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Abstract

Generating a large amount of training data for
information extraction (IE) is either costly (if
annotations are created manually), or runs the
risk of introducing noisy instances (if distant
supervision is used). On the other hand, semi-
supervised learning (SSL) is a cost-efficient
solution to combat lack of training data. In this
paper, we adapt Mean Teacher (Tarvainen and
Valpola, 2017), a denoising SSL framework to
extract semantic relations between pairs of en-
tities. We explore the sweet spot of amount of
supervision required for good performance on
this binary relation extraction task. Addition-
ally, different syntax representations are incor-
porated into our models to enhance the learned
representation of sentences. We evaluate our
approach on the Google-IISc Distant Supervi-
sion (GDS) dataset, which removes test data
noise present in all previous distance supervi-
sion datasets, which makes it a reliable evalu-
ation benchmark (Jat et al., 2017). Our results
show that the SSL Mean Teacher approach
nears the performance of fully-supervised ap-
proaches even with only 10% of the labeled
corpus. Further, the syntax-aware model out-
performs other syntax-free approaches across
all levels of supervision.

1 Introduction

Occurrences of entities in a sentence are often
linked through well-defined relations; e.g., occur-
rences of PERSON and ORGANIZATION in a sen-
tence may be linked through relations such as em-

ployed at. The task of relation extraction (RE)
is to identify such relations automatically (Pawar
et al., 2017). RE is not only crucial for populating
knowledge bases with triples consisting of the en-
tity pairs and the extracted relations, but it is also
important for any NLP task involving text under-
standing and inference, such as question answer-
ing. In this work, we focus on binary RE, such

as identifying the nationality relation between two
entities, Kian Tajbakhsh and Iran, in the sentence:
Kian Tajbakhsh is a social scientist who lived for

many years in England and the United States be-

fore returning to Iran a decade ago.

Semi-supervised learning (SSL) methods have
been shown to work for alleviating the lack of
training data in information extraction. For exam-
ple, bootstrapping learns from a few seed exam-
ples and iteratively augments the labeled portion
of the data during the training process (Yarowsky,
1995; Collins and Singer, 1999; Carlson et al.,
2010; Gupta and Manning, 2015, inter alia). How-
ever, an important drawback of bootstrapping,
which is typically iterative, is that, as learning
advances, the task often drifts semantically into
a related but different space, e.g., from learning
women’s names into learning flower names (Yan-
garber, 2003; McIntosh, 2010). Unlike iterative
SSL methods such as bootstrapping, SSL teacher-
student networks (Tarvainen and Valpola, 2017;
Laine and Aila, 2016; Rasmus et al., 2015) make
full use of both a small set of labeled examples as
well as a large number of unlabeled examples in a
one-shot, non-iterative learning process. The un-
supervised component uses the unlabeled exam-
ples to learn a robust representation of the input
data, while the supervised component forces these
learned representations to stay relevant to the task.

The contributions of our work are:

(1) We provide a novel application of the Mean
Teacher (MT) SSL framework to the task of bi-
nary relation extraction. Our approach is simple:
we build a student classifier using representation
learning of the context between the entity men-
tions that participate in the given relation. When
exposed to unlabeled data, the MT framework
learns by maximizing the consistency between a
student classifier and a teacher that is an average of
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past students, where both classifiers are exposed to
different noise. For RE, we introduce a strategy to
generate noise through word dropout (Iyyer et al.,
2015). We provide all code and resources needed
to reproduce results1.

(2) We represent sentences with several types of
syntactic abstractions, and employ a simple neural
sequence model to embed these representations.
We demonstrate in our experiments that the repre-
sentation that explicitly models syntactic informa-
tion helps SSL to make the most of limited training
data in the RE task.

(3) We evaluate the proposed approach on the
Google-IISc Distant Supervision (GDS) dataset
introduced in Jat et al. (2017). Our empirical anal-
ysis demonstrates that the proposed SSL architec-
ture approaches the performance of state-of-the-
art fully-supervised approaches, even when using
only 10% of the original labeled corpus.

2 Related work

The exploration of teacher-student models for
semi-supervised learning has produced impres-
sive results for image classification (Tarvainen
and Valpola, 2017; Laine and Aila, 2016; Rasmus
et al., 2015). However, they have not yet been
well-studied in the context of natural language
processing. Hu et al. (2016) propose a teacher-
student model for the task of sentiment classifi-
cation and named entity recognition, where the
teacher is derived from a manually specified set
of rule-templates that regularizes a neural student,
thereby allowing one to combine neural and sym-
bolic systems. Our MT system is different in that
the teacher is a simple running average of the stu-
dents across different epochs of training, which
removes the need of human supervision through
rules. More recently, Nagesh and Surdeanu (2018)
applied the MT architecture for the task of semi-
supervised Named Entity Classification, which is
a simpler task compared to our RE task.

Recent works (Liu et al., 2015; Xu et al., 2015;
Su et al., 2018) use neural networks to learn syn-
tactic features for relation extraction via travers-
ing the shortest dependency path. Following this
trend, we adapt such syntax-based neural models
to both of our student and teacher classifiers in the
MT architecture.

1
https://github.com/Fan-Luo/

MT-RelationExtraction

Both Liu et al. (2015) and Su et al. (2018) use
neural networks to encode the words and depen-
dencies along the shortest path between the two
entities, and Liu et al. additionally encode the de-
pendency subtrees of the words for additional con-
text. We include this representation (words and
dependencies) in our experiments. While the in-
clusion of the subtrees gives Liu et al. a slight
performance boost, here we opt to focus only on
the varying representations of the dependency path
between the entities, without the additional con-
text.

Su et al. (2018) use an LSTM to model the
shortest path between the entities, but keep their
lexical and syntactic sequences in separate chan-
nels (and they have other channels for additional
information such as part of speech (POS)). Rather
than maintaining distinct channels for the different
representations, here we elect to keep both surface
and syntactic forms in the same sequence and in-
stead experiment with different degrees of syntac-
tic representation. We also do not include other
types of information (e.g., POS) here, as it is be-
yond the scope of the current work.

There are several more structured (and more
complex) models proposed for relation extraction,
e.g., tree-based recurrent neural networks (Socher
et al., 2010) and tree LSTMs (Tai et al., 2015). Our
semi-supervised framework is an orthogonal im-
provement, and it is flexible enough to potentially
incorporate any of these more complex models.

3 Mean Teacher Framework

Our approach repurposes the Mean Teacher frame-
work for relation extraction. This section an
overview of the general MT framework. The next
section discusses the adaptation of this framework
for RE.

The Mean Teacher (MT) framework, like other
teacher-student algorithms, learns from a limited
set of labeled data coupled with a much larger cor-
pus of unlabeled data. Intuitively, the larger, un-
labeled corpus allows the model to learn a robust

representation of the input (i.e., one which is not
sensitive to noise), and the smaller set of labeled
data constrains this learned representation to also
be task-relevant. This is similar in spirit to an auto-
encoder, which learns a representation that is ro-
bust to noise in the input. However, auto-encoders
generally suffer from a confirmation bias, espe-
cially when used in a semi-supervised setting (i.e.,
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they tend to overly rely on their own predictions
instead of the gold labels (Tarvainen and Valpola,
2017; Laine and Aila, 2016)), providing the mo-
tivation for MT. Specifically, to mitigate confir-
mation bias, and regularize the model, the teacher
weights in MT are not directly learned, but rather
they are an average of the learned student weights,
similar in spirit to the averaged perceptron. This
provides a more robust scaffolding that the student
model can rely on during training when gold labels
are unavailable (Nagesh and Surdeanu, 2018).

The MT architecture is summarized in Fig-
ure 1. It consists of two models, teacher and stu-

dent, both with identical architectures (but differ-
ent weights). While the weights for the student
model are learned through standard backpropaga-
tion, the weights in the teacher network are set
through an exponential moving average of the stu-
dent weights. The same data point, augmented
with noise (see Section 4.2), is input to both the
teacher and the student models.

The MT algorithm is designed for semi-
supervised tasks, where only a few of the data
points are labeled in training. The cost function
is a linear combination of two different type of
costs: classification and consistency. The classifi-
cation cost applies to labeled data points, and can
be instantiated with any standard supervised cost
function (e.g., we used categorical cross-entropy,
which is based on the softmax over the label cate-
gories). The consistency cost is used for unlabeled
data points, and aims to minimize the differences
in predictions between the teacher and the student
models. The consistency cost, J is:

J(✓) = Ex,⌘0 ,⌘
⇥
kf(x, ✓0

, ⌘
0
)� f(x, ✓, ⌘)k2

⇤
(1)

where, given an input x, this function is defined
as the expected distance between the prediction of
the student model (f(x, ✓, ⌘), with weights ✓ and
noise ⌘) and the prediction of the teacher model
(f(x, ✓0

, ⌘
0
) with weights ✓

0 and noise ⌘
0). Here,

our predictions are the models’ output distribu-
tions (with a softmax) across all labels.

Importantly, as hinted above, only the student
model is updated via backpropagation. On the
other hand, the gradients are not backpropagated
through the teacher weights, rather they are deter-
ministically updated after each mini-batch of gra-
dient descent in the student. The update uses an
exponentially-weighted moving average (EMA)
that combines the previous teacher with the latest

version of the student:

✓
0
t = ↵✓

0
t�1 + (1� ↵)✓t (2)

where ✓
0
t is defined at training step t as the EMA

of successive weights ✓. This averaging strategy
is reminiscent of the average perceptron, except in
this case the average is not constructed through an
error-driven algorithm, but, instead, it is controlled
by a hyper parameter ↵.

4 Task-specific Representation

The MT framework contains two components that
are task specific. The first is the representation of
the input to be modeled, which consists of entity
mention pairs and the context between the two en-
tity mentions. The second is the strategy for insert-
ing noise in the inputs received by the student and
teacher models. We detail both these components
here.

4.1 Input Representations
Within the Mean Teacher framework, we inves-
tigate input representations of four types of syn-
tactic abstraction. Each corresponds to one of the
inputs shown in Figure 2 for the example (Robert

Kingsley, perGraduatedInstitution, Uni-

versity of Minnesota).

Average: Our shallowest learned representation
uses the surface form of the entities (e.g., Robert

Kingsley and University of Minnesota) and the
context between them. If there are several men-
tions of one or both of the entities in a given sen-
tence, we used the closest pair. The model aver-
ages the word embeddings for all tokens and then
passes it through a fully-connected feed-forward
neural network, with one hidden layer and finally
to an output layer for classification into the the re-
lation labels.

Surface LSTM (surfaceLSTM): The next
learned representation also uses the surface form
of the input, i.e., the sequence of words between
the two entities, but replaces the word embedding
average with a single-layer bidirectional LSTM,
which have been demonstrated to encode some
syntactic information (Peters et al., 2018). The
representation from the LSTM is passed to the
feed-forward network as above.

Head LSTM (headLSTM): Under the intuition
that the trigger is the most important lexical item
in the context of a relation, relation extraction
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Figure 1: The Mean Teacher (MT) framework for relation extraction which makes use of a large, unlabeled corpus and a small
number of labeled data points. Intuitively, the larger, unlabeled corpus allows the model to learn a robust representation of
the input (i.e., one which is not sensitive to noise), and the smaller set of labeled data constrains this learned representation to
also be task-relevant. Here, for illustration, we depict the training step with one labeled example. The MT framework consists
of two models: a student model which is trained through backpropagation, and a teacher model which is not directly trained,
but rather is an average of previous student models (i.e., its weights are updated through an exponential moving average of the
student weights at each epoch). Each model takes the same input, but augmented with different noise (here, word dropout). The
inputs consist of (a) a pair of entity mentions (here, hE1i: Robert Kingsley and hE2i: University of Minnesota), and (b) the
context in which they occur (i.e., (1903-1988) was an American legal scholar and California judge who graduated from the).
Each model produces a prediction for the label of the data point (i.e., a distribution over the classes). There are two distinct
costs in the MT framework: the consistency cost and the classification cost. The consistency cost constrains the output label
distribution of the two models to be the similar, and it is applied to both labeled and unlabeled inputs (as these distributions can
be constrained even if the true label is unknown) to ensure that the learned representations (distributions) are not sensitive to
the applied noise. When the model is given a labeled input, it additionally assigns a classification cost using the prediction of
the student model. This guides the learned representation to be useful to the task at hand.

can often be distilled into the task of identify-
ing and classifying triggers, i.e., words which
signal specific relations (Yu and Ji, 2016). For
example, the verb died is highly indicative of
the placeOfDeath relation. There are several
ways of finding a candidate trigger such as the
PageRank-inspired approach of Yu and Ji (2016).
Here, for simplicity, we use the governing head
of the two entities within their token interval (i.e.,
the node in the dependency graph that dominates
the two entities) as a proxy for the trigger. We
then create the shortest dependency paths from it
to each of the two entities, and concatenate these
two sequences to form the representation of the
corresponding relation mention. This is shown
as the head-lexicalized syntactic path in Figure 2.
For this representation, we once again pass this to-
ken sequence to the LSTM and subsequent feed-
forward network.

Syntactic LSTM (synLSTM): Compared with
headLSTM, our syntactic LSTM traverses the

directed shortest path between the two entities
through the dependency syntax graph for the sen-
tence, instead of concatenated shortest depen-
dency paths between the trigger and each entity.
As shown in the fully lexicalized syntactic path in
Figure 2, we include in the representation the di-
rected dependencies traversed (e.g., <nsubj for
an incoming nsubj dependency), as well as all
the words along the path (i.e., scholar and grad-

uated)2. We feed these tokens, both words and
dependencies, to the same LSTM as above.

4.2 Noise Regularization
One critical component of the Mean Teacher
framework is the addition of independent noise to
both the student and the teacher models (Laine

2For multi-sentence instances where no single sentence
contains both entities, in order to obtain a syntactic parse,
we concatenate the closest sentences with each of the entities
with a semi-colon and use that as our sentence. While this
could be resolved more cleanly with discourse information
or cross-sentence dependencies, that is beyond the scope of
the current work.
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Figure 2: Examples of the varying degrees of syntactic structure used for our models. The surface representation consists of a
bag of entities (shown in blue) and the words that come between them. The surface syntactic path includes the words along the
shortest path between the entities. The head lexicalized syntactic representation contains the governing head of the structure that
dominates the two entities, and the directed dependencies connecting it to each of the entities. The fully lexicalized syntactic

representation contains the directed dependencies along the shortest path in addition to the words along the shortest path. For
both head lexicalized syntactic and fully lexicalized syntactic representation, the dependency notations include the dependency
labels as well as the direction of the dependency arc (<: right-to-left, >: left-to-right). Both words and syntactic dependencies
are converted to embeddings that are trained along with the rest of the model.

and Aila, 2016; Tarvainen and Valpola, 2017).
While in some tasks, e.g., image classification,
Gaussian noise is added to the network (Rasmus
et al., 2015), here we opted to follow the exam-
ple of Iyyer et al. (2015) and Nagesh and Sur-
deanu (2018) and use word dropout for the needed
noise. For each training instance we randomly
drop k tokens from the input sequence.3 The ran-
dom dropout for the student model is independent
from that of the teacher model, in principle forcing
the learned representations to be robust to noise
and learn noise-invariant abstract latent represen-
tations for the task.

5 Experiments

5.1 Data

We evaluate our approach on Google-IISc Distant
Supervision (GDS) dataset. This is a distant su-
pervision dataset introduced by Jat et al. (2017)
that aligns the Google Relation Extraction Cor-
pus4 with texts retrieved through web search. Im-
portantly, the dataset was curated to ensure that
at least one sentence for a given entity pair sup-
ports the corresponding relation between the enti-
ties. It contains five relations including NA. The
training partition contains 11,297 instances (2,772
are NA), the development partition contains 1,864
instances (447 NA), and the test partition contains
5663 instances (1360 NA). The dataset is divided
such that there is no overlap among entity pairs

3In this work we use k = 1. In initial experiments, other
values of k did not change results significantly.

4
https://research.

googleblog.com/2013/04/

50000-lessons-on-how-to-read-relation.

html

between these partitions.

5.2 Semi-Supervised Setup

In order to examine the utility of our semi-
supervised approach, we evaluate our approach
with different levels of supervision by artificially
manipulating the fully-labeled datasets described
in Section 5.1 to contain varying amounts of un-
labeled instances. To do this, we incrementally
selected random portions of the training data to
serve as labeled data, the rest being treated as un-
labeled data (i.e., their labels are masked to not be
visible to the classifier). In other words, this un-
labeled data was used to calculate the consistency

cost, but not the classification cost. We experi-
mented with using 1%, 10%, 50%, and 100% of
the labeled training data for supervision.

5.3 Baselines

Previous work: We compare our model against
the previous state-of-the-art work in Jat et al.
(2017). They propose two fully-supervised mod-
els: a bidirectional gated recurrent unit neural net-
work with word attention (their BGWA model)
and a piecewise convolutional neural network
(PCNN) with an entity attention layer (their EA
model), which is itself based on the PCNN ap-
proach of Zeng et al. (2015). Since we use sin-
gle models only, we omit Jat et al.’s supervised
ensemble for a more direct comparison. Note
these two approaches are state-of-the-art meth-
ods for RE that rely on more complex attention-
based models. On the other hand, in this work
we use only vanilla LSTMs for both of our stu-
dent and teacher models. However, since the MT
framework is agnostic to the student model, in fu-
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ture work we can potentially further increase per-
formance by incorporating these more complex
methods in our semi-supervised approach.

Student Only: In order to determine the contribu-
tion of the Mean Teacher framework itself, in each
setting (amount of supervision and input represen-
tation) we additionally compare against a baseline
consisting of our student model trained without the
teacher (i.e., we remove the consistency cost com-
ponent from the cost function).

5.4 Model Tuning

We lightly tuned the approach and hyperparame-
ters on the development partitions. We built our
architecture in PyTorch5, a popular deep learn-
ing library, extending the framework of Tarvainen
and Valpola (2017)6. For our model, we used
a bidirectional LSTM with a hidden size of 50.
The subsequent fully connected network has one
hidden layer of 100 dimensions and ReLU acti-
vations. The training was done with the Adam
optimizer (Kingma and Ba, 2015) with the de-
fault learning rate (0.1). We initialized our word
embeddings with GloVe 100-dimensional embed-
dings (Pennington et al., 2014)7. The dependency
embeddings were also of size 100 and were ran-
domly initialized. Both of these embedding were
allowed to update during training. Any word or to-
ken which occurred fewer than 5 times in a dataset
was treated as unknown. For our word dropout, we
removed one word from each input at random. MT
has some additional parameters: the consistency

cost weight (the weight given to the consistency
component of the cost function) and the EMA de-

cay rate (↵ in Eq. 2). We set these to be 1.0 and
0.99 respectively. Akin to a burn-in at the begin-
ning of training, we had an initial consistency cost
weight of 0.0 and allowed it to ramp up to the full
value over the coarse of training using a consis-

tency ramp up of 5.
During training, we saved model checkpoints

every 10 epochs, and ran our models up to a max-
imum of 200 epochs. We chose the best model by
tracking the teacher performance on the develop-
ment partition and using the model checkpoint im-
mediately following the maximum performance.

5
https://pytorch.org

6
https://github.com/CuriousAI/

mean-teacher

7
https://nlp.stanford.edu/projects/

glove

6 Results

We evaluate our approach on the GDS dataset,
across the various levels of supervision detailed in
Section 5. The precision, recall, and F1 scores are
provided in Table 1.

In the evaluation, we consider only the top la-
bel assigned by the model, counting it as a match
only if (a) it matches the correct label and (b) the
label is not NA. For each setting, we provide the
final performance of both the student network and
the teacher network. We also compare against the
baseline student network (i.e., the network trained
without the consistency cost).

In Table 1 we see that in general the MT frame-
work improves performance over the student-only
baseline, with the sole exception of when there is
only 1% supervision. The large performance gap
between the 1% and 10% supervision configura-
tions for the student-only model indicates that 1%
supervision provides an inadequate amount of la-
beled data to support learning the different rela-
tion types. Further, when the unlabeled data over-
whelms the supervised data, the MT framework
encourages the student model to drift away from
the correct labels through the consistence cost.
Therefore, in this situation with insufficient super-
vision, the student-only approach performs better
than MT. This result highlights the importance of a
balance between the supervised and unsupervised
training partitions within the MT framework.

Among our MT models, we see that while the
surfaceLSTM models perform better than the Av-
erage models, the models which explicitly repre-
sent the syntactic dependency path between the
entities have the strongest performance. This is
true for both the student-only as well as the MT
framework. In particular, we find that the best
performing model is the synLSTM. These results
show that: (a) while surface LSTMs may loosely
model syntax (Linzen et al., 2016), they are still
largely complemented by syntax-based represen-
tation, and, more importantly, (b) syntax provides
improved generalization power over surface infor-
mation.

6.1 Comparison to Prior Work
We additionally compare our Mean Teacher
synLSTM model, against the BGWA and EA
models of Jat et al. (2017). For an accurate com-
parison, here we follow their setup closely. For
each entity pair that occurs in test, we aggregate
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Model 100% 50% 10% 1%
Prec / Recall / F1 Prec / Recall / F1 Prec / Recall / F1 Prec / Recall / F1

Student-Only Baseline

Average Student 0.724 / 0.793 / 0.757±0.00 0.716 / 0.774 / 0.744±0.01 0.718 / 0.684 / 0.700±0.01 0.624 / 0.572 / 0.597±0.01

surfaceLSTM Student 0.754 / 0.830 / 0.790±0.01 0.748 / 0.834 / 0.788±0.01 0.735 / 0.752 / 0.744±0.00 0.691 / 0.622 / 0.655±0.01

headLSTM Student 0.739 / 0.808 / 0.772±0.01 0.725 / 0.816 / 0.767±0.00 0.697 / 0.723 / 0.709±0.01 0.633 / 0.630 / 0.631±0.01

synLSTM Student 0.757 / 0.828 / 0.791±0.00 0.759 / 0.827 / 0.791±0.00 0.716 / 0.770 / 0.742±0.01 0.667 / 0.677 / 0.671±0.01

Mean Teacher Framework

Average Student 0.719 / 0.717 / 0.716±0.04 0.739 / 0.718 / 0.728±0.01 0.715 / 0.645 / 0.677±0.02 0.611 / 0.509 / 0.555±0.02
Teacher 0.733 / 0.767 / 0.750±0.00 0.724 / 0.747 / 0.735±0.00 0.718 / 0.649 / 0.682±0.01 0.611 / 0.503 / 0.552±0.01

surfaceLSTM Student 0.760 / 0.745 / 0.752±0.01 0.762 / 0.792 / 0.777±0.00 0.725 / 0.712 / 0.718±0.00 0.546 / 0.440 / 0.486±0.07
Teacher 0.761 / 0.819 / 0.789±0.00 0.760 / 0.817 / 0.787±0.00 0.735 / 0.733 / 0.734±0.01 0.538 / 0.438 / 0.482±0.06

headLSTM Student 0.718 / 0.766 / 0.741±0.01 0.728 / 0.786 / 0.756±0.01 0.700 / 0.684 / 0.692±0.01 0.613 / 0.525 / 0.565±0.00
Teacher 0.728 / 0.815 / 0.769±0.00 0.731 / 0.800 / 0.764±0.00 0.703 / 0.717 / 0.710±0.01 0.611 / 0.527 / 0.566±0.01

synLSTM Student 0.753 / 0.780 / 0.766±0.01 0.751 / 0.826 / 0.786±0.01 0.724 / 0.732 / 0.728±0.01 0.634 / 0.590 / 0.609±0.03
Teacher 0.764 / 0.846 / 0.803±0.00 0.763 / 0.833 / 0.796±0.00 0.734 / 0.759 / 0.746±0.00 0.632 / 0.574 / 0.601±0.03

Table 1: Performance on the GDS dataset for our baseline models (i.e, student-only without the Mean Teacher framework)
and for our Mean Teacher models (both the student and teacher performance is provided). We report precision, recall, and F1
score for each of the input representations (Average, surfaceLSTM, headLSTM, and synLSTM), with varying proportions of
training labels (100%, 50%, 10% and 1% of the training data labeled). Each value is the average of three runs with different
random seed initializations, and for the F1 scores we additionally provide the standard deviation across the different runs.

Figure 3: Precision-recall curves for the GDS dataset. We include two prior systems (BGWA and EA) as well as our Mean
Teacher approach using our best performing input representation (synLSTM) for increasing amounts of supervision (from 1%
of the training labels to 100%, or fully supervised).
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the model’s predictions for all mentions of that en-
tity pair using the Noisy-Or formula into a single
distribution for our model across all labels, except
for NA, and plot the precision-recall (PR) curve ac-
cordingly.

Data for the BGWA and EA models was taken
from author-provided results files8, allowing us to
plot additional values beyond what was previously
published. The PR curves for each level of super-
vision are shown in Figures 3.

We observe that our fully supervised model per-
forms very similarly to the fully-supervised model
of Jat et al. (2017). This is encouraging, consid-
ering that our approach is simpler, e.g., we do
not have an attention model. Critically, we see
that under the Mean Teacher framework, this pat-
tern continues even as we decrease the amount
of supervision such that even with only 10% of
the original training data we approach their fully-
supervised performance. It is not until we use two
orders of magnitude fewer labeled examples that
we see a major degradation in performance. This
demonstrates the utility of our syntax-aware MT
approach for learning robust representations for
relation extraction.

7 Conclusion

This paper introduced a neural model for semi-
supervised relation extraction. Our syntactically-
informed, semi-supervised approach learns effec-
tively to extract a number of relations from very
limited labeled training data by employing a Mean
Teacher (MT) architecture. This framework com-
bines a student trained through backpropagation
with a teacher that is an average of past students.
Each model is exposed to different noise, which
we created in this work through word dropout.
The approach uses unlabeled data through a con-
sistency cost, which encourages the student to stay
close to the predictions of the teacher, and labeled
data, through a standard classification cost. The
consistency requirement between the student and
the teacher ensures that the learned representation
of the input is robust to noise, while the classifi-
cation requirement ensures that this learned rep-
resentation encodes the task-specific information
necessary to correctly extract relations between
entities.

We empirically demonstrated that our approach
8
https://github.com/SharmisthaJat/

RE-DS-Word-Attention-Models

is able to perform close to more complex, fully-
supervised approaches using only 10% of the
training data for relation extraction. This work fur-
ther supports our previous work on MT for the task
of named entity classification, where we observed
similar gains (Nagesh and Surdeanu, 2018). Fur-
ther, we show that the MT framework performs
reliably for various input representations (from
purely surface forms all the way to primarily syn-
tactic). We additionally demonstrate that explic-
itly representing syntax, even in simplified ways,
is beneficial to the models across all levels of su-
pervision.
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