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Abstract

It is important, for human-robot interaction, to
endow the robot with the knowledge neces-
sary to understand human needs and to be able
to respond to them. We present a formalized
and unified representation for indoor environ-
ments using an ontology devised for a route
description task in which a robot must provide
explanations to a person. We show that this
representation can be used to choose a route
to explain to a human as well as to verbalize
it using a route perspective. Based on ontol-
ogy, this representation has a strong possibil-
ity of evolution to adapt to many other applica-
tions. With it, we get the semantics of the envi-
ronment elements while keeping a description
of the known connectivity of the environment.
This representation and the illustration algo-
rithms, to find and verbalize a route, have been
tested in two environments of different scales.

1 Introduction

Asking one’s way, when one does not know ex-
actly where one’s destination is, is something we
all did. Just as we have all responded to such a
request from a lost person. This is the heart of the
road description task. This task, which seems so
natural to us in a human-human context, requires
in fact a set of knowledge (e.g. on the place, on the
possible points of reference in this particular envi-
ronment) and ~’good practices” (e.g. to give a path
easy to follow if possible) that need to be modeled
if we want to implement it on a robot. This paper
presents a robotics application of our system but
it would be possible to use it in other applications
such as virtual agent.

This route description task is an interesting ap-
plication case through the variety of the needed in-
formation (e.g. type of elements, place topology,
names of the elements in natural language). It has
been well studied in the field of human-robot inter-
action. Robot guides have already been deployed
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in shopping centers (Okuno et al., 2009), museums
(Burgard et al., 1998; Clodic et al., 2006; Sieg-
wart et al., 2003) or airports (Triebel et al., 2016).
However, using metrical (Thrun, 2008), topolog-
ical (Morales Saiki et al., 2011), semantic repre-
sentations, or trying to mix them together (Satake
et al., 2015b) (Chrastil and Warren, 2014) (Zen-
der et al., 2008), it is difficult to have a uniform
way to represent the environment. In addition, it
is difficult to have a representation which allows to
calculate a route and at the same time to express it
to the human with whom the robot interacts, be-
cause this requires data of different types. Our
aim is to propose a single and standardized rep-
resentation of an environment which can be used
to choose the appropriate route to be explained to
the human and at the same time to verbalize it us-
ing a route perspective. The purpose of this pa-
per is not to be applied to a guiding task in which
a mobile robot accompanies the human to his fi-
nal destination but to explain to a human how to
reach it. Consequently, we will not talk here about
a metrical representation like the one that can be
used to navigate in the environment (Thrun, 2008)
or to negotiate it use in (Skarzynski et al., 2017).
Route perspective means essentially to navigate
mentally in order to verbalize the path to follow
but also to facilitate understanding and memoriz-
ing instructions. The route perspective opposes
the survey perspective which is a top view with
landmarks and paths printed on a map. Morales
et al. (Morales et al., 2015) indicate that nam-
ing parts of a geometric map does not leave the
opportunity to compute such perspective. As in
(Satake et al., 2015a), we have chosen to develop
our representation with an ontology as it allows to
reason about the meaning of words and thus im-
prove the understanding of human demands. In
addition, we propose a way to merge the topologi-
cal representation into the semantic representation
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(the ontology) to get the meaning of the environ-
ment elements while keeping a description of the
connectivity of the elements of the environment.
We propose to name it semantic spatial represen-
tation (SSR). With this, we are able to develop
the two features presented in (Mallot and Basten,
2009) for the route description task, which consist
of selecting a sequence of places leading to the ob-
jective and managing the declarative knowledge to
choose the right action to explain at each point of
the sequence. Based on the principles of topologi-
cal description, although represented semantically,
we are able to compute multiple routes and new
detours for the same objective in contrast with a
route knowledge, which maps a predefined route
to a given request. Thanks to this capacity and to
the semantic knowledge of the environments avail-
able in the representation, it is also possible to pro-
vide the most relevant route to a user according to
his preferences and capabilities. A basic exam-
ple would be that we will never recommend a path
with stairs to a mobility impaired person. More
than the extension of the spatial semantic hierar-
chy (SSH) (Kuipers, 2000) allowing the represen-
tation of the environment, we present here an al-
gorithm to choose the routes and another one to
generate an explanation sentence. Both algorithms
are based solely on the knowledge provided by the
SSR.

Regarding the representation of the environ-
ment generally used in order to find an itinerary,
we have first to analyse GNSS road navigation
systems. In (Liu, 1997) or (Cao and Krumm,
2009), we find the same principle of a topologi-
cal network representing the roads with semantic
information attached to each of them. This type
of representation seems logical regarding the per-
formance required for such systems operating in
very large areas. However, GNSS road navigation
systems must respond only to this unique task of
finding a path when a robot is expected to be able
to answer to various tasks. This is why we have
developed and implemented a representation that
can be used more widely while still allowing the
search for routes.

This paper focuses on the presentation of the
SSR and on its usability for the route description
task. For now, all the ontologies used to test the
SSR have been made by hand. However, many
recent research work leads to automatically gener-
ate a topological representation of an environment
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from geometric measurements (e.g. Region Adja-
cency Graphs (Kuipers et al., 2004), Cell and Por-
tal Graphs (Lefebvre and Hornus, 2003) or hierar-
chical models (Lorenz et al., 2006), or from natu-
ral language (Hemachandra et al., 2014)). We have
not done it yet, but our system could benefit from
this work to generate a representation of an envi-
ronment using SSR, which would solve the com-
plexity of creating such a representation by hand.

In order to present our work, we will follow
the three cognitive operations needed to gener-
ate a spatial discourse (Denis, 1997): (section 2)
an activation of an internal representation of the
environment; (sections 3 and 4) the planning of
a route in the mental representation made previ-
ously; (section 5) the formulation of the procedure
that the user must perform to achieve the objec-
tive. The SSR and the algorithms demonstrating
its usability have been tested in two environments
of different scales: an emulated mall in our lab-
oratory and a real mall. Results are presented in
section 6 for the two environments.

2 Environment representation: SSR

In cognitive psychology, Semantic memory refers
to the encyclopedic knowledge of words associ-
ated to their meanings. Some authors have pro-
posed a model of this semantic memory as be-
ing a semantic network in which each concept is
linked to others by properties and have designed a
computer-implemented model (Collins and Quil-
lian, 1969). This initial model has since been for-
malized as an ontology (Berners-Lee et al., 2001)
and is already widely used in the semantic web.

This model is already used in robotics to ob-
tain a detailed representation of the environment
in which robots operate. For example, (Satake
et al., 2015a) and (Beetz et al., 2018) use an on-
tology to represent knowledge about the types of
items such as the types of shops (restaurant, fash-
ion store, for example) or the properties of items
such as the stores where they are sold.

(Kuipers, 2000) introduced the ’topological
level’ with SSH (spatial semantic hierarchy)
which defines a place, a path and a re-
gion and defined several relationships between
them. Ontologies are constructed using triplets
where two concepts are linked by a property
(e.g property(conceptl, concept2)), however the
Kuipers SSH does not allow such representa-
tion due to the use of some quadruplets (e.g



along(view, path, dir)) in addition to triplets. To
overcome this limitation, we propose a formalisa-
tion, that we call Semantic Spatial Representation
(SSR) to represent an environment with ontologies
(i.e. using triplets).

In this section we present the minimal ontology
that constitutes the SSR but it can be extended to
represent the knowledge of the types and the prop-
erties of the elements while preserving the first use
of this model.

2.1 Classes

—
e

Figure 1: Classes for a representation of the topology
of an indoor environment in a semantic description.

Region: It represents a two-dimensional area
that is a subset of the overall environment. A de-
scription of the environment must include at least
one region representing the entire environment.
Regions are used to reduce the complexity of the
routes computation, so we recommend to use sev-
eral region especially for large scale areas. A ba-
sic use of the regions is for multi-storey buildings
where each floor should be more naturally consid-
ered as a region. Regions can be described as be-
ing nested.

Path: It is a one dimensional element along
which it is possible to move. A path must have
a direction.

e Corridor: It represents a kind of path with
a beginning and an end, for which beginning
and end are distinct. The arbitrary direction
chosen for a corridor defines the position of
its beginning and end. This defines also the
right and left of the corridor.

Openspace: It is a kind of path which does
not have any begin or end. It can be viewed
as a ’potato-shaped” describing the outline of
an open space. It materializes the possibil-
ity of turning the gaze around the room and
the fact of not having to go through a defined
path to reach one of its points.

Place: It represents a point of zero dimension
that can represent a physical or symbolic element.
It can be extended to represent stores and land-
marks in the example of a shopping center.

52

e Path intersection: It represents the con-
nection between only two paths and thus a
waypoint to go from one path to another. In
the case of a crossing between three paths,
three intersections would therefore be de-
scribed.

Inter face: It represents the connection be-
tween only two regions and thus a waypoint
to move from one region to another. It can be
physical, like a door or a staircase, or sym-
bolic like a passage.

The distinction between paths and places is re-
lated to the differences between the types of rooms
made by (Andresen et al., 2016) where some are
used to circulate (corridors) while others have an
explicit use to the exclusion of traffic (place).

2.2 Properties

Properties are used to express topological rela-
tionships such as connections between paths and
places or the order of places along a path. All
the properties presented here can be extended with
their inverse (e.g. ¢sIn and hasIn) for a more ex-
pressive model and thus easier handling.

CE (e
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Figure 2: Properties for a representation of the topol-
ogy of an indoor environment in a semantic description.

isIn(path/place, region): path or place is in
region.
isAlong(place, path): place is along path.

e isAlong(place, openspace): For open
spaces, since there is no beginning or end,
places are only defined as being along an

open space.

e isAlong(place, corridor): For
corridors, the specific proper-
ties isAtBeginEdgeO f Path,
isAtEndFEdgeO f Path,
isAtLeftO f Path, 1sAtRightO f Path

must be used. The choice of these properties
is made with the arbitrary direction defined
by positioning itself at its beginning and by
traversing it towards its end.



isBeside(placel, place2): placel is beside
place2. Specified properties isAtLeftOf and
1sAtRightO f must be used to express the order
of places. The choice of these properties is made
by positioning themselves at the place and facing
the path along the place.

isInfrontO f(placel, place2): placel is in
front of place2. This property does not need to
be applied to all the places described. The more it
is used, the more the verbalization of the itinerary
will be easy. It is important to always define a
place in front of an intersection to be able to de-
termine if the guided human will have to go left
or right in some cases. If there is no described
place in front of an intersection, we can use a
emptyPlace class that would inherit the place
class.

The following axioms reduce the complexity of
the description of the environment. The logical
relations will therefore be solved by the ontology
reasoner.

e isAtLeftO f(placel, place2) >
isAtRightO f (place2, placel)

e isInfrontO f(placel, place2) >
isInfrontO f(place2, placel)

e isAlong(place, path) A

isIn(path,region) — isIn(place, region)

3 Computing routes

At this point, we have built an internal represen-
tation of the environment using the Semantic Spa-
tial Representation (SSR). We illustrate how this
representation can be used to compute the pos-
sible routes from one place to another. Even if
the length of a route is taken into account in the
choice, the complexity of the description is an im-
portant criterion (Morales et al., 2015). When
someone asks his way, the guide will not necessar-
ily try to give him the shortest way. His main goal
is to make sure the person reach her goal. In the
example of Figure 3, even if the red route is little
longer than blue route, he will certainly propose it
instead. Every intersection or change of direction
is a risk for the guided person to make a mistake
and thus get lost.

In this section, the goal is to provide multiple
routes so that we can allow to choose the best route
based on the person preferences. The possibility
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Figure 3: Comparison of two routes in terms of com-
plexity and length. The blue route (. . .) is the shortest
but is complex to explain while the red (- - -) is simpler
although a bit longer.

of making this choice using the SSR will be pre-
sented in section 4. In order to reduce the com-
plexity of the search, especially for large scale en-
vironments, we propose to work at two levels:

e First: Region level: considers only areas and
passages such as doors, stairs or elevators.

e Then : Place level: provides complete routes
description including paths and intersections
within regions.

3.1 Region level

In large-scale environments such as multi-storey
buildings, routes computation can lead to combi-
natorial explosion. Exploration at the region level
decreases this effect by conducting a first high-
level exploration. In Figure 4 we can see that the
exploration of paths of regions 4 and 5 is useless
because these regions do not lead to the region
containing the goal. This exploration uses only the
regions and interface elements described in sec-
tion 2.

region_1 region_2 region_3 region_5

interface_1 interface_2 interface_5

start

interface_3

interface_4

region_4

Figure 4: Representation of an environment at the re-
gional level.

Each interface is connected to regions thanks to
the isIn property. With this property, a route find-
ing algorithm, based on the breadth-first search,
makes possible to find the shortest routes connect-
ing two regions by using the semantic knowledge.



By including the knowledge base exploration di-
rectly inside the search algorithms, it it not neces-
sary to extract a topological graph with nodes and
arcs. It is carried out within the search algorithm
without preprocessing.

This algorithm applied to the example presented
in Figure 4 gives the tree of Figure 5. The final
routes found by the algorithm are :

e region_1 — interface.l — region 2 —
inter face_2 — region_3

e region_1 — interface.l — region 2 —
inter face_3 — region_3

Region 5 has never been explored and region 4
is not present in the final result. However, both so-
lutions with interfaces 2 and 3 have been taken into
account. This type of results makes possible to
quickly eliminate unnecessary solutions and thus
reduces the complexity for a more detailed search
in a second time. This technique is similar to what
is done for GNSS road navigation systems where
the main roads are studied upstream of secondary
roads with pyramidal (or hierarchical) route struc-
ture (Bovy and Stern, 1990).

start
1
1

region_1
interfacel/ Nterfacej
region_2 region_4
interface_2 interface_3
region_3
1
1
end
Figure 5: Exploration graph resulting from region-

level search (sec.3.1) and the aggregation of start and
end places (sec.3.2) .

3.2 Place level

Place-level search is based on the Region-level
search results with the aggregation of start and
end places, so the format changes from region —
place—region—...—region to a place—region—
place — ... — place.

Place-level search works from one place to an-
other through a single region. We have therefore
divided the previous solutions to meet this con-
straint. This step aims to reduce complexity again.
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Indeed, if several routes pass through the same re-
gion with the same places of departure and arrival,
the inner route can be calculated once and for all.
In our example, the division gives five sub-routes
instead of six:

e start — region_1 — inter face_1

e inter face_l — region_2 — inter face_2
e interface_2 — region_3 — end

e interface_l — region_2 — inter face_3

e interface 3 — region_3 — end

The place-level algorithm aims to replace each
sub-route region with a succession of paths and
intersections. It works on the same principle as
the previous search algorithm using the isAlong
property instead of the isIn property. To im-
prove performance, we use moving forward for
the breadth-first search. It stops the exploration
of the routes passing through a path already used
in previous route calculation steps. In addition, it
prevents loops.

start

intersection_3

corridor_1

intersection_2 intersection_1

corridor_5 I

interface_1

corridor_3 corridor_4

intersection_5
corridor_2

interface_4

intersection_6 intersection_4

Figure 6: Representation of corridors and intersections
in region 1 from the example 4

Taking the example of Figure 4 and focusing
on region 1, we can solve the sub-route start —
region_1 — inter face_1l. Region 1 is repre-
sented with its corridors and intersections in Fig-
ure 6. By applying the algorithm at the place
level, we have the solution start — corridor_1 —
intersection_1 — corridor_5 — inter face_1. By
doing the same for each sub-route, we can then re-
compose the global routes and give the set detailed
of routes from start to end.

4 Choosing the best route

Since the SRR is based on an ontology, we can
have the meaning of each element of the environ-
ment and we can attach additional information to



them as features. Now that we have found sev-
eral routes to the same goal, we want to select one
based on different criteria. This selection of routes
is independent of the previous section and a vari-
ety of cost functions can be implemented based on
specific application needs. In the following sub-
section, we present an example of cost function
using SSR and designed for robot guide to be de-
ployed by the European project MuMMER (Foster
etal., 2016).

4.1 Example of cost function

As mentioned in (Morales et al., 2015), the com-
plexity of the route to explain to a human, which is
the number of steps in a route, is the most impor-
tant criterion in choosing the route. A cost func-
tion taking into account only the complexity of a
route R in the environmental context M would be
f(R, M) with N being the number of steps of R.

f(R, M) =N (D

However, to find a good itinerary, it is impor-
tant to take into account the preferences and capa-
bilities of the guided person. An easy example is
that we will never indicate a route with stairs to
a person with reduced mobility. Using an ontol-
ogy and therefore the possibility of describing the
properties of elements of the environment, we add
the property hasCost which associates an element
with a criterion. Criteria rated o; are: saliency, ac-
cessibility, comfort, security, ease of explanation
and speed. Other criteria could easily be added
through the use of ontology according to the spe-
cific needs of the environment. All these criteria
and their antonyms can be applied to each element
n. The preferences of a person P are costs related
to the criterion o; noted ;. This represents the
sensitivity of P to the o; criterion. The cost func-
tion becomes f (P, R, M) to take into account the
preference of person P.

N

H [H(Uz’n X ¢g;)]

n=0 1

f(P,R,M) =N x )

Because we focused only on the complexity of
the route explanation and the characteristics of the
elements of the environment, in the presented cost
function 2, the distances are not taken into ac-
count. This information could be added by work-
ing with a metric representation. Another possi-
bility that can be explored is to add some of the
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metric knowledge, such as the length of the cor-
ridor, into the semantic representation of the en-
vironment to preserve the working principle of a
unique representation of the environment in this
route description task.

5 Explanation generation

This section describes the third cognitive opera-
tion of (Denis, 1997) to generate a spatial dis-
course: the formulation of the procedure. As
(Kopp et al., 2007), we define a route description
as a set of route segments, each connecting two
important points and explained in a chronologi-
cal way. As (Tversky and Lee, 1999), we add
to each route segment a triplet: orientation, ac-
tion, and landmark to enable its explanation. The
division into segments corresponds to all paths,
with their entry and exit points, provided by our
planning part. However, the semantic representa-
tion (SSR) used to plan the route is not directly
usable to generate the formulation of the proce-
dure. With the current representation, the orien-
tation and action are too complex to extract (given
that they depend on the direction by which the per-
son arrives). It is however possible to interpret
the semantic representation in relation to the esti-
mated future position of the human. This interpre-
tation is what we call the internal representation.
This internal representation is composed of several
sub-representations each representing a path of the
global environment. Each segment of the route is
represented independently of the others. For open
space, we generate an ordered array of all loca-
tions along it. For the corridors, we generate four
ordered arrays to represent the left, the right,
the beginedge and the endedge of the corridors.
These information can be found in the ontology
with the properties isAlong, isAtLeftO f Path,
and so on. To order the places in each array, we use
the properties isAtLeftOf and isAtRightO f
also present in the ontology. This internal repre-
sentation can be displayed and gives Figure 7 for
the corridor_1 of region_1 from the example 4. The
isInfrontO f property is used to generate better
placements.

Once we have an internal representation of
each segment, we can determine the procedure
that the user must perform. (Kopp et al., 2007)
mention that an action, a reorientation, a pro-
gression or a positioning must be carried out
at the end of each segment. The end of one



isAtLeftOfPath

start | Place_2 | Place_5

Place_9

Place_8
place_10

isAtBeginEdgeOfPath

Y1edj038p3puanys!

isAtRightOfPath

Figure 7: Internal representation of a the corridor_1
of region_1 from the example 6, extracted from the se-
mantic representation.

segment being the beginning of the next, we
choose to determine the actions at the beginning
of each segment (which corresponds more to our
internal representation). It allows to work on
one path at a time. This rule is formalized as
"choosing action A; at place P; will lead

to place P;,” by (Mallot and Basten, 2009). This
determination of actions can be made with our in-
ternal representation, as shown in Figure 8 where
Pj is the gray place and Py can be one of the
other. The red information at the top gives the
“turn right” action with Py being Place 9 or
Place_10, ”go in front of you” with Py be-
ing Place_3 and "turn le ft” for the other places.
The blue information on the sides gives the ori-
entation of the sub-goal place P taking into ac-
count the previous reorientation. With this ori-
entation information we can give an explanation
of the form "take the corridor at your right”
where the action is determined by the type of
Py and the side given by the orientation informa-
tion. On the example of corridor_1, to go from
start to intersection_1, the full sentence will be
turn left then take the corridor at your right.
Moreover, by taking into account the orientation
of the guided person after an action we allow to
provide directions in the route perspective and so
the guided person to perform an imaginary tour of
the environment (Kopp et al., 2007).

By working segment by segment in the order
given by the route search algorithm, we necessar-
ily generate the explanations with a temporospa-
tial ordering. This criterion is an important point
in Allen’s best practice in communicating route
knowledge (Allen, 2000).

The latest critical information presented by
(Tversky and Lee, 1999) is landmark and we
have it in our representation. (Tversky and Lee,
1998) noted that more than 90% of the guiding
spots on maps and verbal directions contained ad-
ditional information, which corresponds also to
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Right I isfront | Left

start ' Place_2 |
Place_9 I

End of 1
place_10

Right Left

Place_5

Place_8 End of

Left

Right

Figure 8: Resolution of directions and directions with
an entry in the hallway by the gray square “start”.

the results of (Denis, 1997) and the Allen’s best
practice (Allen, 2000). With our internal rep-
resentation, we provide all the landmarks (cor-
responding to places because being defined as
such) around which action must be taken and
we can therefore refer to it to help the guided
person. On the previous example, the sentence
may be confusing because there are two cor-
ridors on the left. We are able to refer to
place_8 which will be on the left or place_6
which will be on the right by projecting the fu-
ture position of the human at intersection_l.
With this new information, the situation can be
disambiguated. The full sentence will became
turn left then take the corridor at your right
stratght after place_6.

The verbalization software based on the SSR
and the principles described above was created
based on a human-human study (Belhassein et al.,
2017). Among the set of route description sen-
tences, we have identified four types of explana-
tory components: those corresponding to the be-
ginning of route description, to the end of a route,
of progress in the route and the particular case of
explanations with one step. These four types are
only dependent of the position of the segment to be
included in the global explanation procedure. For
each type, we have identified various sub-types de-
pending on the actions to be performed or the lo-
cation of actions. For example, for the types of
end-of-procedure sentences, we distinguish those
where the end goal will be on the side, in front or at
the current future position. In total, we have iden-
tified 15 sub-types. Each component of the ex-
planation sentence has been classified into one of
these sub-types. We want to be able to propose dif-
ferent ways to express the same things so the sys-
tem does not have only one way to express the very
same information. To represent similar sentences
and to be able to generate sentences with varia-
tions, we have grouped sentences with close lex-
ical structures. Each sentence is then represented
with its variations as follows: [’you will ], [’see



”, ”find 7],[7it 7, /X ], [Pon ], [Cyour ”, the '],
[*/D ],[’side ”, ”when you walk ”, ””’]. When us-
ing a sentence, the variations are randomly chosen
with a uniform distribution. We can notice in the
previous example the use of variables such that X
which corresponds to the name of an element of
the environment and D to a direction. We also
used the Y variables for a reference points and
DY for a reference point directions. If a sentence
requires a variable that we have not been able to
extract from our internal representation, then an-
other sentence with the same meaning or another
variation of the sentence that does not require the
variable is chosen.

6 Applications

The SSR was first applied in an emulated mall to
develop the algorithms !, but we also tested it in
a real mall to study its applicability in a larger en-
vironment. Table 1 indicates the number of ele-
ments described in both environments. The num-
ber of places does not correspond only to the sum
of the shops, interfaces and intersections because
much more elements have been described, such as
ATMs, restrooms or carts location.

H emulated ‘ real ‘

place 83 249

shop 19 135
interface 11 18
path intersection 10 52
path 11 42
region 5 4

Table 1: Number of elements described in the emu-
lated and real environment.

Table 2 presents the CPU time needed for the
routes computation and cost function algorithms
for several cases, applied to the real environment
representation. Even though specialized algo-
rithms that work with a specific representation of
the environment may be faster than ours, we can
see here that they are acceptable in the context
of a human robot interaction and especially in a
route description task to both compute the path
and verbalize it. Indeed, by providing semantic,
topological and spatial knowledge within a sin-
gle representation it can be used by several algo-
rithms usually requiring different representations.

'https://cloud.laas.fr/index.php/s/Mvfty2xN9qymR2T
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We can also see the use of the regions to reduce the
computation times with the two cases where three
routes were found, one of the cases crossing one
region and the other two.

Number | Number | Number Path
of of of finding
routes | regions paths execution
found crossed used time (ms)
1 1 1 < 10
1 1 3 [20, 25]
3 1 9 [50, 55]
3 2 12 [30, 35]
16 2 75 [160, 170]
20 2 129 [180, 190]

Table 2: CPU time (min-max interval) time for com-
puting routes in a big shopping mall description. Each
row refers to a single request that can provide multiple
routes to the goal.

To show the usability of the internal representa-
tion extracted from the SSR in the verbalization of
the route, we have developed a software 2 that is
able to verbalize the route found by our semantic
planner. In examples of the sentences synthesized
by this software (Table 3), we can see that for the
same goal, it is possible to use different points of
reference and to position them with respect to an-
other element in the environment. All directions
shown in the A and B examples take into account
the future position of the guided human and pro-
vide indications from the perspective of the route.

’ Goal H Sentence

You see there Y.

It’s on the right side of Z.

It’s on the left side of X.

| | |

Go through the door. Take the stairs at
your left and turn left. Go almost at the
very end of the corridor and, turn left at
the door. After that you will see A on
your right.

Go straight down this aisle. Then, walk
to the very end of the corridor and
it’s on the left there.

Table 3: Sentences generated by a software using the
internal representation extracted from the SSR.

The applications presented previously have not

*https://github.com/LAAS-HRI/route_verbalization



only been tested as such, but have been integrated
into a global robotic architecture and deploy in a
mall center > as shown in figure 9. This integra-
tion shows that the results obtained by algorithms
working with a single semantic representation of
an environment are usable and are relevant in a
more global task.

Figure 9: Robot describing a route to a human in a
mall using the SSR and the associated algorithms. The
sentence in green is the explanation of the route verbal-
ized by the robot from the SSR representation: ~’just go
down the corridor and then go almost at the very end of
this corridor and it’s on the left when you walk”.

7 Conclusions

We have proposed an environment model that suit-
able to find routes, to choose one and ro be able to
verbalize it using a single representation. The key
contribution of our work is the semantic spatial
representation (SSR), a formalization of how to
describe an environment such as a large and com-
plex public space mall using an ontology. We have
also presented results about the use of our system
by a robot that provides route guiding to humans
in a shopping mall.

To benefit from our system, it could be interest-
ing to integrate this representation and the corre-
sponding algorithms to a dialog system (Papaioan-
nou et al., 2018) in order to exploit more deeply
its capacities. An interesting usage of this sys-
tem already possible but not yet exploited because
of the need of a dialog system, would be to use
the guided person previous knowledge to choose
a route and/or to generate an explanation (”If you
know the place 2, from this one ...”). In the same
vein, it would be possible to link it with a system
such as Shared Visual Perspective Planner (Wald-
hart et al., 2018) to begin explaining the route from
a visible point. This would reduce the length of the

3https://cloud.laas.fr/index.php/s/CIcPWmMU7TZGQJB

58

explanations and thus ensure a better understand-
ing of the itinerary for the guided person. An-
other improvement would be to use an ontology
to ground the interaction (Lemaignan et al., 2012)
as part of the route description task.

At this stage, only the topological representa-
tion has been integrated into the semantic repre-
sentation. This is a good first step in working with
a single representation that is easier to evolve and
ensure consistency of knowledge. Future work
would involve the integration of metric informa-
tion, and thus geometric representation.
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