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Abstract

We present our submission to the IWCS 2019 shared task on semantic parsing, a transition-
based parser that uses explicit word-meaning pairings, but no explicit representation of syntax. Pars-
ing decisions are made based on vector representations of parser states, encoded via stack-LSTMs
(Ballesteros et al., 2017), as well as some heuristic rules. Our system reaches 70.88% f-score in the
competition.

1 Introduction

Anyone who complains about arguing over “semantics” has never seen how boring it can be to argue
over syntax. —isaacs (@izs). 2013-07-05. Tweet.

A spectrum is haunting semantic parsing—the spectrum ranging from traditional semantic grammars
on one end to recent sequence-to-sequence methods on the other. Examples of the former include the
LKB system for Minimal Recursion Semantics (Copestake, 2002), and Boxer (Bos, 2008) for Discourse
Representation Theory (DRT). Examples of the latter include van Noord and Bos (2017) for Abstract
Meaning Representations (AMR) and Liu et al. (2018); van Noord et al. (2018) for DRT. The approach
in the present paper aims to occupy a useful middle ground on this spectrum. On the one hand, we
emphasize the usefulness of an explicitly specified lexicon of word-meaning pairs, amenable to tweaking
by linguists and engineers, and to interfacing with rule-based components. On the other hand, we aim to
minimize the amount of grammar engineering required, and rely on neural networks to learn to assemble
word meanings into sentence meanings.

We describe a system that follows this approach and apply it to the IWCS 2019 shared task on DRS
parsing (Abzianidze et al., 2019). The challenge is to map raw input sentences (plain text, not tokenized
or otherwise annotated) to discourse representation structures (DRSs). DRSs represent meaning as a
hierarchy of nested boxes containing referents and conditions. They can be represented as a flat set of
clauses, where referent identity and special conditions encode the structure. For example, in Figure 1
(top right), all clauses belonging in box b2 are marked with the b2 prefix, and that the referent e1 is
introduced by box b2 is expressed by the special condition b2 REF e1.

Our system is inspired by the AMR parser of Ballesteros and Al-Onaizan (2017) and, by extension,
the non-projective dependency parsing algorithm of Nivre (2009): it uses a transition sytem to process
tokens from left to right, and stack-LSTMs to create vector representations of parser states to make
transition decisions. To apply this approach to DRT, we replace atomic node labels by lexical clause
lists (LCLs) and edge labels by sets of referent address pairs (RAPs), which encode decisions to unify
specific discourse referents. We also factor the lexicon to address data sparseness and apply various
preprocessing and postprocessing steps to ease learning.



You were tricked.

t1 e1 b2

time.n.08(t1)
t1 ≺ now

trick.v.01(e1)
Patient(e1, x1)
Time(e1, t1)

x1 b1

hearer(x1) =

You were tricked.
b1 REF x1
b1 "hearer" x1
b2 REF t1
b2 TPR t1 "now"
b2 time "n.08" t1
b2 REF e1
b2 trick "v.01" e1
b2 Patient e1 x1
b2 Time e1 t1

=

You

b3 REF x2
b3 "hearer" x2

+

were

b4 REF t2
b4 time "n.08" t2
b4 TPR t2 "now"
b4 Time e2 t2

+

tricked

b5 REF e3
b5 trick "v.01" e3
b5 Patient e3 x3

+
{{x2, x3},
{b4, b5},
{e2, e3}}

Figure 1: An example DRS in box notation (top left), clause notation (top right), and decomposed into
three lexical clause lists (LCLs) and a binding set (bottom row).

Table 1: The most frequent bind actions generated from the shared task gold training data.
rank action count rank action count

1 bind({(x1, x1)}) 6 969 6 bind({(b1, b1),(x2, x1)}) 1 126
2 bind({(b1, b1)}) 3 435 7 bind({(b2, b1)}) 865
3 bind({(x2, x1)}) 2 526 8 bind({(b2, b1),(s1, s1)}) 644
4 bind({(b1, b1),(e1, e1))} 2 187 9 bind({(x1, x2)}) 629
5 bind({(b1, b1),(x1, x1))} 1 730 10 bind({(e1, e2)}) 380

2 Parsing Algorithm

Words. They mean things. —The Linguist Llama

For training, we assume tokenized sentences, each paired with a DRS in the form of a clause list, each
clause aligned to 0, 1, or more tokens. We decompose this clause list into one lexical clause list (LCL)
per token, plus a binding set B, as shown in the bottom row of Figure 1. Each LCL contains only the
clauses aligned to the corresponding token, and referents are replaced by fresh ones unique to that LCL.
B contains all unordered pairs of referents that replaced the same original referent. We say that a referent
has an address Tn in an LCL if it is the n-th referent of type T to occur in the LCL. For example, e2 has
address e1 in the LCL for were, and e3 has the same address in the LCL for tricked. We write ref (L, Tn)
for the referent that has address Tn in L.

The parser uses three data structures: a stack, initially empty, a buffer, initially containing all tokens
of the sentence, and a result clause list, initially empty. Until both stack and buffer are empty, the parser
repeatedly chooses an action that manipulates the contents of the data structures. The correct action
sequence for our example is shown in Figure 2. For training, we determine the correct action sequence
(also called the oracle) as follows: if the rightmost stack element is a token, choose confirm and replace
the token with the corresponding LCL. Otherwise, if the rightmost stack element does not contain any
referent that still occurs in B, choose reduce, add its clauses to the result clause list, and remove it
from the stack. Otherwise, if there are at least two elements on the stack, consider the two rightmost
ones; let them be called L and R. Compute the set B of RAPs (referent address pairs) (Tl, Tr) so that
{ref (L, Tl), ref (R, Tr)} ∈ B. If B is nonempty, choose bind(B), unify the corresponding referents,
and remove referent sets that are now singleton from B. If B is empty and L and R are still in their
original order, choose swap and move L to the left end of the buffer. Otherwise, choose shift and move
the leftmost buffer element to the rightmost position on the stack.

RAP sets can be seen as an automatically induced approximation to arguments in semantic grammars,
in that they define the interface between two lexical meaning representations. Table 1 shows the most



action stack buffer

init You were tricked
shift You were tricked

confirm b1 REF x1
b1 "hearer" x1

were tricked

shift b1 REF x1
b1 "hearer" x1

were tricked

confirm b1 REF x1
b1 "hearer" x1

b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

tricked

swap
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

tricked

shift
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

tricked

shift
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

tricked

confirm
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

b3 REF e2
b3 Patient e2 x2
b3 trick "v.01" e2

bind({(x1, x1)})
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1

b1 "hearer" x1

b3 REF e2

b3 Patient e2 x1
b3 trick "v.01" e2

swap
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b3 REF e2
b3 Patient e2 x1
b3 trick "v.01" e2

b1 REF x1
b1 "hearer" x1

bind({(b1, b1), (e1, e1)})

b2 REF t1

b2 TPR t1 "now"

b2 Time e1 t1

b2 time "n.08" t1

b2 REF e1

b2 Patient e1 x1

b2 trick "v.01" e1

b1 REF x1
b1 "hearer" x1

reduce
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

reduce b1 REF x1
b1 "hearer" x1

shift b1 REF x1
b1 "hearer" x1

reduce

Figure 2: Actions for parsing the sentence “You were tricked.” Referent addresses (e.g., b1) should not
be confused with referent names (e.g., b1).



tricked

b1 REF e1
b1 trick "v.01" e1
b1 Patient e1 x1
b1 Time e1 t1

=
b1 REF e1
b1 work "v.00" e1
b1 Role e1 x1
b1 Time e1 t1

* [Patient] * trick "v.01"

Figure 3: Factoring a lexical clause list (LCL) into an underspecified lexical clause list (ULCL), a rolelist,
and a sense. We use work "{n,v,a}.00" as dummy senses.

FFs

e({x1, x1})

LSTMst

FFR

FFI

e(tricked) e( ) e([Patient])

LSTMst

FFI

e(were) e( ) e([])

LSTMst

e(<s>)

LSTMb

FFL

FFI

e(You) e( ) e([])

LSTMb

e(</s>)

LSTMa

e(swap)

LSTMa

e(bind({(x1, x1)})

LSTMa

e(confirm)

...

FFa softmaxa

FFu softmaxu

FFrl softmaxrl

Figure 4: Configuration of the neural network after the second swap action in Figure 2. e(...) are
embeddings of words, ULCLs, rolelists, RAP sets, and actions. FFI is the interpretation function,
FFL, FFR are the composition functions. Boxes labeled LSTM represent individual LSTM cells of
the stack/buffer/action stack-LSTMs. Boxes labeled FF denote feed-forward neural networks with one
hidden layer; FFs has a RelU nonlinearity and the others have a tanh nonlinearity.

frequent bind actions. In total, 127 were induced from the training data. They may be too sparse. Our
RAP set generation is not sensitive to referent names since referents are addressed by order, not name.
However, it is sensitive to clause order and referent type. As a reviewer pointed out, van Noord et al.
(2018) showed that normalizing clause order while conflating the referent types x, t, and e improved
performance in their parser. We plan to investigate this in future work.

3 Parsing Model

At test time, we have neither gold-standard LCLs nor a binding set, yet we want to end up with a result
clause list that is the same as the gold standard DRS, or at least similar. We thus train a statistical model
to choose the right action at each parser state, and to choose the right lexical clause list for each token.
The model has three softmax classifiers, shown in the top right corner of Figure 4: the action classifier,
the ULCL classifier, and the rolelist classifer. At each state, the action classifier chooses one out of 131
actions which were extracted from the shared task gold training data, 127 of which are bind actions with
various RAP sets. The classifier only chooses among the actions which are applicable to the respective
state, for example, shift requires a nonempty buffer, and bind actions require every addressed referent
to exist. After each confirm action, the model chooses an LCL for the token on the stack to be replaced
with.

To better handle the large variety of LCLs, we factor this into three steps, as illustrated in Figure 3:
first, the ULCL classifier chooses one out of 548 different ULCLs (underspecified LCLs with dummy
event roles, dummy senses, and dummy constants). The rolelist classifier then chooses from 146 lists of



event roles to replace the dummy event roles with. Finally, heuristic rule-based components (“symboliz-
ers”, see below) fill in the senses and constants.

The set of ULCLs is automatically created offline from all LCLs in the training data by normal-
izing referent names and replacing event roles, senses, and constants with dummy values. Non-event
roles are currently left intact, as are a number of very common senses and constants (male "n.02",
female "n.02", time "n.08", person "n.01", measure "n.02", entity "n.01", country "n.02",
city "n.01", quantity "n.01", name "n.01", location "n.01", "now", "speaker", "hearer").

The input to the three classifiers is a vector representation of the parser state, computed using stack-
LSTM representations of the stack, the buffer, and the list of previous actions. Stack-LSTMs (Ballesteros
et al., 2017; Ballesteros and Al-Onaizan, 2017) are LSTMs (Hochreiter and Schmidhuber, 1997) whose
sequence of input vectors can change dynamically. Over the course of a parsing process, the parser grows
and shrinks these input sequences as elements are added to and removed from the associated data struc-
tures. Initially, the buffer LSTM (LSTMb) has the word embeddings of the entire input sequence. These
are gradually moved to the stack LSTM (LSTMst ) by shift actions, where they are further transformed:
when confirm occurs, the righmost hidden state of the stack LSTM is transformed by an interpretation
function and its output then replaces the rightmost input to the stack-LSTM. When bind occurs, the
two rightmost hidden states of LSTMst are transformed by two separate composition functions and their
outputs replace the two rightmost inputs to the LSTMst . Inputs to LSTMst can also become inputs to
LSTMb again through swap actions. Figure 4 shows one snapshot of the dynamically changing network,
after the second swap action in our example.

4 Implementation

Our system is implemented in Python using DyNet (Neubig et al., 2017). We use ELMo (Peters et al.,
2018) for pre-trained word embeddings. At test time, we tokenize sentences using Elephant (Evang et al.,
2013) trained on a pre-release version of the Parallel Meaning Bank (Abzianidze et al., 2017).

Table 2: Hyperparameter settings.

hyperparameter value

updated word embeddings
unknown word probability 0.2
dimensions 40

pretrained word embeddings (ELMo)
dimensions (average of 3 layers) 1024

other embedding dimensions
actions 20
ULCLs 20
RAP sets 20
rolesets 20

stack-LSTMs
input dimensions 100
hidden layers 2
hidden dimensions (per layer) 100

learning rate (simple SGD)
initial value 0.1
decay per epoch 0.08

Hyperparameters Time did not allow for ex-
tensive tuning. Where applicable, we followed
the choices of Ballesteros et al. (2017). For de-
tails, see Table 2 and the source code (https://
bitbucket.org/kevang/drs_parsing).

Preprocessing and Postprocessing In the train-
ing data, the constants "speaker" and "hear-
er" typically appear in clauses aligned to verbs
rather than first and second person pronouns. To
prevent a proliferation of verb ULCLs, our system
changes this representation to the one shown in
Figure 1 for training and applies an inverse trans-
formation to its output at test time. It also creates
a “main box” (a DRS containing all other DRSs)
in postprocessing if none exists yet.

Symbolizers We implemented rule-based com-
ponents that replace dummy constants with proper
constants for names (e.g., "mary" for the token
Mary), quantities (e.g., "1000" for the token
"one~thousand"), and time expressions (e.g.,
"05:00" for the token five~o’clock). For

https://bitbucket.org/kevang/drs_parsing
https://bitbucket.org/kevang/drs_parsing


dummy word senses, we fill in the lemma using NLTK’s WordNet lemmatizer (Bird et al., 2009) and
assume sense number 01.

Training We train with 1 batch = 1 training example, using the negative sum of the log probabilities of
all correct classification decisions as loss. We train on the gold training data for 20 epochs and validate
after each epoch on the gold development data using Counter (van Noord et al., 2018). We use the model
with the highest validation f-score.

5 Competition Results and Discussion

For the competition, we used the best model unchanged, i.e., we did not retrain with the dev/test data
included. At this point, our system had a bug where the interpretation function FFI only took ULCL and
rolelist embeddings as input, not the word embedding. It was also still lacking the quantity symbolizer.
It reached 74.34% precision, 73.32% recall, and 73.83% f-score on the development data, 74.60% preci-
sion, 74.14% recall, and 74.37% on the test data, and 71.81%, 69,92% recall, and 70.88% f-score in the
competition. The organizers provided five sentences for which our system’s output was lowest (highest)
compared to the minimum (maximum) of the other participating systems, along with all outputs. We
inspected sentences and tried to identify the main reasons our system performed worse (better) than oth-
ers on these examples. They are by no means guaranteed to be representative, but may serve as starting
points for discussion and further investigation.

Reasons for Failure (a) The system “skipped” some tensed matrix verbs, i.e., it assigned them the
empty ULCL, as it does for punctuation (sentences 522, 271, 385). This may point to failure to generalize
or sparse data. (b) The system introduced many DRSs but failed to connect them by binding referents,
so it defaulted to connect them with CONTINUATION discourse relations in post-processing (452, 414).

Reasons for Success (c) The system profited from the decision to leave special senses intact, which
enabled it to correctly analyze relational nouns (309). (d) The system was not completely thrown off
by archaic language, possibly helped by the large body of text the ELMo embeddings are trained on
(163). (e) A rare adjective seemed to trip up character-based systems, but was handled correctly by our
WordNet-based symbolizer (147). (f) Our system’s first-sense heuristic got lucky (454). (g) Our system
got lucky and agreed with an apparent error in the gold standard (138).

We further observe that our system does very poorly on some sentences that lack sentence-final punc-
tuation, which points to hypersensitivity to diversions that is typical of current neural models (cf., e.g.,
Søgaard et al., 2018). Our current oracle generation algorithm treats anaphora like other long-distance
dependencies, which we surmise is suboptimal. Finally, the shared task data has quite an aggressive
approach to merging multi-token units into a single token, which is not handled optimally by the to-
kenizer we used. Beyond these specific avenues for future improvement, generic ones are applicable:
architecture optimization, hyperparameter optimization, ensembles, additional features from taggers and
dependency parsers, training on silver data, etc. Some of these have been shown to have a large impact
on similar tasks (Ballesteros and Al-Onaizan, 2017; van Noord et al., 2018).

6 Ablations

After the competition, we improved the system by fixing the bug in the interpretation function and adding
the quantity symbolizer. We then ran an ablation study to assess the contribution of some individual
components. The results are shown in Table 3. Contrary to our expectations, factoring rolelists out of
ULCLs does not seem to improve results, although it helps the system reach its peak performance after



precision recall f-score epochs

full system .7562 .7460 .7511 15
- factoring rolelists out of ULCLs .7545 .7503 .7524 18
- realigning pronouns .7545 .7444 .7494 20
- date/time symbolizer .7535 .7434 .7484 15
- quantity symbolizer .7495 .7395 .7445 15

Table 3: Ablation results on the development data, with one component removed at a time. “Epochs”
indicates the number of training epochs needed to reach the indicated f-score.

fewer epochs. Realigning pronouns helps a bit. The date/time symbolizer and the quantity symbolizer
are clearly beneficial.

7 Conclusions

Traditional semantic grammars are transparent, but theory-heavy and costly to adapt to new languages
and domains. End-to-end systems are easy to use and performant, but opaque: if there are errors, it is hard
to pinpoint the causes and fix them. Thus, either approach has problems that may make it infeasible in
production, semi-automatic annotation, or education settings. We believe that our approach—lexicalist
but with no need for an explicit representation of syntax—strikes an elegant balance between the two
extremes. At the time of this writing, we do not know where our system ranks among the shared task
participants. Previous work on similar tasks (Liu et al., 2018; van Noord et al., 2018) has reached f-
scores of up to 77.5% resp. 83.6%, however, these results were obtained on different and potentially
less complex test sets. And as discussed above, there are many promising avenues to further increasing
the performance of our system. Thus, whatever the outcome of this competition, we believe that our
approach is worth pursuing further.
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