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Abstract

The early phases of requirements engineering (RE) deal with a vast amount of software re-
quirements (i.e.,requirements that define characteristics of software systems), which are typically
expressed in natural language. Analysing such unstructured requirements, usually obtained from
stakeholders’ inputs, is considered a challenging task due to the inherent ambiguity and inconsis-
tency of natural language. To support such a task, methods based on natural language processing
(NLP) can be employed. One of the more recent advances in NLP is the use of word embeddings
for capturing contextual information, which can then be applied in word analogy tasks. In this paper,
we describe a new resource, i.e., embedding-based representations of semantic frames in FrameNet,
which was developed to support the detection of relations between software requirements. Our em-
beddings, which encapsulate contextual information at the semantic frame level, were trained on
a large corpus of requirements (i.e., a collection of more than three million mobile application re-
views). The similarity between these frame embeddings is then used as a basis for detecting semantic
relatedness between software requirements. Compared with existing resources underpinned by frame
embeddings built upon pre-trained vectors, our proposed frame embeddings obtained better perfor-
mance against judgments of an RE expert. These encouraging results demonstrate the potential of
the resource in supporting RE analysis tasks (e.g., traceability), which we plan to investigate as part
of our immediate future work.

1 Introduction

As a part of Requirements Engineering (RE), requirements analysis is “a critical task in software devel-
opment as it involves investigating and learning about the problem domain in order to develop a better
understanding of stakeholders actual goals, needs, and expectations” (Hull et al., 2017). However, it is
a challenge to analyse requirements to find relations between them, especially implicit ones, i.e., those
that are not expressed explicitly and formally, especially within a lengthy document. As stated by Ferrari
et al. (2017), these challenges are mainly due to the semantic ambiguity and incompleteness inherent
to natural language. Moreover, performing an RE analysis task, e.g. by manually inspecting words
and implicit or explicit relations between requirements, is a time-consuming and error-prone procedure
(Fernandez et al., 2017).

One of the approaches that has drawn the attention of the RE research community is semantic anal-
ysis. Representing under-specified meanings within requirements in a structured manner will lead to a
more efficient way for conducting RE analysis task. As an example, Mahmoud and Niu (2015) discussed
the importance of using techniques for measuring semantic relatedness in tracing links (or relations) be-
tween requirements. This mimics the human mental model in understanding links between pieces of text
through their implicit meanings. Natural language processing (NLP) tools and techniques offer viable
solutions to many tasks in RE, including requirements analysis (Dalpiaz et al., 2018). However, the
majority of the available NLP techniques and resources are not domain-specific, i.e., they are trained or



built based on general-domain data sets (e.g., news articles). For this reason, a recent research direction
in RE calls for “customizing general NLP techniques to make them applicable for solving the problems
requirements engineers face in their daily practice” (Ferrari et al., 2017).

In this work, we present a new resource, i.e., semantic frame embeddings, built upon semantic frames
in FrameNet (Baker et al., 1998). To demonstrate an application to requirements analysis, we employed
our semantic frame embeddings in computing semantic relatedness between software requirements at a
semantic frame level.

The rest of this paper is organised as follows: Section 2 provides background information on FrameNet
and word embeddings, while Section 3 presents the method we carried out to generate the frame embed-
dings. In Section 4, we discuss the results of employing the obtained frame embeddings in a semantic
relatedness measurement task. Finally, we conclude and briefly discuss our ongoing work in Section 5.

2 Background

2.1 A Brief Overview on FrameNet

Fillmore (1976) proposed the linguistic theory of semantic frames, stating that each word in a language
is accompanied by essential knowledge which is important to understand its full meaning. For example,
words such as “store” and “keep” are usually accompanied by the following elements: (1) an agent that
performs a storing event; (2) an object which is a result of the storing event; and (3) the location where
the object is kept.

FrameNet' is a web-based general-domain semantic lexicon that implements the semantic frame
theory. Initially started by Baker et al. (1998), it has continued to grow and now contains more than
1,200 semantic frames (Baker, 2017). For every semantic frame in FrameNet, the following information
is given: frame title, definition, frame elements and lexical units (LUs). LUs are words that evoke the
frame, represented as a combination of their lemmatised form and part-of-speech (POS) tag. The concept
of keeping an object, for example, which is stored in FrameNet as a semantic frame entitled Storing is
evoked by the LU save.v where v stands for verb, among other LUs. Its core frame elements, which are
essential in understanding the meaning of the frame, include Agent, Location and Theme. FrameNet also
catalogues non-core frame elements which are used to enhance the understanding of a specific frame. For
the Storing frame, Manner, Duration, and Explanation are considered as non-core elements.

In Figure 1, we demonstrate the use of semantic frames and their related LUs for representing a
set of software requirements. From the given example in Figure 1, we can identify the requirements
and conditions for implementing the designated system, e.g., accessing restrictions to the documents as
shown in in Req-1 and Req-2. The need to update records on a regular basis as described in Req-3 and
Req-4 are also shown. These requirements are abstractly represented by using FrameNet frames. For in-
stance, accessing restrictions are represented by the Deny_or_grant_permission and Preventing_or_letting
frames from FrameNet. Similarly, the processed materials “reports”, “logs”, and “contact information”
are captured by the Text, Records and Information frames, respectively.

Furthermore, some frames (e.g., Storing, Records, Verification, and Frequency) are repeated amongst
the requirements in Figure 1, boosting the semantic relatedness between these requirements. FrameNet
holds a representation of semantic relations between its frames (Baker, 2017). For example, the frame
Record inherits from the 7ext frame. Using such semantic relations could help create links between
annotated requirements, as reported in our previous work Alhoshan et al. (2018c). However, according
to Baker (2017) not all frames in FrameNet are semantically connected. For example, Information and
Records are not linked in any way. Similarly, Deny_or_grant_permission and Prenveting_or_letting are
not connected in FrameNet although both frames share some LUs (e.g., permit.v). For this reason, rather
than rely on the semantic relations encoded in FrameNet, we sought another way to find semantic links
between FrameNet frames.

"https://framenet.icsi.berkeley.edu/



Reg-1: The transaction records are kept into a central database of the Bank and only authonsed
users are able to view the documents.

FN-Reg-1: The transaction records [Records] are kept [Storing] mto a central database of the Bank
and only authorised [Demy _or grani permission] users are able [Capability] to view [Percep-
tion_active] the documents [Texz].

Reqg-2: The Bank's reports are stored and restricted i.e. accessing the logs should be allowed to specif-
ic users.

FN-Reg-2: The Bank's reports [Fext] are stored [Storing] and restricted [De-
ny_or_grani_permission] i.e. accessing the logs [Records] should be allowed [Preven:-
ing_or_lexting] to specific [Specific_individual] users.

Reg-3: The Bank's clients are requested to confirm their personal mformation regulary.

FN-Reg-3: The Bank's chients are requested [Reguess] to confirm [Ferification] their personal in-
formation [fyformation] regularly [Freguency).

Reg-4: Every vear the bank control systems shall ask the chents to venfy their contact information.

FN-Req-4: Every [Freguency] vear [Calendric_unif] the bank control [Being_in_contral]
system [System] shall ask [Reguest] the clients to verify [Verification] ther contact [Contact-
ing] information [Mnformation).

Figure 1: A set of software requirements, where “Req” refers to the raw requirements and “FN-Req”
refers to the requirements annotated with FrameNet frames titles (highlighted with colours) and their
evoked LUs (in bold font).

2.2 Word Embeddings

One of the recent advances in NLP research is the use of word embeddings as a method for capturing
the context of any given word in a corpus of documents. According to Mikolov et al. (2013), word
embeddings allow words with similar, or related meanings, to have similar vector representations. They
are learned based on the principle of distributional semantics, which posits that words occurring in the
same context have similar or related meanings (Harris, 1954). Deep learning offers a framework for
representing word context as real-valued vectors, that goes beyond the counting of co-occurrences and
takes into account word order as well (Bengio et al., 2003). For training word embeddings, a large and
representative corpus is needed. There are existing pre-trained, general-domain word embeddings ready
for use, e.g., the Word2Vec embeddings trained on 100 billion words from Google News (Mikolov et al.,
2013).

In general, word embeddings have helped boost the performance of various NLP tasks. An example is
word analagy, where word embeddings provide the capability to calculate semantic similarities between
words (Fu et al., 2014). However, the use of word embeddings can lead to even better performance
if they are trained on corpora specific to the domain of interest or application. This could potentially
reduce the problem of out-of-vocabulary (OOV) words (Jozefowicz et al., 2016), i.e., the lack or sparsity
of instances of certain words in the training corpus, which leads to not being able to capture or map their
context in embedding vectors. The solution to such cases is typically based on simply ignoring the OOV
words, which is not ideal.

In this work, we proposed a solution for mitigating text sparsity that is based on semantic frames.
Rather than mapping each word in the text, we target a group of words which represent a semantic frame,
hence producing semantic frame embeddings. There are previously reported efforts that proposed the use
of frame embeddings, e.g., Sikos and Padé (2018) and Alhoshan et al. (2018c). In our work, we aim to
develop frame embeddings that are suitable for captruing the context of RE-related documents.



3 Semantic Frame Embeddings

Our method for generating frame embeddings was previously discussed in our prior work Alhoshan
et al. (2018c) which we employed existing word embeddings developed by Efstathiou et al. (2018). In
this paper, we trained our own word embeddings which then formed the basis for generating semantic
frame embeddings. Afterwards, we measured the semantic relatedness between frames using different
similarity metrics. Finally, we selected the most suitable metric for applying frame embeddings to the
RE domain.

3.1 Preparation of Training Data

As a first step, we generated a corpus of requirements documents that are more similar to software re-
quirements, i.e., a collection of user reviews of mobile applications. Using the web-based AppFollow
tool?, reviews from different mobile application repositories (e.g., Apple Store and Google Play) were
retrieved. The user reviews covered different categories of mobile applications, i.e., business, sports,
health, travel, technology, security, games, music, photos, videos, shopping, lifestyle, books, social net-
working, finance. While each review came with metadata such as review date, title and per-user applica-
tion rating, we took into consideration only the textual content of the reviews. This resulted in a total of
3,019,385 unique reviews/documents in our training data set.

The documents in the training data set were then preprocessed with the following steps: sentence
splitting, tokenisation, stop-word removal, part-of-speech (POS) tagging and lemmatisation. The prepro-
cessing results allowed us to automatically check for the occurrence of LUs (associated with semantic
frames) catalogued in FrameNet, in order to assess the data set’s coverage of semantic frames. Based on
this, we were able to determine that our mobile application reviews data set covers all of the 123 semantic
frames annotated in FN-RE corpus (a FrameNet annotated corpus of software requirements presented in
Alhoshan et al. (2018a,b).

3.2 Training Word Embeddings

Utilising the preprocessed mobile application reviews data set as a corpus, we trained word embeddings
using the continuous bag-of-words (CBOW) learning method of Word2 Vec as proposed by Mikolov et al.
(2013). A word embedding vector was trained for each LU, which was represented as a combination
of its lemmatised form and POS tag. Taking into account the POS tag of an LU makes it possible to
train different vectors for words with the same lemma but different parts of speech. It is preferable, for
example, to train a vector for “form” as a verb (form.v) that is different from the vector for “form” as a
noun (form.n). The size of each vector was set to 300, following previously reported work in Sikos and
Padé (2018) and Mikolov et al. (2013).

3.3 Generating Frame Embeddings

The word embedding vectors resulting from the previous step were then used to form an embedding-
based representation of semantic frames, i.e., frame embeddings. That is, for any given semantic frame
F, we collected the vectors corresponding to the LUs that evoke it. The average of these LU vectors
is then computed and taken as the frame embedding for F. For instance, as 11 LUs are associated with
the Creating frame in FrameNet, a vector containing the average over the 11 word embedding vectors
corresponding to these LUs was obtained as part of this step.

3.4 Measuring Frame-to-Frame Semantic Relatedness

The generated frame embeddings were employed in computing relatedness between semantic frames.
Following our method described in Alhoshan et al. (2018c), we used the cosine similarity metric. For

*https://appfollow.io



FrameNet frames X and Y, let FR(X,Y) denote the relatedness between these two frames:

Fx -Fy
Flicosne 5 1) = gy | W
where F'x and Fy are the frame embedding vectors for X and Y, respectively.

The cosine similarity metric measures the angle between two vectors (i.e., frame embeddings). If the
vectors are close to parallel (e.g., with R(X,Y) ~ 1) then we consider the frames as similar, whereas if
the vectors are orthogonal (i.e., with R(X,Y) ~ 0), then we can say that the frames are not related.

In addition, we used two other similarity metrics, Euclidean Distance and Manhattan Distance, for later
comparison:

FREuclidean(Xa Y) = (FX - Fy)2 (2)
FRManhattcm(Xa Y) = HFX - FYH (3)

Similar to the cosine metric, the Euclidean and Manhattan metrics measure the distance between two
data points (i.e., distance between the two frame embeddings) to detect their similarity—i.e., if the data
points are close together (with a shorter distance), this is considered as a higher similarity between the
designated frame embeddings to be measured.

The Manhattan distance metric calculates the path between any two data points as it would be placed
in a grid-like path, whereas the Euclidean distance measures the distance as a straight-line.

An issue that is related to the distance scores of both Euclidean and Manhattan metrics is that the
results can be too large (i.e., greater than 1) if the data points to be compared are sparse. For this reason,
we applied the Zg..re in order to normalise obtained results from Euclidean and Manhattan distance
metrics separately:

Zscore(nyFy) = W 4)

Zscore 18 a function for normalising Dxy which is the similarity distance calculated by F'R between
Fx and Fy (calculated using either Euclidean or Manhattan distance) where p is the mean distance over
all frame pairs, and « is the standard deviation.

For implementing the methods described above, we employed various Python-based packages. The
preprocessing pipeline was implemented using the NLTK Python package? as well as NodeBox*. Mean-
while, the Word2Vec implementation available in the Gensim package’ facilitated the training of word
embeddings. The numpy package® was used in generating the frame embeddings and calculating simi-
larity scores, and matplotlib 7 for visualising the frame embeddings relations.

4 Results

In this section, we discuss the results obtained by using the frame embeddings generated by the method
described above. We used the 123 semantic frames in FrameNet that are annotated in the FN-RE corpus,
reported in Alhoshan et al. (2018b). The first author of this paper, who is a PhD candidate investigating
the use of NLP techniques in RE, annotated the semantic relatedness between the selected frames pairs
as “yes” if the frame pair is semantically related according to their definition and related (or shared) LUs,
and “no” otherwise.

We applied the three similarity metrics discussed in Section 3.4, on the frame embeddings of the
selected frame pairs as exemplified in Table 1. The results obtained from Euclidean and Manhattan

3https://www.nltk.org/
“https://www.nodebox.net/code/index.php/Linguistics
Shttps://radimrehurek.com/gensim/models/word2vec.html
Shttp://www.numpy.org/

"https://matplotlib.org/



distance metrics are normalised according to our discussion above. We considered 0.50 as a threshold
value to indicate semantic relatedness for any frame pair in the set, following prior work by Alhoshan
et al. (2018c). From the given results in Table 1, it is clear that using the cosine metric provides more
reliable relatedness scores that are close to the registered human-judgement—i.e., out of six positive
scores of semantic relatedness on the given frame pairs shown in Table 1, the cosine metric identified
five of them as semantically related with scores that are equal or higher than the used minimum threshold
value. The cosine metric is generally used to identify semantic relatedness regardless of the magnitude of
the frame embedding, whereas both the Euclidean and Manhattan metric measure the actual magnitude
distance between the frame embeddings. For example, the frame Sending occurs 0.824% in the training
corpus and the frame Receiving occurs only 0.007% of the time. The Euclidean and Manhattan metrics
measure the similarity of these two frames depending on how often they occurred in the corpus, whereas
cosine similarity measures only the angle of their vector representations. For this reason, we selected the
cosine metric to compare our frame embeddings with the pre-trained frame embeddings.

Table 1: Results of frame pair semantic relatedness scores according to the applied similarity metrics.
Underlined values pertain to the highest valued score (above the minimum threshold) for each semanti-
cally related frame pair.

Frames Pairs Human-judgements: Euclidean  Distance Manhattan Distance Cosine similarity
Semantically related? (Normalised) (Normalised)
(Sending, Creating) Yes 0.8622 -0.6653 0.5794
(Sending, Intentionally_create) Yes -0.6249 -0.62574 0.5383
(Sending, Receiving) Yes -0.3409 -0.3443 0.5356
(Sending, Recording) No -0.2469 -0.2050 0.4538
(Creating, Intentionally_create) Yes -1.3837 -1.3967 0.9034
(Creating, Receiving) No -0.3098 -0.3406 0.4697
(Creating, Recording) No -0.3329 -0.3422 0.4573
(Intentionally_create, Receiving) No -0.2057 -0.2170 0.3703
(Intentionally_create, Recording) Yes -0.2570 -0.2769 0.3778
(Receiving, Recording) Yes -0.1992 -0.2102 0.5081

In Table 2, we compare the characteristics of the frame embeddings based on word embeddings
pre-trained on news articles as used by Sikos and Padé (2018) (Column A), those pre-trained on Stack-
overflow posts by Efstathiou et al. (2018) used in Alhoshan et al. (2018c) (Column B), and our own
proposed embeddings (Column C).

Table 2: Comparison between our proposed Frame Embeddings (C) and the two available frame embed-
dings (A) and (B).

Feature

FrameNet Corpus Frame Em-
bedding (A)

FN-RE Corpus Frame Embed-
ding version 1.0 (B)

FN-RE Corpus Frame Embed-
ding version 2.0 (C)

Trained data set size
data set context

Number of words entries
Language Model

Context

31.0 MB

News articles

21,121 words

‘Word2Vec (dimension size: 300)

General

1.5GB

Stack overflow technical posts User
1.7 million words

Word2Vec (dimension size: 200)

Software Engineering

990.1 MB

reviews of mobile applications
1.6 million words

Word2Vec (dimension size: 300)

Requirements Engineering

The frame embeddings (A) and (B) are compared with our proposed frame embeddings (C) based
on a data set of frame pairs whose semantic relatedness has been labelled. The results are shown in
Table 3. For example, Creating and Intentionally_create frames, have some LUs in common (e.g., cre-
ate.v, generate.v and make.v). Both frames are connected via the inheritance relation is-a in FrameNet.



During the annotation of the FN-RE corpus, described in Alhoshan et al. (2018a) and Alhoshan et al.
(2018b), those two frames (Creating and Intentionally_create) in particular are overlapping and describe
very similar contexts. As shown in Table 3, the frame pair (Creating, Intentionally_create) obtained a
significant relatedness score of 0.903 according to our frame embeddings (C). More importantly, our
frame embeddings provided overall semantic relatedness results that are closer to our judgement, as we
discussed previously in this section. Such encouraging results indicate that using a training corpus that
is specific to the RE context provides improved results.

Table 3: Semantic relatedness scores (computed using cosine similarity) for each frame pair according
to our proposed frame embeddings (C) and the two other frame emebeddings (A) and (B). Underlined
values pertain to the highest score (above the minimum threshold) for each semantically related frame
pair.

Compared Frames Pairs Human-judgments: General  FrameNet FN-RE Corpus Frame FN-RE Corpus Frame

Semantically related? Corpus Frame (A) Embedding  version Embedding  version
1.0 (B) 2.0 (C)
(Sending, Creating) Yes 0.2642 0.3722 0.5795
(Sending, Intentionally_create) Yes 0.2320 0.4175 0.5383
(Sending, Receiving) Yes 0.2605 0.6466 0.5356
(Sending, Recording) No 0.2356 0.5587 0.4538
(Creating, Intentionally_create) Yes 0.8318 0.4338 0.9034
(Creating, Receiving) No 0.3433 0.2677 0.4697
(Creating, Recording) No 0.3084 0.2508 0.4573
(Intentionally_create, Receiving) No 0.3008 0.3496 0.3703
(Intentionally_create, Recording) Yes 0.3620 0.2867 0.3778
(Receiving, Recording) Yes 0.2722 0.2875 0.5081

As shown in previous work, semantic frames are a promising means for capturing the meaning of
software requirements ,e.g., Alhoshan et al. (2018c). Our encouraging results demonstrate that with care-
ful selection of a similarity metric (for measuring semantic relatedness) and a suitable training data set
representing software requirements, our proposed semantic resource (i.e., the frame embeddings) com-
bines the strengths of semantic frames and embedding-based representations— which can be integrated
with RE tools to support the task of software requirements analysis and traceability.

5 Conclusion

We presented a novel language resource to aid in finding semantic relations between software require-
ments, in support of RE tasks. The proposed resource is based on the development of an embedding-
based representation of semantic frames in FrameNet (i.e., frame embeddings), trained on a large corpus
of user requirements, consisting of more than three million mobile application reviews. In our imme-
diate future work, we shall integrate this resource with RE methods for analysing and tracing seman-
tic relatedness of software requirements. This in return, will aid in organising and grouping related
system features described in requirements documents.The frame embeddings are publicly available at
https://doi.org/10.5281/zenodo.2605273.
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