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Abstract
In this paper we present new results on applying topological data analysis (TDA) to discourse

structures. We show that topological information, extracted from the relationships between sen-
tences, can be used in inference, namely it can be applied to the very difficult legal entailment
problem given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and
Gholizadeh et al. (2018) show that topological features are useful for classification. The applications
of computational topology to entailment are novel, and in our view provide a new set of tools for
discourse semantics: computational topology can perhaps provide a bridge between the brittleness of
logic and the regression of neural networks. We discuss the advantages and disadvantages of using
topological information, and some open problems such as explainability of the classifier decisions.

1 Introduction

Topology is a classic branch of mathematics that deals with shape invariants such as the presence and
numbers of holes. More recently topological data analysis (TDA) was introduced as a branch of compu-
tational mathematics and data science, predicated on the observation that data points have implicit shapes
(e.g. Edelsbrunner and Harer (2010)). Throughout the paper we will be using the word topology only in
these two particular senses.

Both topology and TDA can be viewed as an abstraction mechanism, where we replace the original
shape or cloud of data points by some numbers representing their mathematical properties, using a for-
mal machinery derived from algebraic topology. In case of TDA, we use software implementing these
methods.

A natural question to ask is whether texts or discourse structures have shapes that can be measured
using tools of topology. Zhu (2013) was the first to investigate this question and observed we can capture
some information about discourse structures using topological structures, namely homological persis-
tence (which we do not have space to define here, and we simply use it as a source of numerical features).
Zhu used a collection of nursery rhymes to illustrate how topology can be used to find certain patterns of
repetition. More recently, Doshi and Zadrozny (2018) applied Zhu’s method in a larger setting showing
its classification superiority on the task of assigning movie genres to user generated plot summaries, us-
ing the IMDB data set. They improved on the early 2018 state of the art results of Hoang (2018), which
was achieved using deep learning on this large data set. Gholizadeh et al. (2018) applied a different
method for computing homological persistence to the task of authorship attribution, which is also a clas-
sification task, showing that the patterns of how authors introduce characters in novels can be captured to
large extent using topological descriptors. Interestingly, neither of these works uses topological features
to augments the usual tf/idf representations of documents: Doshi and Zadrozny (2018) use counts of
words (from a previously identified vocabularies) to form a matrix which is the only input to topologi-
cal persistence, and then they make a rule based decision based only on the presence of barcodes; and
Gholizadeh et al. (2018) use time series. To use topological data analysis (TDA), Zhu (2013) assumes
that text is implicitly coherent (SIFTS method), and so do Doshi and Zadrozny (2018). Namely, they
assume implicit connection between consecutive sentences in each document. While for movie plots this
assumption makes sense, it might be more problematic in other contexts, such as entailment, especially
when two passages are unrelated.



Figure 1: Persistence homology is a data analysis tool. Intuitively, as we start expanding the data points into
balls of increased radii, planar figures emerge and change. The intervals in H0 and H1 capture relevant features of
this process, namely the number of connected components, and the number of holes at different resolutions. The
method abstracts distance information about the feature vectors of original data. It is an open problem how exactly
these new numerical features help entailment. Source of the figure: Huang et al. (2018)

1.1 Our results

In this paper, we present our very recent results on applying topological data analysis (TDA) to entail-
ment, with some improvement of accuracy over the baseline without persistence.

More specifically, this paper shows TDA works on entailment improving the task of classification
for establishing entailment on the COLIEE 2018 task by over 5% (F-measure) compared to the results
classification without topology that is using only tf/idf and similarity. Furthermore, this result does not
assume the existence of the implicit skeleton connecting consecutive sentences (as was done in Doshi
and Zadrozny (2018), following Zhu (2013)).

The title of the present article ends with a question mark. This question mark reflects the tension
between the positive empirical results derived using topological methods and our lack of understanding
why these methods work. Thus, perhaps another contribution of this paper is to point to both, the need
for theoretical inquiry about relationships between discourse and its topological abstractions, and more
importantly to the need for tools that would allow us to experiment with such hypothetical relations. As
we speculate in Section 4, the effectiveness of TDA for entailment might be explainable using the known
mathematical connections of topology and logic (e.g. Vickers (1996)). Proper tooling could prove or
disprove this hypothesis.

1.2 A minimum background on topological data analysis

Topological Data Analysis (TDA) can be viewed as a method of data analysis done at different resolu-
tions. Informally speaking, this process can be viewed as data compression(cf. Lum et al. (2013)). It can
also be viewed as an attempt to reconstruct shape invariants, such as presence of voids or holes, from col-
lection of points, at different resolutions (Edelsbrunner et al. (2000)). Or in yet another formulation TDA
tries to make data points fit together, and measures their divergence from perfect fit Robinson (2014) (we
will not be using this last property here).

Figure 1 (taken from Huang et al. (2018)) conveys these ideas: it shows a cloud of data points, and its
subsequent approximation by balls of increased radii. The overlaps produce a change in shape which can
be measured using the H0 and H1 lines: The number of H0 lines intersecting the vertical bar at ε is the
number of connected components of when the points are extended with balls of that radius. Therefore as



ε increases, the number of components decreases. In this process the exact values of the data points are
ignored, but the shape information is preserved – that is, two clouds of similar shapes but different values
will have similar persistence diagrams. The H1 lines show the birth and death of holes at given values of
ε. The top line show a hole persisting from 1.2 to 3.3 (approximately). Jointly, H0 and H1 (and higher
Hn’s , not discussed here) compress information about the shape of the point cloud. This diagram deals
only with planar structures, but persistence works in higher dimensions as well, in principle allowing
machines to ”see” shapes in dimensions higher than 3, a task difficult for humans. ”Persistence” refers
to the fact that the number of components and holes remains stable at some intervals, and we record this
fact as numerical features; ”homology” means similarity (of shape).

In NLP, the points are in a high dimensional space and represent vectors of tf/idf or other features
derived from text. The method works the same, but please note that Figure 1 only illustrates how TDA
progresses from points to shapes. At this point, we do not know — and we see it as a major open problem
— what aspects of natural language semantics, whether for entailment or classification, are captured by
topological features.(Although, as mentioned earlier, some aspects of this problem are discussed in Zhu
(2013)).

To finish this introduction, we mention an equivalent representation, called persistence diagram, an
example of which appears later in Figure 5, represents birth and death as two dimensional coordinates,
and uses colors to make a distinction between H0 and H1. To repeat, the representation method is
general, and it generates numbers we can use as machine learning features. However, finding the corre-
sponding natural language mechanisms responsible for the improvements in accuracy of classification or
entailment is an open problem.

1.3 Related work on applying topological data analysis to discourse modeling, and text
processing in general

Applications of TDA to text started with discourse: Zhu (2013) used nursery rhymes to illustrate prop-
erties of homological persistence (e.g. that it is not simply measuring repetitions), and also showed that
children, adolescent and adult writing styles can be differentiated using TDA. Doshi and Zadrozny (2018)
used Zhu’s tools and methods to show that topological features can improve the accuracy of classification
(movie plots). They also discuss the paucity of applications of TDA to text, and the fact that not all of
these applications show improvements over the state of the art: in particular this was the case for senti-
ment analysis and clustering Michel et al. (2017). Temčinas (2018) argues for applicability of persistent
homology to lexical analysis using word embeddings, and in particular for discovery of homonyms such
as ’bank’, thus potentially for word sense disambiguation.

For discourse analysis, broadly speaking, we see that according to Guan et al. (2016) TDA can help
with extraction of multiword expressions and in summarization; also it might be worth to mention Horak
et al. (2009) apply TDA to a networks of emails, but without going into their text. In other words, TDA
for text data is an emerging area of research, perhaps with a potential to be of value for computational
linguistics (see the last two sections of this paper for an additional discussion).

2 Entailment between legal documents

The COLIEE task: Our application of topological data analysis (TDA) to computing entailment fo-
cuses on the legal entailment COLIEE 1 task, i..e Competition of Legal Information Extraction and
Entailment (COLIEE).

To solve an entailment task, given a decision of a base case, along with its summary and facts, the
system should be able to establish the relation of entailment with an associated noticed case, given
as a list of paragraphs. We can define it as, given a base case b, and its decision d, and another
case r represented by its paragraphs P = {p1, p2, p3, . . . , pn}, and we need to find the set E =

1COLIEE 2018 Workshop collocated with JURISIN 2018: https://sites.ualberta.ca/˜miyoung2/
COLIEE2018/



{p1, p2, . . . ., pm | pi ∈ P}, where entails(pi, d) denotes a relationship which is true when pi ∈ P
entails the decision d (c.f. Rabelo et al. (2018), Kim et al. (2016), Adebayo et al. (2016)).

Figure 2: Each case folder includes decision file, summary file and fact file with paragraph folders. Decision file
is an actual query i.e. a decision of a base case, summary file consists of a summary of a base case and facts file
includes all the human annotated facts about the base case.

Figure 3: Above example illustrates entailment between text and hypothesis for one of the base cases of COLIEE
2018. Text column consists of decision and summary of a base case and the hypothesis is an entailed supporting
paragraph for a given base case. (We have excluded facts file in text while demonstrating as size of its text is large)

Overview of dataset: For training, there were 181 base cases provided which were drawn from an
existing collection of Federal Court of Canada law cases. Every case consists of a decision file, summary
file, facts file and a list of paragraph files. The training data also consists of labels in XML format for
entailed paragraphs. Our task was to identify paragraphs from this list, that entails with the decision of a
base case. In 181 base cases, the number of paragraph files were 8794 out of which 239 were positively
entailed and the rest were not entailed. This led us to a very imbalanced class ratio of 2.71% examples
in positive class and 97.29 % in negative class.



Why this task is difficult: Since the data is of legal domain, it might require an understanding of
law to analyze it: A traditional approach such as training neural network, or the more intuitive semantic
similarity approach did not work very well on this dataset. Reason being, pre-trained word embedding
such as GloVe and word2vec may not contain enough legal terms for neural networks to learn. Similarity
correlates with entailment, but it clearly is a different problem. Also, this corpus is too small to use it to
create our own pre-trained word embeddings. And at this point we do not have the bandwidth to pursue
corpus expansion and create appropriate legal embeddings. An example of the type of text present in the
COLIEE data is shown in Fig.3.

Another challenge was data distribution. Using common re-sampling techniques for classification
task along with tf/idf leads to predicting always the negative class and treating positive class as noise,
giving false high accuracy.

The best results obtained on COLIEE leaderboard was of Rabelo et al. (2018) where they employed
similarity-based feature vector and used a “candidate” paragraph, chosen from histogram of the simi-
larities between each noticed case and all paragraphs for classification. In this method, due to the un-
structured input format, their team used post processing for classifier’s predictions. In case of too many
positive detections, they retained 5 candidate paragraphs whereas for zero positive predictions they re-
tained 1 paragraph by choosing classifier’s confidence interval. With this approach they delivered 0.24
precision, 0.28 recall and 0.26 F-score.

3 Computing entailment with and without topological features

To see whether topological features provide any additional information we employed a supervised ma-
chine learning approach. We represented the data points as a set of elements of type “[text, hypothesis],
Label“. We defined ”text” as a combination of decision file, summary file, and fact file; and ”hypothesis”
as a list of paragraphs for a case. For cleaning the text data, we simply removed punctuation, stop-words
followed by converting the text to lower case and stemming it. This process, together and the features
used in the experiments are shown in Fig. 4.

Figure 4: Diagram represents pipeline used for establishing entailment. A simple flow was to pre-process the
data, prune highly similar and relevant paragraphs and resample further using NearMiss-3, then in the second pass,
use homology features along with tf/idf.

We then formulated the problem as a binary classification problem for establishing corresponding
paragraphs as entailed or not entailed with a base case. Mathematically, given a training dataD = (xi, yi)
for i = 1, ..., N , where xi = {texts, hypothesis}, and yi = {0, 1}.



3.1 Method 1: Relevance and similarity approach.

Considering every case had a list of paragraphs and severe imbalance, we approached this problem by
first ranking the paragraph files using Okapi BM25 algorithm. We also calculated cosine similarity of
a text and its hypothesis, and combined these features to re-sample the data, which we hoped would
maximize the probability of establishing entailment without any information loss. Using the augmented
samples that are highly relevant and similar with the base case, we computed TF-IDF vectors using
sklearn. To retain the order of a sequence of every sentence we used n-gram range hyper-parameter
with value 1 to 3. This experiment was performed using Random Forest classifier for binary classifica-
tion. The results, shown in Table 1 show improvement over previously reported top score of Rabelo et al.
(2018) – note, however, our results were obtained after the JURISIN 2018 competition. Our main point
was to see whether topological features provide additional value.

3.2 Method 2: Topological Data Analysis approach.

We wanted to examine if topology could create stronger signals to capture entailment. From the previous
method we learned that entailment cannot be explained by establishing similarity only. By measuring
the distance between two documents, one cannot necessarily infer a meaning of one text from another.
In Information Retrieval, if a document is relevant to a given query, it does not necessarily mean that the
meaning of a query can be completely inferred from the retrieved document. In fact, this creates a need
for entailment in various NLP tasks including IR.

We used Ripser, a C++ library to compute persistent homology, for establishing topological structure
of documents.2 Ripser was applied both to text and hypothesis. Our assumption is if text is entailed
with hypothesis then the corresponding values of birth, death radius can provide stronger signals to the
classifier. Unlike the movie classification experiment, we did not observe any specific barcode structure
for entailed and non-entailed paragraphs, but the radius of birth-death cycle was significantly different
for entailed documents as compared to the non-entailed ones. Another reason for not having a specific
structure between such documents could be the length of these documents, as each file consists of 5
sentences on an average. In future we aim to perform this experiment on larger size documents to see if
there is any obvious barcode structure between entailed documents, and that can visually give us a clear
interpretation.

After calculating homology, we combined persistent homology features with tf/idf to create a feature
vector comprised of the same. We used Random Forest classifier for binary classification task to establish
entailment. Notably, we have not assumed the existence of coherence skeletons in documents (SIFTS in
Zhu (2013)).

Experiment and Results:
We used tenfold cross-validation, setting a random sample of 22 cases aside from given 181 cases

for the evaluation task. From our first method where we used highly similar and relevant paragraphs for
classification along with tf/idf feature vector, our best results were 0.28 precision score, 0.58 recall and
0.38 F-score for entailed class (see Table 1).3 We improved our precision score by 2.5%, recall by over
14% and F-score by over 5% using topological data analysis. (Our aim was to achieve higher F-score for
classification other than recall as a naı̈ve implementation can give 1.0 recall by predicting all paragraphs
as entailed). Using topological features, we could see reduction in predicting false positives, and more
accurate predictions for true positives. We experimented with three machine learning classifiers out of
which we obtained the best results using Random Forest.

2https://github.com/Ripser/ripser
3These results were obtained after the COLIEE competition.



Figure 5: Left Panel: Barcode structure of persistent homology capturing multiple cycles. Note the the differences
in radius of one long cycle and the others. Right panel: Persistent diagram representing the cycles from the left
panel. Note the dot further from the diagonal corresponding to the long cycle. We show that these cycles are
informative (Table 1), but we do not have tools to understand precisely how.

Method Precision Recall F-score
Robelo et al. (2018) [prior art] 24% 28% 26%
Similarity + relevance score + tf/idf+ RF 28.2 58.3 37.6
Similarity + relevance score + tf/idf + RF + Topology 30.7 72.5 43.0

Table 1: Results of the classification experiments using Random Forest (RF) with 10-fold validation; RF produced
best results, with and without topological features. In the first experiment, using proper filtering and resampling
improved the F-score compared with COLIEE 2018 prior art. More importantly, we see that the presence of
topological features is informative for entailment – this is the main point of the paper.

4 Discussion and Open Problems

As shown in Table 1, the use of topological features, namely birth-death information shown in Fig. 5, can
improve the accuracy of computing entailment. However, it is an open issue to understand what exactly
is being captured by using persistence. This can be seen as two sets of open problems: (a) we do not
know exactly the correspondence between text and homological features; (b) we do not have instruments
to capture these relationships.

We understand these relationship on some the abstract, mathematical level, even for text; in Zhu
(2013) and Doshi and Zadrozny (2018) experiments, because of the simple setups, the 1-dimensional
persistence measures the tie backs of content words. However, this is less clear for entailment, and we do
not have instruments that would allow us to go back from the classifier decision and show the meaning
of the topological features in documents we were using. Thus the abstract and concrete explainability
of topological text features is an open problem. In addition, as the referees observed, entailment has
direction, but distances used by our out of the box TDA methods are symmetric. So, what exactly is
happening? – We don’t know. However, asymmetric structures as in Fig. 1 can arise from (symmetric)
distances between points. One hypothesis we plan to explore is that ”global alignment” of Dagan et al.
(2010) is captured by homological persistence. Similarly, it is conceivable that feature inclusion measures
such as APinc, balAPinc , see e.g. Baroni et al. (2012), are indirectly captured by homological
persistence. Again, it is an open problem what exactly is happening here.

In principle asymmetric measures of distance can be used in computational topology, see: Bubenik
and Vergili (2018) and also discussion in Hennig and Liao (2013). Whether doing so would help entail-
ment is an open problem.

To continue with speculations, there is a category theoretical style of research on entailment and
distributional semantics, e.g. Bankova et al. (2016). There are also deep connections between topology,
category theory and logic (e.g. Vickers (1996)). And we could even add physics to the mix: Baez and



Stay (2010). Given the connections between intuitionistic logic, Heyting algebras and topology, and the
possibility of translation between these three representations (Vickers (1996)), we can speculate if we
properly do computational topology for inference, we should get approximately-correct intuitionistic,
logical inference methods. This could be an important connection, since logics are proverbially brittle,
and computational topology is not. Thus our results might be experimentally confirming this intuition,
and on a pretty difficult data set.

5 Summary and Conclusion

TDA can be computationally expensive, as observed by many researchers, and also Huang et al. (2018) to
argue that quantum computing methods might be appropriate (if they materialize). However topological
features seem to provide advantage when only small amount of the data is available, as shown here,
and also in Doshi and Zadrozny (2018), who used only small percentage of data for preparation and
training. This is also the case in our related work (Savle and Zadrozny (2019)), where we improved on
Doshi and Zadrozny (2018) movie plot classifcation results by changing the inputs to the computation of
persistent homologies from binary matrices to tf/idf representations augmented with persistence, which
is the representation used here. Furthermore, we did not use the assumption of time skeleton Zhu (2013).
From discourse interpretation point of view, this shows the assumption of discourse coherence does not
have to be built in into the TDA method. But, again, the trade-offs between these two approaches are
unclear.

Similarly, if larger amounts of data are given (e.g. movie plots), the precise computational tradoffs
between using topology versus deep neural networks are unclear, especially given the ongoing improve-
ments on various text analysis benchmarks, and new methods for addressing these tasks appearing on a
daily basis.

Our future work includes, in the near horizon, experimenting with other data sets, possibly using
graph embeddings in addition to topology. In a slightly longer horizon, we also want to explore higher
dimensional persistence, which was shown in Horak et al. (2009) to capture relevant properties of a so-
cial network (email exchanges), but has not, to our knowledge, been used for other aspects of discourse
understanding. And in parallel, we will be focusing on building tools to help us answer the question what
exactly is captured by topological features.

In summary, this work confirms the ability of topological features to effectively capture certain struc-
tural properties of discourse text. On the one hand, it is another application of topological data analysis
to text. On the other hand, given the paucity of positive results in this space (as discussed in the Intro-
duction), and no previously reported applications to inference, we see our work as giving a new tool for
computational discourse semantics, which could be used, as we have shown, as an addition to existing
tools. Therefore, in our view, this research opens a new area of discourse analysis, where regression-
based tools (such as standard machine learning and neural networks) can be used jointly with structural
tools: to logic and ontology we can therefore add topology. From a formal point of view, with the known
correspondence between intuitionistic logic and topology, the effectiveness of computational topology
for inference, should yield approximate (and mostly correct) inference methods. This work shows that
indeed this might possible, even for relatively difficult cases of entailment.
Acknowledgments: We thank the referees of IWCS 2019 for their comments and suggested improve-
ments. Most of the issue raised by them we addressed in the preceding section. Unfortunately, explaining
why exactly topological methods work on entailment is an open problem.
Authors’ contributions: K. Savle designed, ran and analyzed the results of the experiments under the
guidance of W. Zadrozny, and with additional help from M. Lee, esp. in analyzing machine learning
results. KS and WZ were the primary writers of this paper.
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