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Abstract
The challenge of automatically describing images and videos has stimulated much research in

Computer Vision and Natural Language Processing. In order to test the semantic abilities of new
algorithms, we need reliable and objective ways of measuring progress. Using our dataset of 2K
human and machine descriptions, we find that standard evaluation measures alone do not adequately
measure the semantic richness of a description. We introduce and test a new measure of semantic
ability based on relative lexical diversity. We show how our measure can work alongside existing
measures to achieve state of the art correlation with human judgement of quality.

1 Introduction

Image and video processing systems are being developed for a wide variety of semantically rich tasks,
such storytelling (Zhu et al., 2015), Visual Question Answering (VQA) (Anderson et al., 2017; Teney
et al., 2016; Wu et al., 2016), and engaging in visual dialogue (Jain et al., 2018). In this paper, we
consider the task of Image Description (Lin et al., 2014; Hodosh et al., 2015; Plummer et al., 2017).
Closing the semantic gap between human and machine descriptions requires robust and standardised
measures of performance. In classical computer vision problems such as object detection, segmenta-
tion and classification, quality can be defined easily as a comparison between machine predictions and
reference answers. Standard measures of image description quality consider the alignment of candidate
sentences with ground truth sentences. However defining a set of ”correct” answers for a given image is
restrictive, as an image may contain diverse semantic information. Consequently we find semantically
rich and detailed content is regarded very poorly by such measures, and the more sparse and simplistic
the reference data and predictions, the higher the score. In summary:

1. We sourced 2K human and machine descriptions, which we used to show that standard automated
measures of quality give an incomplete picture of semantic ability. The measures produce higher
scores when candidates and reference data are semantically sparse, and lower scores on richer
descriptions.

2. We show that measuring the relative lexical diversity of a system is a better indicator of semantic
ability. We define two measures of relative diversity, and show that when combined with standard
measures, achieve achieve state-of-the-art correlation with human judgement.

We hope our work will stimulate research in to more advanced measures of semantic ability, helping to
close the gap between human and machine descriptions.

2 Relevant Literature

The predominant approach to generating original descriptions is to encode visual data into semanti-
cally useful features, which are then decoded into language. The capability of Convolutional Neural



Networks (CNN) and their variants for extracting spatial features is well established in Computer Vi-
sion. Pre-training the network on a dataset such as ImageNet1 (which already embeds images based on
the WordNet nouns contained within them) provides spatial features which accurately predict common
nouns. In language generation, it is common to use a gated recurrent neural network which predicts a
probability distribution across the vocabulary, given prior states and spatial features (Long et al., 2014).
Many systems have evolved from this fundamental approach, and we refer interested readers to surveys
on such developments(Bernardi et al., 2016; Aafaq et al., 2018). Systems are typically trained end-to-
end on one of a number of image description datasets. Relevant to this paper are MS-COCO (Lin et al.,
2014), Flickr8k (Hodosh et al., 2015), and Flickr30k(Plummer et al., 2017).

2.1 Methods of Evaluation

Objective measures of performance enable the automatic evaluation of systems across large datasets,
avoiding the laborious process of sourcing human judgements. The measures divide into three groups:

1. Machine Translation measures: Early description systems considered image description as a trans-
lation task, in which information in the visual domain, is translated to the linguistic domain. As
such machine translation measures based on n-gram alignment such as BLEU(Papineni et al.,
2002), ROUGE(Lin and Hovy, 2003) and METEOR(Denkowski and Lavie, 2014).

2. Captioning Measures: CIDEr(Vedantam et al., 2015) and SPICE(Anderson et al., 2016), designed
specifically for the description task. CIDEr addresses the problem of description diversity by
rewarding candidates that match the consensus of references. SPICE, applies work from scene
graph generation(Schuster et al., 2015) to create semantic graph representations of candidate and
ground truth.

3. Neural Network Evaluation: Neural networks can be trained to evaluate descriptions. NNEVAL
(Sharif et al., 2018) is a network trained to predict whether a description is human or machine,
using both the captioning and translation measures as linguistic features.

As automated measures are a substitute for human evaluation, they are compared on the basis of their
ability to correlate with human judgement. The poor correlation of translation measures is well known,
(Bernardi et al., 2016; Chen and Dolan, 2011), and captioning measures show improved results. In this
work we assess the correlation using the Composite dataset(Aditya et al., 2015). Human and machine
captions for images in subsets of MS-COCO, Flickr8K and Flickr30K are judged by Amazon Mechanical
Turk workers, and rated for correctness and completeness.

2.2 Lexical Diversity (LD)

The ability of text or speech to convey information specifically and articulately is a widely studied field.
It is of interest in areas such as language learning, educational psychology and the study of speech
impediments (Durán et al., 2004; Jarvis, 2013). An indicator of such fluency is Lexical Diversity (LD),
which is a measure of the distribution of words used in a sample text. A simple measure such as the
Type Token Ratio (TTR) considers the number of unique words used, relative to the total number of
words in a sample. However TTR disadvantages longer texts, because for every additional word added
to a corpus, the probability that it will be novel decreases. Such a measure would therefore be difficult
to apply to a large scale image description corpus. A variety of measures derived from TTR have been
proposed to address the issue of sample size such as the rate at which the TTR falls as successive tokens
are added to the text (Jarvis, 2013). A curve with a larger negative gradient demonstrates more diversity
than one with a smaller decay, and its parameters can be found with a numerical method (Durán et al.,
2004). We later illustrate the application of this to image descriptions. More recent measures such as
MTLD (McCarthy and Jarvis, 2010) consider the mean length of word strings for a particular TTR.

1http://www.image-net.org/



Hypo-geometric Distribution-D (HD-D) (McCarthy and Jarvis, 2010) measures the probability that for
a random sample of words from a corpus, a particular token will be selected a certain number of times.
Here we use HD-D for its simple implementation, lower sensitivity to corpus size and wide use in the
literature, but our method could be applied with a different LD measure.

3 Evaluation Measures and Rich Descriptions

A desirable quality of a description is to convey semantically insightful information. In this section we
describe how we sourced a set of human and machine descriptions, comparing them on their semantic
richness. We compared standard evaluation measures on semantically sparse and rich captions.

3.1 Sourcing Rich and Sparse Descriptions

We showed a total of 20 images to volunteers (Figure 1), asking them to describe the image in an infor-
mative sentence. ”Describe this image as if describing it to a friend”. Unlike large scale data collection,
where participants have many images to process, our smaller scale collection gave participants unlim-
ited time to consider their description. We also sourced machine descriptions by training a common
image captioning baseline(Xu et al., 2016) on MS-COCO. After validating the performance of our sys-
tem against the original paper, we sourced 1K machine descriptions of our images. From a subjective
comparison between the human and machine descriptions, we noted a gap in semantic richness, illus-
trated in Figure 2. Humans incorporate information extrinsic to the images, such as from current affairs,
cultural background and human experience, reacting with empathy to emotional cues. Machine descrip-
tions however, are produced sequentially one word at a time, with each word selected from a probability
distribution, predicted from object and attribute features. As all human descriptions were semantically
more insightful than corresponding machine descriptions, we refer the machine descriptions as ”sparse”
and human descriptions as ”rich”. Table 2 shows that the distinction between rich and sparse is also
evident in the vocabulary and lexical diversity of the datasets.

Figure 1: Rich-Sparse Dataset

3.2 Evaluation Measures on Human and Machine Descriptions

We evaluated human and machine descriptions separately, using the standard evaluation measures. For
each image we performed 1000 evaluations, where 5 sentences were randomly selected from the set of
descriptions to be the ground truth candidates, with the remaining used to calculate the metrics. Table
1 shows that when both ground truth and candidate description sentences are semantically sparse they
perform very well. However descriptions of a higher semantic complexity are penalised as a result of
their more diverse and rich descriptions, with many insightful descriptions scoring zero. Figure 3 shows
examples where the SPICE metric scores rich descriptions as zero. When rich descriptions were used as
ground truth, the machine descriptions perform very poorly.

3.3 Comparison of Lexical Diversity

We measured and compared the LD of human and machine descriptions. Our human descriptions were
universally richer and more semantically detailed than the machine descriptions. For each of the 40 TTR



Figure 2: Examples of human (black) and machine descriptions (red).

Figure 3: Zero scoring rich descriptions (top) and low scoring machine descriptions (bottom) when
measured on SPICE

curves we plotted (machine and human for each image), we found that LD was an accurate indication of
whether a descriptions was from the rich or sparse set. Figure 4 shows the TTR curves for the examples
presented in Figure 2 . The figure illustrates the faster decline of the sparse descriptions, relative to the
semantically richer descriptions.



Ground Truth Human Machine
Candidates Human Machine Human Machine

Cider 0.09 0.02 0.01 0.27
Bleu1 0.49 0.37 0.25 0.75
Bleu2 0.22 0.1 0.06 0.59
Bleu3 0.09 0.01 0.01 0.42
Bleu4 0.05 0.00 0.00 0.28

Rouge(L) 0.32 0.23 0.19 0.19
METEOR 0.17 0.1 0.09 0.3

SPICE 0.1 0.05 0.03 0.2

Table 1: Evaluation Measures for Rich (Human) and Sparse(Machine) Domains

Figure 4: TTR curves for rich and sparse descriptions

3.4 Comparison of Linguistic Complexity

Readability measures have long been used to automatically grade the complexity of language. We tested
several measures, including Flesch–Kincaid(Kincaid JP, 1988), Coleman–Liau(Coleman and Liau, 1975),
Dale-Chall(Dale E, 1948) and Automated Readability(Senter, 1967). However we found they did not
correlate well with semantic quality. Informative descriptions tend to be lexically diverse, but are not
necessarily complex. Rich descriptions can contain a higher syllable count and more ’difficult’ words
than sparse descriptions however this is not always the case. Furthermore a description corpus which
generates exactly the same complex sentence for every image conveys no information and yet would
score highly on complexity.

4 The Lexical Gap

One indication of the performance of a machine description system, is its ability to convey semantically
rich information. We propose a measure which considers the entire output of a description system (which

Lexical Diversity
TTR Root-TTR Log-TTR HDD MTLD

Sparse 0.09 2.98 0.65 0.55 16.07
Rich 0.24 14.29 0.83 0.75 40.58

Table 2: Rich-Sparse Dataset Statistics



we call cm) and compares it with its training data (which we call cr). Thus instead of solely considering
a machine’s ability to predict n-grams or words, we also measure its ability to maintain the linguistic
diversity of its training corpus. Our key finding is that measuring the LD of a description corpus relative
to its ground truth data is a good indication of semantic quality, and can be used to weight standard
performance measures, increasing their correlation with human subjective judgement. In this section we
define our measures, which we later compare compare with standard captioning measures.

4.1 Measuring the Lexical Gap

The Lexical Diversity Ratio (LDR) is a straightforward measure of the ability of a machine to match the
semantic depth of its source material. Given a function Lwhich calculates LD for a reference description
corpus cr and the machine description corpus cm, we define the Lexical Diversity Ratio (LDR) ld as:

ld =
L(cm)

L(cr)
(1)

A machine with a score of 1, is more able to match the lexical diversity of its training source. A lower
score, indicates a reduction in semantic richness. We also define the lexical gap (Lg) a bounded measure
of the ability of a system to maintain lexical diversity. An ld below some constant µ, will tend to zero
indicating a larger lexical gap. As ld increases a system is closing that gap, towards a score of 1, which
indicates ideal performance. Given the constants µ and α, we define the Lexical Gap Lg:

Lg =
1

1 + exp−α(ld−µ)
(2)

Considering our rich and sparse descriptions independently, we split them into sub-corpora. We calculate
ld scores each sub-corpora as (cr) using in every case the richer descriptions has our reference cr. Figure
5 shows the LDRs (ld) for the rich and sparse parts of our description dataset. The richer descriptions,
although more broadly distributed, have a higher mean ld. We define µ as the value that produces the
Bayes Minimum error between the two distributions of ld (0.81), and we set α=5 to distribute all our
values broadly and between the range 0..1. Then given a description metric M , we calculate the gap-

Figure 5: Distribution of LDR scores for sparse and rich descriptions

weighted score for each sentence: sn in a corpus sn ⊆ cr:

mgap =M(sn)Lg (3)

mldr =M(sn)Ld (4)

5 Results

We evaluated the performance of weighted lexical measures using the Composite dataset. The dataset
contains selected human and machine descriptions for images sourced from Flickr30k, Flickr8K and



Source Dataset Caption Source LDR (ld) Lexical Gap (Lg)

Flickr30k

Human 1.03 0.98
Machine1 0.63 0.02
Machine2 0.70 0.08
Machine3 0.71 0.11

Flickr8k
Human 0.92 0.89

Machine1 0.71 0.10
Machine2 0.65 0.03

MS COCO

Human 0.97 0.95
Machine1 0.72 0.11
Machine2 0.73 0.13
Machine3 0.73 0.13

Table 3: Calculation of ld and Lg for the Composite Dataset

Spearman Pearson Kendal-T
NNEval 0.524 0.532 0.404
ld 0.473 0.621 0.329
Lg 0.473 0.630 0.369

Table 4: Overall Correlations for LDR and Lexical Gap

MS COCO. For each description in Composite, we sourced the relevant ground truth sentences from the
source dataset so that we could calculate the captioning scores for that sentence. These are the standard
scores presented in Table 5.

Using our measures defined previously, we also calculated ld andLg for each subset of the Composite
dataset (Table 3) using the relevant source corpus as our reference (cr). We thus measured the lexical
diversity of human and machine subsets of the Composite dataset. Before using standard evaluation
measures, we found that our ld and Lg correlated well with human subjective judgements, as presented
in Table 4. Then we calculated themgap andmldr for each evaluation measure over the entire Composite
dataset. We calculate the correlation performance with the human evaluation scores.

Table 5 compares the gap weighted scores with standard measures of performance. We found that on
all measures, weighting by ld and Lg improves the correlation between human judgements and objective
measures.

Spearman Pearson Kendal-T
Standard mldr mgap Standard mldr mgap Standard mldr mgap

CIDEr 0.361 0.383 0.516 0.354 0.388 0.571 0.270 0.369 0.389
Bleu1 0.346 0.429 0.444 0.362 0.471 0.489 0.257 0.292 0.362
Bleu2 0.323 0.395 0.393 0.342 0.411 0.534 0.258 0.283 0.282
Bleu3 0.292 0.382 0.516 0.286 0.327 0.544 0.250 0.277 0.392
Bleu4 0.235 0.373 0.531 0.202 0.228 0.569 0.206 0.286 0.401

Rouge L 0.364 0.447 0.473 0.369 0.476 0.632 0.271 0.319 0.369
Meteor 0.367 0.427 0.473 0.400 0.478 0.635 0.275 0.335 0.369
SPICE 0.372 0.409 0.540 0.399 0.448 0.573 0.299 0.329 0.411

Table 5: Overall Correlations for LDR and Lexical Gap. All p-values<0.001



6 Conclusion

Much progress has been in visual description, with many systems capable of generating original sen-
tences which convey salient objects and attributes. However building systems capable of conveying
semantically insightful information still remains a big challenge because of the difficulty of developing
effective and insightful evaluation measures. We find that LD of descriptions is a useful indicator of
semantic quality, and propose that description systems are measured not only on the accuracy of their
predictions, but also on their ability convey lexically specific information. Measuring LD, rewards sys-
tems which are able to preserve rich and diverse descriptions, but penalises sparse systems, which have
a poor lexical capability.

We hope that our work will inspire larger datasets of semantically richer and more detailed descrip-
tions, and the development of more effective evaluation criteria for descriptions.
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