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Abstract

We explore how well a sequence labeling
approach, namely, recurrent neural net-
work, is suited for the task of resource-poor
and POS tagging free word stress detec-
tion in the Russian, Ukranian, Belarusian
languages. We present new datasets, an-
notated with the word stress, for the three
languages and compare several RNN mod-
els trained on three languages and explore
possible applications of the transfer learn-
ing for the task. We show that it is possi-
ble to train a model in a cross-lingual set-
ting and that using additional languages
improves the quality of the results.

1 Introduction

It is impossible to describe Russian (and any
other East Slavic) word stress with a set of
hand-picked rules. While the stress can be
fixed at a word base or ending along the
whole paradigm, it can also change its posi-
tion. The word stress detection task is im-
portant for text-to-speech solutions and word-
level homonymy resolving. Moreover, stress
detecting software is in demand among Rus-
sian learners.

One of the approaches to solving this prob-
lem is a dictionary-based system. It simply
keeps all the wordforms and fails at OOV-
words. The rule-based approach offers better
results; however collecting the word stress pat-
terns is a highly time consuming task. Also,
the method cannot manage words without spe-
cial morpheme markers. As shown in (Pono-
mareva et al., 2017), even simple deep learning
methods easily outperform all the approaches
described above.

In this paper we address the following re-
search questions:
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1. how well does the sequence labeling ap-
proach suit the word stress detection task?

. among the investigated RNN-based archi-
tectures, what is the best one for the task?

can a word detection system be trained
on one or a combination of languages and
successfully used for another language?

To tackle these questions we:

1. compare the investigated RNN-based
models for the word stress detection task
on a standard dataset in Russian and se-
lect the best one;

create new data sets in Russian,
Ukrainian and Belarusian and
duct a series of mono- and cross-lingual
experiments to study the possibility of

cross-lingual analysis.

con-

The paper is structured as follows: we start
with the description of the datasets created.
Next, we present our major approach to the
selection of neural network architecture. Fi-
nally, we discuss the results and related work.

2 Dataset

In this project, we approach the word stress
detection problem for three East Slavic lan-
guages: Russian, Ukrainian and Belarusian,
which are said to be mutually intelligible to
some extent. QOur preliminary experiments
along with the results of (Ponomareva et al.,
2017) show that using context, i.e., left and
right words to the word under consideration,
is of great help. Hence, such data sources as
dictionaries, including Wiktionary, do not sat-
isfy these requirements, because they provide
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only single words and do not provide context
words.

To our knowledge, there are no corpora, an-
notated with word stress for Ukrainian and
Belarusian, while there are available transcrip-
tions from the speech subcorpus in Russian'
of Russian National Corpus (RNC) (Grishina,
2003). Due to the lack of necessary corpora,
we decided to create them manually.

The approach to data annotation is quite
simple: we adopt texts from Universal Depen-
dencies project and use provided tokenization
and POS-tags, conduct simple filtering and use
a crowdsourcing platform, Yandex.Toloka?, for
the actual annotation.

To be more precise, we took Russian,
Ukrainian and Belarusian treebanks from Uni-
versal Dependencies project. We split each
text from these treebanks in word trigrams and
filtered out unnecessary trigrams, where cen-
ter words correspond to NUM, PUNCT, and
other non-word tokens. The next step is to
create annotation tasks for the crowdsourcing
platform. We formulate word stress annota-
tion task as a multiple choice task: given a
trigram, the annotator has to choose the word
stress position in the central word by choosing
one of the answer options. Each answer option
is the central word, where one of the vowels is
capitalized to highlight a possible word stress
position. The example of an annotation task
is provided in Fig. 1. Each task was solved
by three annotators. As the task is not com-
plicated, we decide to accept only those tasks
where all three annotators would agree. Fi-
nally, we obtained three sets of trigrams for the
Russian, Ukrainian and Belarusian languages
of approximately the following sizes 20K, 10K,
3K correspondingly. The sizes of the resulting
datasets are almost proportional to the initial
corpora from the Universal Dependencies tree-
banks.

Due to the high quality of the Universal De-
pendencies treebanks and the languages being
not confused, there are little intersections be-
tween the datasets, i.e., only around 50 words

"Word stress in spoken texts database in Russian
National Corpus [Baza dannykh aktsentologicheskoy
razmetki ustnykh tekstov v sostave Natsional'nogo kor-
pusa russkogo yazykal, http://www.ruscorpora.ru/en/
search-spoken.html

https://toloka.yandex.ru
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are shared between Ukranian and Belarusian
datasets and between Russian and Ukranian
and Belarusian datasets. The intersection
between the Ukrainian and Russian datasets
amounts around 200 words.

The structure of the dataset is straightfor-
ward: each entry consists of a word trigram
and a number, which indicates the position of
the word stress in the central word?®.

NO3BOJIAET Oa>Ke Ha
AAe

naxE'

Figure 1: A screenshot of the word stress detection
task from Yandex.Toloka crowdsourcing platform

3 Preprocessing

We followed a basic preprocessing strategy for
all the datasets. First, we tokenize all the texts
into words. Next, to take the previous and
next word into account we define left and right
contexts of the word as the last three charac-
ters of the previous word and last three char-
acters of the next word. The word stresses (if
any) are removed from context characters. If
the previous / next word has less than three
letters, we concatenate it with the current
word (for example, “te oblakd” [that-Pl.Nom
cloud-P1.Nom]). This definition of context is
used since East Slavic endings are typically
two-four letters long and derivational mor-
phemes are usually located on the right pe-
riphery of the word.

Finally, each character is annotated with one
of the two labels £ = {0,1}: it is annotated
with 0, if there is no stress, and with 1, if there
should be a stress. An example of an input
character string can be found in Table 1.

4  Model selection

We treat word stress detection as a sequence
labeling task. Each character (or syllable) is

3Datasets are avaialable at: https://github.com/
MashaPo/russtressa


http://www.ruscorpora.ru/en/search-spoken.html
http://www.ruscorpora.ru/en/search-spoken.html
https://toloka.yandex.ru
https://github.com/MashaPo/russtressa
https://github.com/MashaPo/russtressa
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Table 1: Character model input and output: each
character is annotated with either 0, or 1. A tri-
gram “Gesiast Bopona Jsietut” (“white crow flies”) is
annotated. The central word remains unchanged,
while its left and right contexts are reduced to the
last three characters

labeled with one of the labels £ = {0, 1}, indi-
cating no stress on the character (0) or a stress
(1). Given astring s = s1, ..., sy, of characters,
the task is to find the labels Y* = yj,...,y,
such that

Y* = Yls).
arg max p(Y's)

The most probable label is assigned to each
character.

We compare two RNN-based models for the
task of word stress detection (see Fig. 2 and
Fig.3). Both models have a common input and
hidden layers but differ in output layers.

The input of both models are embeddings of
the characters. In both cases, we use bidirec-
tional LSTM of 32 units as the hidden layer.
Further, we describe the difference between the
output layers of the two models.

4.1 Local model

The decision strategy of the local model (see
Fig. 2) follows common language modeling and
NER architectures (Ma and Hovy, 2016): all
outputs are independent of each other. We de-
cide, whether there should be a stress on each
given symbol (or syllable) or not. To do this
for each character we put an own dense layer
with two units and a softmax activation func-
tion, applied to the corresponding hidden state
of the recurrent layer, to label each input char-
acter (or syllable) with £ = {0,1}.

4.2 Global model

The decision strategy of the global model (see
Fig. 3) follows common encoder-decoder archi-
tectures (Sutskever et al., 2014). We use the
hidden layer to encode the input sequence into
a vector representation. Then, we use a dense
layer of n units as a decoder to decode the rep-
resentation of the input and to generate the
desired sequence of {0,1}. In comparison to
the local model, in this case, we try to find the

37

Dense Dense Dense
Softmax Softmax Softmax
£ £ )

Concat Concat Concat
I . P
LSTM LSTM  (€-o------ LSTM
LSTM LSTM  f------- > LSTM
i i f

input input input

Figure 2: Local model for word stress detection

position of the stress instead of making a series
of local decisions if there should be a stress on
each character or not.

input input input

Figure 3: Global model for word stress detection

To test the approach and to compare these
models, we train two models on the subcorpus
of Russian National Corpus for Word stress
in spoken texts, which appears to be a stan-
dard dataset for the task of word stress detec-
tion. This dataset was preprocessed according
to our standard procedure, and the resulting
dataset contains approximately around 1M tri-
grams. The results of cross-validation exper-
iments, presented in Table 2, show that the
global model outperforms significantly the lo-
cal model. Hence, the global architecture is
used further on in the next experiments.

We pay special attention to homographs: as
one can see, in general, the quality of word
stress detection is significantly lower on homo-
graphs than on regular words. However, in the
majority of cases, we are still able to detect



# vowels local | global
all words
2 961 983
3 940 977
4 947 976
5 960 977
6 958 973
7 924 955
8 866 923
9 809 979
avg 952 979
homographs
2 839 810
3 774 844
4 787 847
avg 821 819

Table 2: Accuracy scores x 1000 for two models

the word stress position for a homograph, most
likely due to the understanding of the word
context.

5 Experiments and results

In these series of experiments, we tried to check
the following assumptions for various experi-
ment settings:

1. monolingual setting: the presented above
approach applies not only to the Russian
language word stress detection but also to
the other East Slavic languages

. cross-lingual setting (1): it is possible
to train a model on one language (e.g.,
Ukrainian) and test it on another lan-
guage (e.g., Belarusian) and achieve re-
sults comparable to monolingual setting

. cross-lingual setting (2):  training on
several languages (e.g., Russian and
Ukrainian) will improve the results of test-
ing on a single language (e.g., Russian) in
comparison to the monolingual setting.

To conduct the experiments in these mono-
and cross-lingual settings, we split the anno-
tated datasets for Russian, Ukrainian and Be-
larusian randomly in the 7:3 train-test ratio
and conducted 20 runs of training and testing
with different random seeds. Afterward, the
accuracy scores of all runs were averaged. The
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Table 3 presents the results of these experi-

ments.
test dataset

Be-
train dataset laru- Rus— Ukrai-

) sian ;

sian nian
Belarusian 647 326 373
Russian 495 738 516
Ukrainian 556 553 683
Ukrainian, 760 | 597 | 701
Belarusian
Russian, 740 | 740 | 563
Belarusian
Russian,
Ukrainiam 627 756 700
Russian,
Ukrainian, 772 760 698
Belarusian

Table 3: Accuracy scores x 1000 for different train
and test dataset combinations

The Table 3 shows, that:

1. in monolingual setting, we can get high-
quality results. The scores are signifi-
cantly lower than the scores of the same
model on the standard dataset, due to
the smaller sizes of the training datasets.
Nevertheless, one can see, that our ap-
proach to word stress detection applies
not only to the Russian language data,
but also to the data in the Belarusian and
Ukrainian languages;

cross-lingual setting (1): the Belarusian
training dataset, being the smallest one
among the three datasets, is not a good
source for training word stress detec-
tion models in other languages, while the
Ukrainian dataset stands out as a good
source for training word stress detection
systems both for the Russian and Belaru-
sian languages;

cross-lingual setting (2): adding one or
two datasets to the other languages im-
proves the quality. For example, around
10% of accuracy is gained by adding the
Russian training dataset to the Belarusian
training dataset, while testing on Belaru-
sian.



One possible reason for the difference of Be-
larusian from the other two languages can be
the following. After the orthography reform in
1933, the cases of vowel reduction in the un-
stressed position (common phonetic feature for
East Slavic languages) have been represented
orthographically in the Belarusian language.
However, the size of the Belarusian dataset (it
is much smaller than the other two) may affect
the quality as well.

6 Related Work
6.1 Char-RNN models

Several research groups have shown that
character-level models are an efficient way to
deal with unseen words in various NLP tasks,
such as text classification (Joulin et al., 2017),
named entity recognition (Ma and Hovy,
2016), POS-tagging (Santos and Zadrozny,
2014; Cotterell and Heigold, 2017), depen-
dency parsing (Alberti et al., 2017) or machine
translation (Chung et al.). The character-level
model is a model which either treats the text as
a sequence of characters without any tokeniza-
tion or incorporates character-level informa-
tion into word-level information. Character-
level models can capture morphological pat-
terns, such as prefixes and suffixes so that the
model can define the POS-tag or NE class of
an unknown word.

6.2 Word stress detection in East Slavic
languages

Only a few authors touch upon the problem of
automated word stress detection in Russian.
Among them, one research project, in partic-
ular, is worth mentioning (Hall and Sproat,
2013). The authors restricted the task of stress
detection to find the correct order within an
array of stress assumptions where valid stress
patterns were closer to the top of the list than
the invalid ones. Then, the first stress assump-
tion in the rearranged list was considered to be
correct. The authors used the Maximum En-
tropy Ranking method to address this problem
(Collins and Koo, 2005) and took character bi-
and trigram, suffixes and prefixes of ranked
words as features as well as suffixes and pre-
fixes represented in an “abstract” form where
most of the vowels and consonants were re-
placed with their phonetic class labels. The
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study features the results obtained using the
corpus of Russian wordforms generated based
on Zaliznyak’s Dictionary (approx. 2m word-
forms). Testing the model on a randomly split
train and test samples showed the accuracy of
0.987. According to the authors, they observed
such a high accuracy because splitting the sam-
ple randomly during testing helped the algo-
rithm benefit from the lexical information, i.e.,
different wordforms of the same lexical item
often share the same stress position. The au-
thors then tried to solve a more complicated
problem and tested their solution on a small
number of wordforms for which the paradigms
were not included in the training sample. As a
result, the accuracy of 0.839 was achieved. The
evaluation technique that the authors propose
is quite far from a real-life application which
is the main disadvantage of their study. Usu-
ally, the solutions in the field of automated
stress detection are applied to real texts where
the frequency distribution of wordforms differs
drastically from the one in a bag of words ob-
tained from “unfolding” of all the items in a
dictionary.

Also, another study (Reynolds and Tyers,
2015) describes the rule-based method of au-
tomated stress detection without the help of
machine learning. The authors proposed a
system of finite-state automata imitating the
rules of Russian stress accentuation and formal
grammar that partially solved stress ambiguity
by applying syntactical restrictions. Thus, us-
ing all the above-mentioned solutions together
with wordform frequency information, the au-
thors achieved the accuracy of 0.962 on a rela-
tively small hand-tagged Russian corpus (7689
tokens) that was not found to be generally
available. We can treat the proposed method
as a baseline for the automated word stress de-
tection problem in Russian.

The global model, which is shown to be the
best RNN-based architecture for this setting
of the task, was first presented in (Ponomareva
et al., 2017), where a simple bidirectional RNN
with LSTM nodes was used to achieve the ac-
curacy of 90% or higher. The authors experi-
ment with two training datasets and show that
using the data from an annotated corpus is
much more efficient than using a dictionary
since it allows to consider word frequencies and



the morphological context of the word. We ex-
tend the approach of (Ponomareva et al., 2017)
by training on new datasets from additional
languages and conducting cross-lingual exper-
iments.

6.3 Cross-lingual analysis

Cross-lingual analysis has received some atten-
tion in the NLP community, especially when
applied in neural systems. Among a few re-
search directions of cross-lingual analysis are
multilingual word embeddings (Ammar et al.,
2016; Hermann and Blunsom, 2013) and di-
alect identification systems (Malmasi et al.,
2016; Al-Badrashiny et al., 2015). Traditional
NLP tasks such as POS-tagging (Cotterell
and Heigold, 2017), morphological reinflection
(Kann et al., 2017) and dependency parsing
(Guo et al., 2015) benefit from cross-lingual
training too. Although the above-mentioned
tasks are quite diverse, the undergirding philo-
sophical motivation is similar: to approach a
task on a low-resource language by using ad-
ditional training data in a high-resource lan-
guage or training a model on a high-resource
language and fine-tune this model on a low-
resource language with a probably lower learn-
ing rate.

7 Conclusion

In this project, we present a neural approach
for word stress detection. We test the ap-
proach in several settings: first, we com-
pare several neural architectures on a standard
dataset for the Russian language and use the
results of this experiment to select the architec-
ture that provides the highest accuracy score.
Next, we annotated the Universal Dependen-
cies corpora for the Russian, Ukrainian and
Belarusian languages with word stress using
Yandex. Toloka crowdsourcing platform. The
experiments conducted on these datasets con-
sist of two parts: a) in the monolingual setting
we train and test the model for word stress de-
tection on the data sets separately; b) in the
cross-lingual setting: we train the model on
various combinations of the datasets and test
on all three data sets. These experiments show
that:

1. the proposed method for word stress
detection is applicable or the Russian,
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Ukrainian and Belarusian languages;

2. using an additional language for training
most likely improves the quality of the re-
sults.

Future work should focus on both annotating
new datasets for other languages that possess
word stress phenomena and further develop-
ment of cross-lingual neural models based on
other sequence processing architectures, such
as transformers.
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