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Abstract

This paper describes our participation in the shared task of Discourse Representation Structure
parsing. It follows the work of Van Noord et al. (2019), who employed a neural sequence-to-sequence
model to produce DRSs, also exploiting linguistic information with multiple encoders. We provide a
detailed look in the performance of this model and show that (i) the benefit of the linguistic features is
evident across a number of experiments which vary the amount of training data and (ii) the model can
be improved by applying a number of postprocessing methods to fix ill-formed output. Our model
ended up in second place in the competition, with an F-score of 84.5.

1 Introduction

Semantic parsing is the problem of mapping natural language utterances to interpretable meaning rep-
resentations. Specifically, we focus on producing Discourse Representation Structures (DRS), based
on Discourse Representation Theory (Kamp, 1984; Kamp and Reyle, 1993), a formalism developed in
formal semantics. Since DRS parsing is a complex task, among others dealing with scope, negation,
presuppositions and discourse structures, previous parsers used to be a combination of symbolic and sta-
tistical components (Bos, 2008, 2015). However, recently neural sequence-to-sequence models achieved
impressive performance on the task (Liu et al., 2018; Van Noord et al., 2018, 2019).

This work describes our system with which we participated in the first shared task on DRS parsing
(Abzianidze et al., 2019). Our system is the same as described in Van Noord et al. (2019), except for a
number of additional post-processing methods to solve ill-formed DRSs. Van Noord et al. (2019) follow
Van Noord et al. (2018) in employing a sequence-to-sequence neural network to produce the DRSs, using
character-level input1 and rewriting the variables to a more general structure. They then improve on this
work by exploiting linguistic information (POS-tags, semantic tags2, dependency parses, CCG categories
and lemmas), using a second encoder to provide this information to the model. We first demonstrate how
sensitive the model is to changes in certain parameter settings, after which we determine if the model
could still benefit from additional gold or silver standard data (Section 2). In Section 3, we describe
our new postprocessing methods to decrease the number of ill-formed DRSs. Finally in Section 4 we
perform a detailed error analysis.

2 Analysis

All results are obtained by training on the data released in Parallel Meaning Bank release 2.2.0 (Abzian-
idze et al., 2017). This release contains gold standard (fully manually annotated) data of which we use
4,597 as train, 682 as dev and 650 as test instances. Moreover, we also use the 67,965 silver (partly
manually annotated) instances as extra training data for some experiments. Reported values are F-scores
calculated by COUNTER (Van Noord, Abzianidze, Haagsma, and Bos, 2018), which are averaged over 3

1They use super characters (Van Noord and Bos, 2017a,b) for DRS roles and operators.
2See Bjerva et al. (2016) and Abzianidze and Bos (2017) for a detailed description of semantic tagging.



different runs of the system. In this section, all experiments are performed on the development set. All
code is publicly available.3

2.1 Parameter sensitivity

The parameter search in Van Noord et al. (2019) was performed by applying a hill climbing method:
one parameter was tuned with all other parameters fixed. Only if a parameter returned a significant
improvement, it was chosen over the current setting. In Van Noord et al. (2019) we only did a single
pass over all parameters, meaning that there is likely still room for improvement. Also, it is interesting
to determine the sensitivity of our model to certain parameter settings, since we generally prefer a model
that is not too sensitive to slight changes in them.

We performed a detailed search for the hyper-parameters RNN dimension, dropout, learning rate and
beam size, of which the results are shown in Figure 1.4 We see that the model allows for some variety
in dropout and learning rate, though there is a sharp decrease in performance if we move too far from
the optimal setting. For the RNN dimension there is not much difference if more than 250 nodes are
used, though increasing the dimension to 500 could improve performance. Similarly, a beam size of 5 is
sufficient for good performance, but using a beam size of 15 could be an extra small gain.
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Figure 1: Performance of our best model trained on only gold standard data for the hyper parameters
(shared task setting in brackets): RNN dimensions (300), dropout (0.2), learning rate (0.002) and beam
size (10).

3https://github.com/RikVN/Neural_DRS
4Performed after the shared task deadline, our official scores are with the parameters reported in Van Noord et al. (2019).



2.2 Learning curves
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Figure 2: Performance of our baseline and best system for: training on only different amounts of gold
data (top left), training on all silver standard data with different amounts of gold data (top right), and
training on different amounts of silver data, finetuned on all gold data (bottom).

Since manual DRS annotation is a hard and time consuming task, it is interesting to know how much
we can still benefit from extra silver and gold standard examples, as well as identifying how the amount
of data contributes to the final scores. Concurrently, we can also observe the impact of the linguistic fea-
tures across different amounts of training data. We show the learning curves of two models: the baseline
model and the best model. The best model employs the linguistic features in a separate encoder.

How much gold is needed?
The top-left graph of Figure 2 (left) shows the performance of our two models when only using gold
training data. It is clear that additional gold data still improves performance, though in a way we already
knew this due to the success of employing silver data. Therefore, we also plot the effect of varying the
amount of gold data used when using all available silver data in the top right graph of Figure 2. We see
the same trend there: adding gold standard data still clearly improves performance.

How much silver is needed?
The effect of varying the amount of silver data is shown in bottom graph of Figure 2. The initial addition
of silver data is clearly beneficial. However, the effect seems to diminish a bit for the best model after
40,000 silver instances. The baseline model, though, still improves after 40,000 instances. In general, it
seems like additional silver data could be beneficial, though the extra benefit is likely to be small.



Impact of linguistic features
For all experiments shown in Figure 2, we see that the linguistic features increase performance across
virtually all amounts of data used. This further confirms that the linguistic features supply the model
with additional useful information.

3 Postprocessing methods

There are a number of syntactic and semantic requirements for a set of clauses to be considered a well-
formed DRS (Van Noord et al., 2018). Among others, there should be a single main box and there
should be no loop in the subordination of boxes. Since we do not restrict our model when producing
clauses, these errors can occur. However, they can often be (easily) fixed, by changing a single clause or
a set of clauses. We outline a few of those methods below. Moreover, we propose a method to improve
performance on word sense disambiguation.

3.1 Improvement methods

Removing clauses
One of the problems of the neural model is that it can get stuck in a loop producing (more or less) the
same output. We apply two straightforward methods to fix these instances. For one, we remove all
clauses after clause number 75. Second, we remove clauses of concepts, roles and operators (except
REF) if they occur more than three times. We only look at the second argument of a clause (the identi-
fier), for example, if a full DRS contains five Theme clauses, we remove the last two, no matter the other
values in those clauses.

No main box found
If there is no main box found, this means that there are multiple independent boxes. For two independent
boxes, we first try to remedy this by changing a single discourse variable in one of these boxes. We
change a discourse variable that is unique in b1 to a unique variable in b2 (and vice versa), to estab-
lish a connection between the boxes. For each of these possible changes we check whether the DRS is
well-formed now, and if so, return the new DRS. For multiple independent boxes, and if the previous
method failed for two independent boxes, we start merging boxes together (e.g. replace each occurrence
of b1 by b2), until we find a well-formed DRS. If this does not result in a well-formed DRS, we return a
non-matching dummy DRS.5

Subordinate relation has a loop
This can occur if boxes indirectly subordinate themselves, e.g. b0 subordinates b1, b1 subordinates b2
and b2 subordinates b0. To solve this, we first try to merge the offending box with each of the other
boxes in the DRS. If this does not work, we try to remove the offending box from the DRS. If the DRS is
still ill-formed, we start the process again if the error is Subordinate relation has a loop (but now with the
offending box removed) or apply the previously described fix for No main box found. A non-matching
dummy DRS is returned if the DRS is still ill-formed after these steps.5

Fixing senses
Previous work showed that the neural model often produced the wrong word sense for the correct concept
(Van Noord et al., 2018). It even often output senses that were never observed in the training set. We
apply a simple method to fix these instances. If a concept + sense is not present in the gold standard
training set, we replace the sense by the most frequent sense for this concept in the training set. For
example, we change grow.v.01 to grow.v.07 and fast.n.02 to fast.a.02. Note that this
method does not influence whether a DRS is well-formed or not. This was implemented after the shared
task deadline, meaning our final shared task system did not apply this method.

5The shared task system returned the SPAR default DRS.



3.2 Results

We can check by how much the scores in Van Noord et al. (2019) would have improved if these methods
had been applied. The results of adding the improvement methods incrementally are shown in Table 1.
We see that simply removing clauses returns only modest gains, but fixing ill-formed DRSs gives a
substantial improvement, even for our best model. By applying these fixes on the shared task evaluation
set we decreased the number of ill-formed DRSs from 283 to 9, but since this evaluation set was not
released, we do not know the impact on the F-score. The method for fixing word senses also proved
quite effective, improving the final F-score by 0.2 to 0.4.

Initial + Removing clauses + Solving ill-formed + Fixing senses

ill (%) F1 ill (%) F1 ill (%) F1 ill (%) F1

Gold-only baseline 2.6 78.6 2.6 78.8 0.2 79.5 0.2 79.8
Gold-only + ling 2.7 81.3 2.7 81.4 0.1 82.2 0.1 82.4
Gold + silver + ling 1.5 84.5 1.5 84.5 0.0 85.1 0.0 85.4
Gold + silver + ling 0.9 85.6 0.9 85.7 0.0 86.1 0.0 86.4

Table 1: Impact of the new postprocessing methods on the dev set results of Van Noord et al. (2019).

4 Results & Error Analysis

4.1 Detailed F-scores

The right column of Table 2 shows the results of our official submission to the shared task. We obtained
an F-score of 84.5, with a precision and recall of 85.5 and 83.6, which is slightly lower than our dev and
test scores. We ended up in second place in the competition, though the difference with the first place
(84.8) was not statistically significant.

Table 2 also contains the automatically calculated detailed F-scores on the test set for both Van Noord
et al. (2018) and Van Noord et al. (2019). The improvement for the new neural model and the addition of
the linguistic features mainly comes from improved performance on the roles and concepts. It is evident
that word sense disambiguation is a hard problem, since even with our method to fix word senses, we
still obtain large increases in F-score for oracle senses. The improvement methods described in Section 3
result in a modest, but significant 0.4 increase on the test set.

NeuDRS-18 NeuDRS-19 This work - test This work - eval

All clauses 83.2 87.0 87.4 84.5

DRS Operators 93.4 94.4 94.5 94.2
VerbNet roles 83.2 87.1 87.3 83.5
WordNet synsets 79.7 84.3 85.2 82.3

nouns 85.5 89.3 90.1 87.5
verbs 65.6 72.2 73.0 68.9
adjectives 64.7 70.4 73.6 74.2
adverbs 50.0 72.6 71.9 45.5

Oracle sense numbers 85.7 89.2 89.6 87.1
Oracle synsets 90.0 92.6 92.7 90.7
Oracle roles 86.7 90.0 90.4 88.5

Table 2: F-scores of fine-grained evaluation on the test set of the work of Van Noord et al. (2018)
(NeuDRS-18) , Van Noord et al. (2019) (NeuDRS-19) and this work, which is NeuDRS-19 plus the
improvement methods described in Section 3.



4.2 Examples

Relatively good performance Relatively bad performance

(a) Tom died when he was 97. (f) These bananas are not ripe.
(b) I read comic books. (g) A book about dancing is lying on the desk.
(c) We should drink 64 ounces of fluids a day. (h) Approximately seven billion people inhabit our planet.
(d) I look down on liars and cheats. (i) The trip will take approximately five hours.
(e) You can’t run away. (j) Tom was too tired to speak.

Table 3: Sentences for which our model performed relatively well and poor.

The organizers provided us with five sentences in the test set for which our model did relatively well,
and 5 for which the model performed relatively poor. The sentences are shown in Table 3.6 Interestingly,
the model does well on sentences containing numbers, (a) and (c), but fails to capture the correct inter-
pretation of approximately in (h) and (j). For (b) and (d), our model correctly identified the multi-word
expressions comic book and look down on, perhaps due to the character-level input. For (e), our model
produced a perfect DRS, while other approaches had trouble either producing run away, or the fact that
the sentence was addressed to a hearer. Sentence (j) is interpreted in the gold standard as Tom could not
speak because he was tired, which our model simply failed to capture. It produced a DRS more similar
to the meaning of Tom spoke and was tired, as is shown in Table 4.

Gold standard Produced output Matching

b2 REF x1 b6 DRS b1 b1 REF x1 b2 ⇒ b1
b2 Name x1 "tom" b6 DRS b3 b1 Name x1 "tom" x1 ⇒ x1
b2 male "n.02" x1 b6 RESULT b1 b3 b1 male "n.02" x1 b1 ⇒ b2
b1 REF t1 b1 REF s1 b2 REF x2 t1 ⇒ x2
b1 TPR t1 "now" b1 Theme s1 x1 b2 TPR x2 "now" s1 ⇒ x3
b1 Time s1 t1 b1 tired "a.01" s1 b2 Time x3 x2 b3 ⇒ ∅
b1 time "n.08" t1 b5 REF e1 b2 time "n.08" x2 b4 ⇒ ∅
b3 NOT b4 b5 Agent e1 x1 b2 REF x3 b5 ⇒ ∅
b4 POS b5 b5 speak "v.01" e1 b2 Theme x3 x1 b6 ⇒ ∅

b2 tired "a.01" x3 e1 ⇒ ∅
b2 Co-Theme x3 x4 ∅ ⇒ x4
b2 REF x4
b2 speak "n.01" x4

Table 4: Gold standard and produced DRS for the sentence Tom was too tired to speak. This gave us a
precision and recall of 7/9 and 7/14, resulting in an F-score of 0.61.

5 Conclusion

This paper provided a more detailed analysis on the study of Van Noord et al. (2019), in which they
showed that explicitly encoder linguistic features can be beneficial for neural sequence-to-sequence mod-
els on the task of DRS parsing. We show that the benefit of these features are robust across experiments
with different amounts of training data. Moreover, we show that the model is not too sensitive to small
variations in parameter settings, perhaps even observing room for more finetuning of the model. Lastly,
we show that a number of rule-based methods can drastically decrease the number of ill-formed DRSs.
Our method ultimately obtained a second place in the shared task competition with an F-score of 84.5.

6DRSs available at: https://urd2.let.rug.nl/ rikvannoord/DRS/IWCS/
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