks. In this paper, we inves-
tigated automatic estimation of the ALSFRS-
R bulbar subscore from acoustic and articula-
tory movement samples. Experimental results
demonstrated the AFSFRS-R bulbar subscore
can be predicted from speech samples, which
has clinical implication for automatic monitor-
ing of the disease progression of ALS using
speech information.

1 Introduction

Amyotrophic Lateral Sclerosis (ALS, also known
as Lou Gehrig’s disease) is a progressive neuro-
logical disease that destroys nerve cells and in-
hibits the normal voluntary motor function of the
affected individual. The progression of this dis-
ease rapidly limits the patient’s ability to perform
normal daily tasks such as walking, speaking, and
eventually even breathing. Although there is cur-
rently no cure for ALS, early detection and accu-
rate tracking of disease progression is crucial to
the planning of treatment strategies and therapeu-
tic intervention (Kiernan et al., 2011). The cur-
rently used clinical measure for the disease pro-
gression is the patient self-reported ALSFRS-R
score, which estimates the degree of functional

impairment across motor tasks such as speaking
and walking, as well as common daily tasks such
as getting dressed and climbing the stairs (Cedar-
baum et al., 1999).

ALSFRS-R has a collection of 12 questions,
with a total score ranging from 0 to 48, which is
composed of three factors: bulbar functions, fine
and gross motor functions, and respiratory func-
tion (Franchignoni et al., 2013). Bulbar func-
tions include speaking, salivating, and swallow-
ing. The efficacy of the ALSFRS-R for measur-
ing motor-function and levels of self-sufficiency
of individuals with ALS has been thoroughly
demonstrated. The ALSFRS-R has shown high
inter-rater reliability, test-retest reliability, and
internal consistency (Cedarbaum and Stambler,
1997; Brinkmann et al., 1997). Additionally, the
ALSFRS-R is highly correlated with the clinical
stage of ALS (Balendra et al., 2014) and has been
shown to be a useful predictor of patient survival
(Magnus et al., 2002). Despite the utility and reli-
ability of the ALSFRS-R, it is only able to quan-
tify specific degradations in motor function along
a five point scale. As such, it lacks the resolu-
tion to capture more subtle changes in motor func-
tion that can be observed through instrumentation-
based measures (Allison et al., 2017).

Recently, there has been a surge of research
using speech analytics to detect and track a
range of neurological diseases such as Parkinson’s
(Orozco-Arroyave et al., 2016a,b; Hsu et al., 2017;
Benba et al., 2015) and ALS (An et al., 2018; ill;
Norel et al., 2018; Wang et al., 2016a,b, 2018). Ef-
forts towards tracking disease progression in this
area have typically focused on the estimation of
speech specific measures such as speech intelli-
gibility (Berisha et al., 2013; Kim et al., 2015),
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speaking rate (Jiao et al., 2016; Martens et al.,
2015), or severity (Tu et al., 2017; Asgari and
Shafran, 2010). While these efforts have shown
success in the ability to objectively measure func-
tional changes directly related to speech, whether
speech can be used to measure functional impair-
ment along other tasks in ALS remains largely un-
explored.

In this paper we sought to address this ques-
tion by examining how well speech and articula-
tion data can predict the ALSFRS-R bulbar sub-
score (ranges from 0 to 12). The long-term goal of
this research is to develop objective measures for
broad level motor function. At this early stage, we
focused on the bulbar score first. To our knowl-
edge, this paper is the first to predict ALSFRS-R
(bulbar) score directly from speech information.
Two regression models, a simple linear ridge re-
gression model and a machine learning algorithm
(support vector machine), were used in the regres-
sion analysis.

2 Data Collection

2.1 Participants

Sixty-six speakers diagnosed with ALS at early-
onset participated in this study at up to four data
collection sessions with an interval of four to six
months. At each session, participants or caregivers
completed the ALSFRS-R, which included the
bulbar subscore. Speech intelligibility (percent-
age of understandable words, judged by listeners)
and speaking rate (words produced per minute)
were assessed by a speech-language pathologist
using the Sentence Intelligibility Test (SIT) soft-
ware (Dorsey et al., 2007). Intelligible speaking
rate, called communication efficiency, was also
calculated, which is the percentage of understand-
able words per minute (speech intelligibility ×
speaking rate) (Yorkston and Beukelman, 1981).
The whole data set was used for the basic correla-
tion analysis between ALSFRS-R and speech per-
formance measures, while the data from 28 partic-
ipants were used for regression analysis. This sub-
set includes 15 male and 13 female participants,
whose age averaged 57.3 years with a standard de-
viation of 10.7 years.

2.2 Stimuli and Procedure

The participants were asked to produce 20 sen-
tences in a fixed order, such as I need some as-
sistance and call me back when you can. A com-
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z

Figure 1: Sensor locations for the Wave system

plete list of the stimuli used for data collection is
included in the Appendix. The sentences were se-
lected because they are commonly used in aug-
mentative and alternative communication (AAC)
devices (Beukelman et al., 1984). All speech stim-
uli were presented on a TV screen in front of the
participants. The stimuli were repeated for a to-
tal of four recordings at the participants habitual
speaking rate among other speech tasks.

The NDI Wave System (Northern Digital Inc.,
Waterloo, Canada) was used to collect articula-
tory movement data with an accuracy of 0.5 mm
(Berry, 2011). An optimal four sensor set-up
(Wang et al., 2016c) was used to collect articu-
latory data from the tongue tip (TT, 5 mm from
apex), tongue back (TB, 10 mm from TT), up-
per lip (UL, vermillion border) and lower lip (LL,
vermillion border). The sensors were attached us-
ing nontoxic dental glue (PeriAcryl 90, GluStitch)
or medical tape. A lightweight helmet with a
6 degree-of-freedom sensor served as a point of
head reference. Prior to the start of each data col-
lection session, the speakers had 3-5 minutes to
adapt to the wired sensors prior to formal data col-
lection. In this paper, we used x, y, and z to repre-
sent lateral, vertical, and anterior-posterior move-
ments, respectively. A visual depiction of the sen-
sor locations and coordinate system is displayed in
Figure 1. To capture acoustic signals simultane-
ously, a Shure Microflex microphone with a sam-
pling rate of 22kHz was positioned approximately
15 cm from each speaker’s mouth.

2.3 Data Processing

Head rotation and translation movements were re-
moved from articulatory data prior to analysis.
A low pass filter of 15hz was applied to remove
noise (Wang et al., 2016c). SMASH (Green et al.,
2013a), a Matlab based software, was used seg-
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ment the time-matched articulatory and acoustic
data into individual phrase samples.

2.4 Relationship between ALSFRS-R scores
and speech performance measures

In this section, we evaluated the relationship be-
tween traditional speech metrics, such as speak-
ing rate and speech intelligibility, and ALSFRS-
R scores. Because speech represents only a small
component of the broad motor function assessed
by the ALSFRS-R, we not only compared the re-
lationship between speech and the ALSFRS-R as
a whole, but also at the Bulbar subscore, which
reflects the portion of the ALSFRS-R related to
speaking, salivating and swallowing.

There are several important factors to consider
when evaluating the relationship between these
measures and ALSFRS-R score. First, neither
the speech metrics nor the ALSFRS-R scores be-
ing compared are perfect measures of the underly-
ing decline in motor function that they attempt to
quantify. Speaking rate is highly sensitive to natu-
ral deviation between speakers and compensatory
strategies that can mask changes in motor function
(Green et al., 2013b). Speech intelligibility suffers
from ceiling and floor effects that prevent it from
tracking disease progression outside of a fixed
severity range (Yorkston and Beukelman, 1981).
Second, because the ALSFRS-R measures each
motor component along a 5-point scale it cannot
capture subtle changes to motor control that oc-
cur between points on this scale. Despite this lim-
itation, the ALSFRS-R has been proven reliable
in test-retest analysis (Cedarbaum and Stambler,
1997) and correlates highly with the clinical stage
of individuals with ALS (Balendra et al., 2014).

Figure 2 displays the relationship between
speech intelligibility, speaking rate, and intelligi-
ble speaking rate (ISR) and the ALSFRS-R bulbar
subscore for participants in our data set. Although
all three scatter plots show a correlation between
the measures of speech and the ALSFRS-R bulbar
subscore, there exists significant variability in the
ALSFRS-R that cannot be explained by the mea-
sures of speech. This is particularly true of in-
telligibility, where participants could score as low
as 4/12 of the ALSFRS-R bulbar subscore, while
maintaining near-perfect intelligibility. Among
the three speech measures, ISR had the highest
correlation with ALSFRS Bulbar subscore.

To better understand the relationship between

these speech measures and the different compo-
nents of the ALSFRS-R, we performed a corre-
lation analysis between three measures of speech
intelligibility, speaking rate, and ISR, and three
ALSFRS-R component scores (Table 1). The
three component scores were (a) the total score,
which provides a broad assessment of motor func-
tion, (b) the bulbar subscore, which includes func-
tions of motor control most closely related to
speech including assessment of speaking, swal-
lowing and salivating, and (c) the non-bulbar com-
ponent, which is the difference between the total
ALSFRS-R score and the bulbar subscore. This
analysis found a strong correlation between all
three measures of speech and the Bulbar subscore
with all correlations between 0.5 and 0.7 and all
p-values less than 10−6. Although there exists a
statistically significant relationship between each
of the speech measures and the total ALSFRS-
R score, this significance disappears if the bulbar
component is removed. Therefore this relationship
is simply more evidence of the speech measures
ability to track the bulbar component.

3 Methods

As mentioned earlier, this analysis was based on
a subset of twenty eight participants from the pre-
viously described data set whose speech data has
been manually parsed for automatic processing.
Fifteen of the patients only made a single visit, six
made two visits, five made three visits, and only
two made the full four visits. Though the number
of samples collected for each patient is usually 80
per session, some of the participants were not able
to complete all of the recording tasks. In these
cases predictions were made based on the reduced
set of samples that were available.

3.1 Acoustic Features

The acoustic features used in this paper were
based on the frame-level Mel-frequency cepstral
coefficients (MFCCs). Although MFCCs were
originally popularized due to their effectiveness in
automatic speech recognition systems, they have
recently seen increasing usage in a range of other
speech assessment tasks, including the detection
of motor speech disorders like Parkinson’s dis-
ease (Benba et al., 2015). As the mel cepstrum
encodes spectral magnitude information related to
the shape of the vocal tract, MFCC’s can capture
articulatory changes resulting from conditions like
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(a) Intelligibility (b) Speaking Rate (c) Intelligible Speaking Rate

Figure 2: Scatter plots depicting the relationship between the three speech metrics and ALSFRS-R Bulbar subscore
for each participant & recording session in the data set.

ALSFRS-R ALSFRS-R (Bulbar) ALSFRS-R (non-Bulbar)
Correlation p-value Correlation p-value Correlation p-value

Intelligibility 0.1960 0.0366 0.5840 < 10−6 0.0005 0.9954
Speaking Rate 0.2419 0.0095 0.6422 < 10−6 0.0286 0.7625
ISR 0.2331 0.0126 0.6957 < 10−6 0.0002 0.9981

Table 1: Correlations between the speech measures and ALSFRS-R overall, bulbar, and non-bulbar scores.

depression (Williamson et al., 2014) or dysarthria
(Fraile et al., 2008). For each frame we extracted
14 MFCCs, along with their first and second tem-
poral derivatives ∆MFCC and ∆∆MFCC. From
these 42 variables across time, we calculate 3 dif-
ferent summary statistics, mean, standard devia-
tion and pairwise variability yielding a total of 126
features.

3.2 Articulatory Features
For a specific sensor, we have three positional
arrays x = [x1, ..., xN ], y = [y1, ..., yN , and
z = [z1, ..., zN corresponding to dimensions x, y,
and z. For any index i ∈ [1, .., N − 1], we can
calculate the corresponding distance traveled as

di =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (1)

and form the corresponding distance matrix

D = [d1, ..., dN−1]. (2)

This distance matrix forms the basis for the articu-
lation features used in this paper. From D, we ex-
tracted eight summary statistics: mean, standard
deviation, skewness, kurtosis, maximum, mini-
mum, range, and pairwise variability. In addi-
tion to these baseline features, we considered three
procedures for normalizing the feature based on
measurements of the overall distance trajectory.
The first normalization procedure was dividing the
features by the overall distance traveled

∑
D, in

order to control for the distance of the overall ar-
ticulation motion which was heavily dependent on
the specific phrase being produced. The second
and third normalization procedures attempted to
control for the size of each individual’s articula-
tion motion space, the first by normalizing be-
tween the maximum overall distance between any
two points in (x,y, z). The second was form-
ing a convex hull around the articulation path and
normalizing based on the volume of the resulting
hull. Combining the 8 different statistics and four
normalization methods (including no normaliza-
tion) with the four different sensors (Tongue-tip,
tongue-back,lower lip and upper lip) yielded a to-
tal of 128 features.

To illustrate how these articulatory features
might help assess motor function for different in-
dividuals, we plotted the articulation data from
two different patients on opposite ends of the
severity spectrum in our dataset (Figure 3). The
first sample was from participant DA001 on
his/her first visit. This participant experienced
minimal decline in their speaking abilities and
scored a perfect 12/12 on the ALSFRS-R bulbar
subscore. The second sample was drawn from pa-
tient DA016 on her second visit, where she had
a severe speech decline already scoring only 3/12
points on the Bulbar subsection. Figure 3 dis-
plays the tongue-tip articulation tracks for the two
participants, along with a box plot comparing the
distribution of the distance values between points
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(a) DA001 Articulation Plot (b) DA016 Articulation Plot (c) Box Plot

Figure 3: Articulation plots for two participants (a) DA001 (normal speech) and (b) DA016 (severe speech deficit)
while speaking the phrase “I need to see a doctor”, along with (c) a box plot comparing the distributions of distances
between adjacent points in the articulation track for each participant. In the articulation plots, the starting point of
the articulatory motion is marked with a red cross and the end is marked with a green square.

for each participant. As shown in Figures 3a
and 3b, participant DA016 has a significantly re-
duced articulation space relative to DA001, where
DA001’s space had a volume that almost doubled
DA016’s (335.96 vs. 181.55). Additionally, the
box plot in Figure 3c shows a stark difference be-
tween the distribution of pairwise distances across
the two participants. The distances for participant
DA016 are significantly lower on average than
DA016, indicating a pronounced reduction in the
speed of articulation.

3.3 Regression Analysis
The regression analysis conducted in this experi-
ment began with the 3959 × 254 dimension fea-
ture matrix extracted via the procedure outlined
in the previous section. To ensure the regres-
sion model’s ability to generalize to new speak-
ers, it is evaluated by leave-one-speaker-out cross-
validation. Thus at every stage of cross-validation,
the model is trained using 27 participants and
evaluated based on the single left-out participant.
When a participant with multiple recording ses-
sions is moved to the validation set, all sessions are
moved to the validation set as a group and unique
predictions are made and evaluated for each ses-
sion.

All the data samples were z-scored (subtracted
the mean and divided by the standard deviation)
to obtain the normalized feature data. This proce-
dure helped prevent the scale of different attributes
affecting how much they contribute to the model.

Two regression models were used in this analy-
sis, a simple ridge regression model and a support
vector machine (SVM). Ridge regression is sim-
ilar to ordinary least-squares regression, but uti-
lizes an L2 regularization term in order to bet-

ter model data that is subject to multicollineari-
ties (Hoerl and Kennard, 1970). Unlike traditional
regression models that minimize observed train-
ing error, support vector regression (SVR) mini-
mizes a generalization bound in order to ensure
the model performs well on out-of-sample data
(Basak et al., 2007). This factor, combined with
the ability of SVMs to use non-linear kernels to
model complex non-linear patterns in data, has
made them widely used for both classification and
regression problems. The SVMs used in this paper
employed a linear kernel and were trained using
the sequential minimal optimization (SMO) algo-
rithm.

In addition to the baseline model (using all pre-
viously described acoustic and articulation fea-
tures), we also tested the performance of other
five feature groups, acoustic only, acoustic + lips,
tongue, lips, and tongue + lips. The initial predic-
tions were made on individual samples (phrases),
and were then averaged to form a final prediction
for each patient-session pair.

Two measures were used for the regression per-
formance, root mean squared error (RMSE) and
the correlation of the resulting set of predictions
with the true ALSFRS-R (bulbar) scores. Low
RMSE indicates that the small difference between
the predicted and true ALSFRS-R values. High
correlation indicates that changes in the predicted
ALSFRS-R values are likely corresponding to a
proportional changes in the true values.

4 Results

The results for each of the six feature group and
two regression models are displayed in terms of
both RMSE and correlation in Figure 4. The high-
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Figure 4: Bar graphs describing the performance of Ridge (blue) and SVM (orange) models across the six feature
groupings described along the x-axis in terms of both root mean-squared error and correlation.

est performance was achieved by the SVR model
using acoustic data along with all articulatory mo-
tion data (RMSE = 1.78, r = 0.64).

Figure 4 indicated a few interesting findings.
First, we found that the models trained on both
the articulation motion data and the acoustic data
tended to outperform either grouping by itself.
This is consistent with the literature on both ISR
prediction (Wang et al., 2016b, 2018) and ALS
early detection (Wang et al., 2016a), which have
shown the performance benefits of adding articu-
latory data to acoustic models.

In addition, the performance on data from
tongue or lips separately shows that the tongue
sensors were significantly more powerful than lips
for predicting ALSFRS-R scores when viewed in
isolation, which is not surprising, as the tongue is
the primary articulator. Wang and colleagues also
found tongue information outperformed lip infor-
mation in predicting intelligible speaking rate for
ALS (Wang et al., 2018).

Interestingly, when comparing the perfor-
mances between the “Acoustic+Lips” group and
the “All Features” group, we found that the ad-
dition of the tongue data (on top of acoustic and
lip motion data) did not significantly improve the
performance. Further studies, however, are re-
quired to verify this finding with a deeper analysis
on the performance of additional tongue informa-
tion on top of acoustic and lip information. Future
research should investigate the degree to which
non-invasive video-based measures of lip motion
can be substituted for the more traditional motion-
sensors. This finding supports the idea that a mo-
bile app for recording speech and lip motion (via

a webcam) would be beneficial for future home-
based data collection from patients.

Finally, when comparing the performance of
the two regression models that were tested, SVM
tended to perform slightly better than the ridge re-
gression models. The lone exception to this was
in the case of tongue-only articulation data, where
the ridge regression model slightly outperformed
the SVM. Future work will involve more com-
plicated models such as convolutional neural net-
works (CNNs), which have recently shown poten-
tial in ALS early detection (An et al., 2018).

5 Conclusion

This paper explored automatic estimation of the
ALSFRS-R bulbar score from speech information,
where both acoustic and articulatory motion data
collected during speech production were used.
Two regression models, support vector regression
and ridge regression, were applied on six different
feature groups/sets. The highest performance was
achieved by the SVR model using acoustic data
along with all articulatory motion data. To our
knowledge, for the first time, we demonstrated the
feasibility of automatic prediction of ALSFRS-R
bulbar score from speech samples. Future research
on this topic will focus on the degree to which non-
speech information can be included to predict ALS
motor function decline more broadly.
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Appendix

Index Phrase
1 I love you
2 Good afternoon
3 I changed my mind
4 I need some assistance
5 Come back again
6 Nice to see you
7 Not very good today
8 I need to see a doctor
9 I am fine
10 Thanks for stopping by
11 How are you
12 Call me back when you can
13 Great to see you again
14 Can I have that
15 This is an emergency
16 What are you doing
17 Good-bye
18 When will you be back
19 Give me one minute
20 I need to make an appointment

Table 2: List of stimuli used for data collection.


