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Abstract

We propose a lightly-supervised approach for
information extraction, in particular named en-
tity classification, which combines the bene-
fits of traditional bootstrapping, i.e., use of
limited annotations and interpretability of ex-
traction patterns, with the robust learning ap-
proaches proposed in representation learning.
Our algorithm iteratively learns custom em-
beddings for both the multi-word entities to
be extracted and the patterns that match them
from a few example entities per category. We
demonstrate that this representation-based ap-
proach outperforms three other state-of-the-
art bootstrapping approaches on two datasets:
CoNLL-2003 and OntoNotes. Additionally,
using these embeddings, our approach outputs
a globally-interpretable model consisting of a
decision list, by ranking patterns based on their
proximity to the average entity embedding in
a given class. We show that this interpretable
model performs close to our complete boot-
strapping model, proving that representation
learning can be used to produce interpretable
models with small loss in performance. This
decision list can be edited by human experts to
mitigate some of that loss and in some cases
outperform the original model.

1 Introduction

One strategy for mitigating the cost of super-
vised learning in information extraction (IE) is
to bootstrap extractors with light supervision
from a few provided examples (or seeds). Tra-
ditionally, bootstrapping approaches iterate be-
tween learning extraction patterns such as word n-
grams, e.g., the pattern “QENTITY ,
president” could be used to extract person
names,' and applying these patterns to extract the
desired structures (entities, relations, etc.) (Carl-
son et al., 2010; Gupta and Manning, 2014, 2015,

former

'In this work we use surface patterns, but the proposed
algorithm is agnostic to the types of patterns learned.
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inter alia). One advantage of this direction is
that these patterns are interpretable, which mit-
igates the maintenance cost associated with ma-
chine learning systems (Sculley et al., 2014).

On the other hand, representation learning has
proven to be useful for natural language pro-
cessing (NLP) applications (Mikolov et al., 2013;
Riedel et al., 2013; Toutanova et al., 2015, 2016,
inter alia). Representation learning approaches of-
ten include a component that is trained in an unsu-
pervised manner, e.g., predicting words based on
their context from large amounts of data, mitigat-
ing the brittle statistics affecting traditional boot-
strapping approaches. However, the resulting real-
valued embedding vectors are hard to interpret.

Here we argue that these two directions are
complementary, and should be combined. We pro-
pose such a bootstrapping approach for informa-
tion extraction (IE), which blends the advantages
of both directions. As a use case, we instanti-
ate our idea for named entity classification (NEC),
i.e., classifying a given set of unknown entities
into a predefined set of categories (Collins and
Singer, 1999). The contributions of this work are:

(1) We propose an approach for bootstrapping
NEC that iteratively learns custom embeddings for
both the multi-word entities to be extracted and the
patterns that match them from a few example enti-
ties per category. Our approach changes the objec-
tive function of a neural network language models
(NNLM) to include a semi-supervised component
that models the known examples, i.e., by attract-
ing entities and patterns in the same category to
each other and repelling them from elements in
different categories, and it adds an external iter-
ative process that “cautiously” augments the pools
of known examples (Collins and Singer, 1999).
In other words, our contribution is an example of
combining representation learning and bootstrap-
ping.

(2) We demonstrate that our representation learn-
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ing approach is suitable for semi-supervised NEC.
We compare our approach against several state-
of-the-art semi-supervised approaches on two
datasets: CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) and OntoNotes (Pradhan et al.,
2013). We show that, despite its simplicity, our
method outperforms all other approaches.

(3) Our approach also outputs an interpretation of
the learned model, consisting of a decision list of
patterns, where each pattern gets a score per class
based on the proximity of its embedding to the av-
erage entity embedding in the given class. This
interpretation is global, i.e., it explains the entire
model rather than local predictions. We show that
this decision-list model performs comparably to
the complete model on the two datasets.

(4) We also demonstrate that the resulting system
can be understood, debugged, and maintained by
non-machine learning experts. We compare the
decision-list model edited by human domain ex-
perts with the unedited decision-list model and
see a modest improvement in overall performance,
with some categories getting a bigger boost. This
improvement shows that, for non-ambiguous cat-
egories that are well-defined by the local contexts
captured by our patterns, these patterns truly are
interpretable to end users.

2 Related Work

Bootstrapping is an iterative process that alternates
between learning representative patterns, and ac-
quiring new entities (or relations) belonging to
a given category (Riloff, 1996; MclIntosh, 2010).
Patterns and extractions are ranked using either
formulas that measure their frequency and asso-
ciation with a category, or classifiers, which in-
creases robustness due to regularization (Carlson
et al., 2010; Gupta and Manning, 2015). While
semi-supervised learning is not novel (Yarowsky,
1995; Gupta and Manning, 2014), our approach
performs better than some modern implementa-
tions of these methids such as Gupta and Manning
(2014).

Distributed representations of words (Deer-
wester et al., 1990; Mikolov et al., 2013; Levy
and Goldberg, 2014) serve as underlying repre-
sentation for many NLP tasks such as information
extraction and question answering (Riedel et al.,
2013; Toutanova et al., 2015, 2016; Sharp et al.,
2016). Mrksi¢ et al. (2017) build on traditional
distributional models by incorporating synonymy
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and antonymy relations as supervision to fine
tune word vector spaces, using an Attract/Repel
method similar to our idea. However, most of
these works that customize embeddings for a spe-
cific task rely on some form of supervision. In
contrast, our approach is lightly supervised, with
a only few seed examples per category. Batista
et al. (2015) perform bootstrapping for relation ex-
traction using pre-trained word embeddings. They
do not learn custom pattern embeddings that apply
to multi-word entities and patterns. We show that
customizing embeddings for the learned patterns
is important for interpretability.

Recent work has focused on explanations of
machine learning models that are model-agnostic
but local, i.e., they interpret individual model pre-
dictions (Ribeiro et al., 2018, 2016a). In contrast,
our work produces a global interpretation, which
explains the entire extraction model rather than in-
dividual decisions.

Lastly, our work addresses the interpretability
aspect of information extraction methods. Inter-
pretable models mitigate the technical debt of ma-
chine learning (Sculley et al., 2014). For example,
it allows domain experts to make manual, gradual
improvements to the models. This is why rule-
based approaches are commonly used in industry
applications, where software maintenance is cru-
cial (Chiticariu et al., 2013). Furthermore, the
need for interpretability also arises in critical sys-
tems, e.g., recommending treatment to patients,
where these systems are deployed to aid human
decision makers (Lakkaraju and Rudin, 2016).
The benefits of interpretability have encouraged
efforts to either extract interpretable models from
opaque ones (Craven and Shavlik, 1996), or to ex-
plain their decisions (Ribeiro et al., 2016b).

As machine learning models are becoming
more complex, the focus on interpretability has
become more important, with new funding pro-
grams focused on this topic.> Our approach
for exporting an interpretable model (§3) is sim-
ilar to Valenzuela-Escarcega et al. (2016), but
we start from distributed representations, whereas
they started from a logistic regression model with
explicit features.

2 DARPA’s Explainable Al program: http://www.darpa.

mil/program/explainable-artificial-intelligence.
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3 Approach

Bootstrapping with representation learning

Our algorithm iteratively grows a pool of multi-
word entities (entPool.) and n-gram patterns
(patPool,) for each category of interest ¢, and
learns custom embeddings for both, which we will
show are crucial for both performance and inter-
pretability.

The entity pools are initialized with a few seed
examples (seeds.) for each category. For exam-
ple, in our experiments we initialize the pool for
a person names category with 10 names such
as Mother Teresa. Then the algorithm iteratively
applies the following three steps for 7" epochs:

(1) Learning custom embeddings: The algorithm
learns custom embeddings for all entities and pat-
terns in the dataset, using the current entPool.s as
supervision. This is a key contribution, and is de-
tailed in the second part of this section.

(2) Pattern promotion: We generate the patterns
that match the entities in each pool entPool.,
rank those patterns using point-wise mutual in-
formation (PMI) with the corresponding category,
and select the top ranked patterns for promotion
to the corresponding pattern pool patPool.. In
this work, we use use surface patterns consist-
ing of up to 4 words before/after the entity of in-
terest, e.g., the pattern “@ENTITY , former
president” matches any entity followed by the
three tokens ,, former, and president. However,
our method is agnostic to the types of patterns
learned, and can be trivially adapted to other types
of patterns, e.g., over sytactic dependency paths.

(3) Entity promotion: Entities are promoted to
entPool. using a multi-class classifier that esti-
mates the likelihood of an entity belonging to each
class (Gupta and Manning, 2015). Our feature set
includes, for each category c: (a) edit distance over
characters between the candidate entity e and cur-
rent e.s € entPool., (b) the PMI (with ¢) of the
patterns in patPool,, that matched e in the training
documents, and (c) similarity between e and e.s in
a semantic space. For the latter feature group, we
use the set of embedding vectors learned in step
(1). These features are taken from Gupta and Man-
ning (2015). We use these vectors to compute the
cosine similarity score of a given candidate entity
e to the entities in entPool., and add the average
and maximum similarities as features. The top
10 entities classified with the highest confidence
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for each class are promoted to the corresponding
entPool, after each epoch.

Learning custom embeddings

We train our embeddings for both entities and pat-
terns by maximizing the objective function J:

J = SG + Attract + Repel (1)
where SG, Attract, and Repel are individual com-
ponents of the objective function designed to
model both the unsupervised, language model part
of the task as well as the light supervision coming
from the seed examples, as detailed below. A sim-
ilar approach is proposed by (Mrksi¢ et al., 2017),
who use an objective function modified with At-
tract and Repel components to fine-tune word em-
beddings with synonym and antonym pairs.

The SG term is formulated identically to the
original objective function of the Skip-Gram
model of Mikolov et al. (2013), but, crucially,
adapted to operate over multi-word entities and
contexts consisting not of bags of context words,
but of the patterns that match each entity. Thus, in-
tuitively, our SG term encourages the embeddings
of entities to be similar to the embeddings of the
patterns matching them:

SG = [log(o (V. Vi) +

2
> log(o(=V, Vi)

where e represents an entity, pp represents a posi-
tive pattern, i.e., a pattern that matches entity e in
the training texts, np represents a negative pattern,
i.e., it has not been seen with this entity, and o is
the sigmoid function. Intuitively, this component
forces the embeddings of entities to be similar to
the embeddings of the patterns that match them,
and dissimilar to the negative patterns.

The second component, Attract, encourages en-
tities or patterns in the same pool to be close to
each other. For example, if we have two entities in
the pool known to be person names, they should
be close to each other in the embedding space:

Attractzz Z log(c (V1 Vi) (3)

P zlx2eP

where P is the entity/pattern pool for a category,
and x1, x2 are entities/patterns in said pool.



Lastly, the third term, Repel, encourages that
the pools be mutually exclusive, which is a soft
version of the counter training approach of Yan-
garber (2003) or the weighted mutual-exclusive
bootstrapping algorithm of Mclntosh and Curran
(2008). For example, person names should be far
from organization names in the semantic embed-
ding space:

Repel =

S 3T Y logo(-V Vae))

P1,P2if P1£P2 z1€ P1 22€ P2
“4)

where P1, P2 are different pools, and z1 and 2
are entities/patterns in P1, and P2, respectively.

We term the complete algorithm that learns and
uses custom embeddings as Emboot (Embeddings
for bootstrapping), and the stripped-down ver-
sion without them as EPB (Explicit Pattern-based
Bootstrapping). EPB is similar to Gupta and Man-
ning (2015); the main difference is that we use pre-
trained embeddings in the entity promotion classi-
fier rather than Brown clusters. In other words,
EPB relies on pretrained embeddings for both pat-
terns and entities rather than the custom ones that
Emboot learns.?

Interpretable model

In addition to its output (entPool.s), Emboot pro-
duces custom entity and pattern embeddings that
can be used to construct a decision-list model,
which provides a global, deterministic interpreta-
tion of what Emboot learned.

This interpretable model is constructed as fol-
lows. First, we produce an average embedding per
category by averaging the embeddings of the enti-
ties in each entPool.. Second, we estimate the co-
sine similarity between each of the pattern embed-
dings and these category embeddings, and convert
them to a probability distribution using a softmax
function; prob.(p) is the resulting probability of
pattern p for class c.

After being constructed, the interpretable model
is used as follows. First, each candidate entity to
be classified, e, receives a score for a given class
¢ from all patterns in patPool, that match it. The
entity score aggregates the relevant pattern proba-
bilities using Noisy-Or:

3For multi-word entities and patterns, we simply average

word embeddings to generate entity and pattern embeddings
for EPB.
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Score(e,c) =

1— (1 — prob.(pc))

[I

{pcEpatPool.|matches(pc,e)}

&)

Each entity is then assigned to the category with
the highest overall score.

4 Experiments

We evaluate the above algorithms on the task of
named entity classification from free text.

Datasets: We used two datasets, the CoNLL-
2003 shared task dataset (Tjong Kim Sang and
De Meulder, 2003), which contains 4 entity types,
and the OntoNotes dataset (Pradhan et al., 2013),
which contains 11.+  These datasets contain
marked entity boundaries with labels for each
marked entity. Here we only use the entity bound-
aries but not the labels of these entities during the
training of our bootstrapping systems. To simulate
learning from large texts, we tuned hyper param-
eters on development, but ran the actual experi-
ments on the frain partitions.

Baselines: In addition to the EPB algorithm, we
compare against the approach proposed by Gupta
and Manning (2014)°. This algorithm is a sim-
pler version of the EPB system, where entities
are promoted with a PMI-based formula rather
than an entity classifier.® Further, we compare
against label propagation (LP) (Zhu and Ghahra-
mani, 2002), with the implementation available
in the scikit-learn package.” In each boot-
strapping epoch, we run LP, select the entities with
the lowest entropy, and add them to their top cate-
gory. Each entity is represented by a feature vector
that contains the co-occurrence counts of the entity
and each of the patterns that matches it in text.?

Settings: For all baselines and proposed models,
we used the same set of 10 seeds/category, which
were manually chosen from the most frequent en-
tities in the dataset. For the custom embedding

*We excluded numerical categories such as DATE.

Shttps://nlp.stanford.edu/software/patternslearning‘shtml

®We did not run this system on OntoNotes dataset as it
uses a builtin NE classifier with a predefined set of labels
which did not match the OntoNotes labels.

7
http://scikit-learn.org/stable/modules/generated/
sklearn.semi_supervised.LabelPropagation.html

8We experimented with other feature values, e.g., pattern
PMI scores, but all performed worse than raw counts.
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Figure 2: t-SNE visualizations of the entity embeddings learned by Emboot after training completes.

Legend: @ = LOC. @ = ORG. e = PER. @ = MISC.

features, we used randomly initialized 15d em-
beddings. Here we consider patterns to be n-
grams of size up to 4 tokens on either side of
an entity. For instance, “QENTITY , former
President” is one of the patterns learned for
the class person. We ran all algorithms for 20
bootstrapping epochs, and the embedding learning
component for 100 epochs in each bootstrapping
epoch. We add 10 entities and 10 patterns to each
category during every bootstrapping epoch.
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5 Discussion

Qualitative Analysis

Before we discuss overall results, we provide a
qualitative analysis of the learning process for Em-
boot for the CoNLL dataset in Figure 1. The fig-
ure shows t-SNE visualizations (van der Maaten
and Hinton, 2008) of the entity embeddings at sev-
eral stages of the algorithm. This visualization
matches our intuition: as training advances, en-
tities belonging to the same category are indeed



grouped together. In particular, Figure 1c shows
five clusters, four of which are dominated by one
category (and centered around the corresponding
seeds), and one, in the upper left corner, with the
entities that haven’t yet been added to any of the
pools.

Figure 2 shows a more detailed view of the t-
SNE projections of entity embeddings after Em-
boot’s training completes. Again, this demon-
strates that Emboot’s semi-supervised approach
clusters most entities based on their (unseen) cate-
gories. Interestingly, Emboot learned two clusters
for the PER category. Upon a manual inspection
of these clusters, we observed that one contains
mostly performers (e.g., athletes or artists such as
Stephen Ames, a professional golfer), while the
other contains many politicians (e.g., Arafat and
Clinton). Thus, Emboot learned correctly that, at
least at the time when the CoNLL 2003 dataset
was created, the context in which politicians and
performers were mentioned was different. The
cluster in the bottom left part of the figure contains
the remaining working pool of patterns, which
were not assigned to any category cluster after the
training epochs.

Quantitative Analysis

A quantitative comparison of the different models
on the two datasets is shown in Figure 3.

Figure 3 shows that Emboot considerably out-
performs LP and Gupta and Manning (2014), and
has an occasional improvement over EPB. While
EPB sometimes outperforms Emboot, Emboot has
the potential for manual curation of its model,
which we will explore later in this section. This
demonstrates the value of our approach, and the
importance of custom embeddings.

Importantly, we compare Emboot against: (a)
its interpretable version (Emboot;,), which is con-
structed as a decision list containing the pat-
terns learned (and scored) after each bootstrapping
epoch, and (b) an interpretable system built simi-
larly for EPB (EPB;y), using the pretrained Levy
and Goldberg embeddings’ rather than our custom
ones. This analysis shows that Emboot;, performs
close to Emboot on both datasets, demonstrating
that most of the benefits of representation learning
are available in an interpretable model. Please see

For multi-word entities, we averaged the embeddings of
the individual words in the entity to create an overall entity
embedding.
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the discussion on the edited interpretable model in
the next section.

Importantly, the figure also shows that EPBjy,
which uses generic entity embeddings rather than
the custom ones learned for the task performs con-
siderably worse than the other approaches. This
highlights the importance of learning a dedicated
distributed representation for this task.

Interpretability Analysis

Is the list of patterns generated by the interpretable
model actually interpretable to end users? To in-
vestigate this, we asked two linguists to curate
the models learned by Embootiy, by editing the
list of patterns in a given model. First, the ex-
perts performed an independent analysis of all the
patterns. Next, the two experts conferred with
each other and came to a consensus when their
independent decisions on a particular pattern dis-
agreed. These first two stages took the experts 2
hours for the CoNLL dataset and 3 hours for the
OntoNotes dataset. The experts did not have ac-
cess to the original texts the patterns were pulled
from, so they had to make their decisions based
on the patterns alone. They made one of three de-
cisions for each pattern: (1) no change, when the
pattern is a good fit for the category; (2) changing
the category, when the pattern clearly belongs to
a different category; and (3) deleting the pattern,
when the pattern is either not informative enough
for any category or when the pattern could occur
with entities from multiple categories. The experts
did not have the option of modifying the content
of the pattern, because each pattern is associated
with an embedding learned during training. Ta-
ble 1 shows several examples of the patterns and
decision made by the annotators. A summary of
the changes made for the CoNLL dataset is given
in Figure 4, and a summary of the changes made
for the OntoNotes dataset is given in Figure 5.

As Figure 3 shows, this edited interpretable
model (Embootiyt edited) performs similarly to the
unedited interpretable model. When we look a lit-
tle deeper, the observed overall similarity between
the unchanged and the edited interpretable Em-
boot models for both datasets depends on the spe-
cific categories and the specific patterns involved.
For example, when we look at the CoNLL dataset,
we observe that the edited model outperforms the
unchanged model on PER entities, but performs
worse than the unchanged model on ORG enti-
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Figure 3: Overall results on the CoNLL and OntoNotes datasets. Throughput is the number of entities classified,
and precision is the proportion of entities that were classified correctly. Please see Sec. 4 for a description of the
systems listed in the legend.

Pattern Original Label Decision Rationale
@ENTITY was the LOC delete the pattern is too broad
@ENTITY ) Ferrari LOC delete the pattern is uninformative
citizen of @ENTITY MISC change to LOC the pattern is more likely to
occur with a location
According to @ENTITY officials ORG no change the pattern is likely to occur

with an organization

Table 1: Examples of patterns and experts’ decisions and rationales from the CoNLL dataset.
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CoNLL dataset

number of patterns

ORG

MISC PER
category

Figure 4: Summary of expert decisions when editing
the Emboot;, model, for the CoNLL dataset by original
category. Dark blue (bottom) is no change, medium
blue (middle) is deletions, light blue (top) is change of
category.

OntoNotes dataset
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o
a
[}
=

PERSON
LANGUAGE
WORK_OF_ART
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Figure 5: Summary of expert decisions when edit-
ing the Emboot;,, model, for the OntoNotes dataset by
original category. Dark blue (bottom) is no change,
medium blue (middle) is deletions, light blue (top) is
change of category.
ties (Figure 6). We observe a similar pattern with
the OntoNotes dataset, where the Emboot;y¢_cdited
model outperforms the Embootj,; model greatly
for GPE but not for LAW (Figure 7). Over-
all, for OntoNotes, Embootiy editeda OUtperforms
Embootiy for 5 categories out of 11. For the cat-
egories where Emboot;y cditeq performs worse, the
data is sparse, so few patterns are promoted (30
FAC patterns compared to 200 GPE patterns), and
many of them were deleted or changed by the two
linguists (14 FAC deletions and 13 FAC changes,
with only 3 FAC patterns remaining).

This difference in outcome partially has to do
with the amount of local vs. global informa-
tion available in the patterns. For example, lo-
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Figure 6: CoNLL results for PER and ORG.
The Embootj,edgiea model generally outperforms the
Emboot;,; model when it comes to PER entities, but not
for ORG entities. This discrepancy seems to relate to
the amount of local information available in PER pat-
terns versus ORG patterns that can aid human domain
experts in correcting the patterns. The EPB;,, model
(incorrectly) classifies very few entities as ORG, which
is why it only shows up as a single point in the bottom
left of the lower plot.

cal patterns are common for the PER and MISC
categories in CoNLL, and for the GPE category
in OntoNotes, e.g., the entity “Syrian” is cor-
rectly classified as MISC (which includes de-
monyms) due to two patterns matching it in the
CoNLL dataset: “@ENTITY President” and
“Q@ENTITY troops”. In general, the majority
of predictions are triggered by 1 or 2 patterns,
which makes these decisions explainable. For the
CoNLL dataset, 59% of Emboot;y’s predictions
are triggered by 1 or 2 patterns; 84% are generated
by 5 or fewer patterns; only 1.1% of predictions
are generated by 10 or more patterns.

On the other hand, without seeing the full
source text, the experts were not able to
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Figure 7: OntoNotes results for GPE and LAW. The
Embootiy egiea model greatly outperforms both Em-
boot and Emboot;,; models when it comes to GPE enti-
ties, but not for LAW entities. This discrepancy seems
to relate to the amount of local information available in
GPE patterns versus LAW patterns that can aid human
domain experts in correcting the patterns. EPB;,, does
not classify any entities as LAW.

make an accurate judgment on the validity of
some patterns—for instance, while the pattern
@ENTITY and Portugal clearly indicates a
geo-political entity, the pattern @ENTITY has
been (labeled facility originally when train-
ing on OntoNotes documents) can co-occur with
entities from any category. Such patterns are com-
mon for the LAW category in OntoNotes, and for
the ORG category in CoNLL (due to the focus
on sport events in CoNLL, where location names
are commonly used as a placeholder for the corre-
sponding team), which partially explains the poor
curation results on these categories in Figures 6
and 7. Additionally, lower performance on certain
categories can be partially explained by the small
amount of data in those categories and the fact that
the edits made by the experts drastically changed
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the number of patterns that occur with some cate-
gories (see Figures 4 and 5).

6 Conclusion

This work introduced an example of representa-
tion learning being successfully combined with
traditional, pattern-based bootstrapping for infor-
mation extraction, in particular named entity clas-
sification. Our approach iteratively learns custom
embeddings for multi-word entities and the pat-
terns that match them as well as cautiously aug-
menting the pools of known examples. This ap-
proach outperforms several state-of-the-art semi-
supervised approaches to NEC on two datasets,
CoNLL 2003 and OntoNotes.

Our approach can also export the model learned
into an interpretable list of patterns, which hu-
man domain experts can use to understand why
an extraction was generated. These patterns can
be manually curated to improve the performance
of the system by modifying the model directly,
with minimal effort. For example, we used a team
of two linguists to curate the model learned for
OntoNotes in 3 hours. The model edited by human
domain experts shows a modest improvement over
the unedited model, demonstrating the usefulness
of these interpretable patterns. Interestingly, the
manual curation of these patterns performed better
for some categories that rely mostly on local con-
text that is captured by the type of patterns used
in this work, and less well for categories that re-
quire global context that is beyond the n-gram pat-
terns used here. This observation raises opportu-
nities for future work such as how to learn global
context in an interpretable way, and how to adjust
the amount of global information depending on the
category learned.
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