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Abstract

Distributional semantics models (DSMs) are known to produce excellent representations of word
meaning, which correlate with a range of behavioural data. As lexical representations, they have
been said to be fundamentally different from truth-theoretic models of semantics, where meaning
is defined as a correspondence relation to the world. There are two main aspects to this difference:
a) DSMs are built over corpus data which may or may not reflect ‘what is in the world’; b) they
are built from word co-occurrences, that is, from lexical types rather than entities and sets. In this
paper, we inspect the properties of a distributional model built over a set-theoretic approximation
of ‘the real world’. To achieve this, we take the annotation a large database of images marked
with objects, attributes and relations, convert the data into a representation akin to first-order logic
and build several distributional models using various combinations of features. We evaluate those
models over both relatedness and similarity datasets, demonstrating their effectiveness in standard
evaluations. This allows us to conclude that, despite prior claims, truth-theoretic models are good
candidates for building graded lexical representations of meaning.

1 Introduction

In recent years, distributional semantics models (DSMs) (Erk, 2012; Clark, 2012; Turney and Pantel,
2010) have received close attention from the linguistic community. One reason for this is that they are
known to produce excellent representations of lexical meaning, which account for similarity and poly-
semy and correlate well with a range of behavioural data (Lenci, 2008; Mandera et al., 2017). DSMs are
built on the basis of word co-occurrences in large corpora, stemming from the hypothesis that words co-
occurring in similar contexts tend to share their meaning (Firth, 1957). As such, they are fundamentally
different from truth-theoretic models of semantics, where meaning is defined as a correspondence rela-
tion between predicates and the world. This difference can be explicated further by noting two features of
DSMs. First, they are built over corpus data which may or may not reflect ‘what is in the world’ (Herbe-
lot, 2013) – and consequently does not reflect human experience gained from real world data (Andrews
et al., 2009). Second, they are built from word co-occurrences, that is, from lexical types rather than
entities and sets. In contrast, formal models account for denotation and set-theoretic aspects of language,
but they are often said to lack the ability to account for lexical similarity and gradedness. This has been
the basis for wanting to combine formal and distributional semantics in the past (Boleda and Herbelot,
2016): the role of DSMs, it is claimed, is to bring the lexicon to denotational approaches to meaning.

In the present paper, we build a large set-theoretic model as an approximation of “the real world”,
and show that quality vector representations can in fact be extracted from it. To obtain our model, we
take the annotation of the Visual Genome (henceforth VG), a large database of images annotated with
objects, attributes and relations (Krishna et al., 2017), and regard this data as an informative, although
incomplete, description of the world. We convert the annotated data into a representation akin to some
underspecified first-order logic. From this representation, we build several DSMs from various aspects
of the representation and inspect the properties of the created spaces. We evaluate our models with both
relatedness and similarity datasets (MEN, Bruni et al., 2012, and SimLex-999, Hill et al., 2015).



2 Related Work

Our work fits into attempts to bridge the gap between distributional and formal semantics. The subfield of
Formal Distributional Semantics (FDS, Boleda and Herbelot, 2016) includes efforts to a) investigate the
mapping from distributional models to formal semantic models (Herbelot and Vecchi, 2015; Erk, 2016;
Wang et al., 2017); b) enrich formal semantics with distributional data (Garrette et al., 2011; Beltagy
et al., 2013); and c) account for particular logical phenomena in vector spaces, including composition
(Coecke et al., 2011; Boleda et al., 2013; Baroni et al., 2012; Bernardi et al., 2013; Asher et al., 2016
amongst many others). We also note the relevance of the work on constructing distributional spaces from
syntactically or semantically parsed data (e.g. Padó and Lapata, 2007; Grefenstette et al., 2014; Hermann
and Blunsom, 2013), which echoes the way we construct vector spaces from various types of predicative
contexts. In contrast to those efforts, however, our data is not a standard corpus reflecting word usage
but a collection of logical forms expressing true sentences with respect to a model of the world.

Most similar to our endeavour is the work by Young et al. (2014), who also take multimodal datasets
as a basis to learn denotations. Their model is however created for the task of semantic inference and
takes the extension of a word to be the set of situations it applies to. We introduce notions of entities and
properties in our own model.

3 Building a truth-theoretic space

In order to build a “real world” space, we require a representation akin to a set-theoretic model. We take
the annotation of the Visual Genome (VG) dataset (Krishna et al., 2017) as a proxy for such model, under
the assumption that it provides a set of ‘true’ sentences about the world. VG contains 108,077 images
associated with structured annotations. There are three types of annotation in the dataset: a) entities, or
objects (e.g. ‘window’, ‘elephant’) – the individuals present in a given image; b) attributes (e.g. ‘red’,
’made of bricks’) which describe the properties of objects; c) relationships (e.g. ‘on’, ‘has’, ‘wearing’)
which correspond to relations between objects. The dataset also features situations, or scene graphs,
which correspond to a single image and describe all the objects that co-occur in that image. Thus, a
situation might contain a tree, a car, a woman, a dog, a sidewalk and a shade (from the tree), associated
with bounding boxes. We do not use the image itself but solely the annotation data from the graph.

Every object in VG is assigned a WordNet synset and a unique id. This allows us to pre-process
the data into shallow logical forms corresponding to predicate / entity pairs, ordered by situation and
implicitly coordinated by a ∧ within that situation. For instance, the following toy example indicates that
situation 1 contains a tall brick building, identified by variable 1058505 in VG, on which we find a black
sign, identified by variable 1058507. Note that the identifiers are ‘real-world’ variables, which pick out
particular objects in the world.

S1 building.n.01(1058508), tall(1058508), brick(1058508)
sign.n.02(1058507), black(1058507), on(1058507,1058508)

Intuitively, this representation allows us to capture all the distinct objects annotated with e.g. the
synset ‘building.n.01’ to generate the set of buildings (building′) in our universe.1 To avoid data sparsity,
we convert all relations into one-place predicates, by replacing each argument in turn with its correspond-
ing synset. So in the example above, on(1058507,1058508) becomes on(1058507,building.n.01),
on(sign.n.02,1058508), which formalises that 1058507 is in the set of things that are on buildings,
while 1058508 is in the set of things that signs are on.

Formally, the VG data can then be considered a set-theoretic model M =< U,I > where U is
the universe (the set of all objects in the model, as identified by ‘real-world’ variables), and I is an
interpretation function mapping from a set of n-place predicates P to n-tuples of objects in U (with
n = 1 given our pre-processing of relations). P is the union of synsets (Syn), attributes (Att) and

1Note that we are not making use of the sense information provided by the synset in this work. Most words in VG are
anyway used in a unique sense.



relations (Rel) in VG. We then build a distributional space S =< U,P,D,F,A,C > where U and P
are the universe and the predicates as above; D are the dimensions of the space so that D ⊆ P (that
is, any combination of Syn, Att and Rel); and F some extraction function over our corpus of shallow
logical forms C. F is of the form U × D → {0,1}, i.e. it returns whether a particular dimension is
predicated of an entity, giving us boolean entity vectors for all objects in VG. Finally, an aggregation
function A : (U ×D → {0,1})→ (P ×D → N0) returns the final space by summing the entity vectors
corresponding to each predicate in P : N0 is a natural number expressing how many times dimension D
is predicated of entities of type P . The summing operation follows the model-theoretic intuition that a
predicate p denotes a set which is the union of all things that are p: for instance, all dog entity vectors
are summed to produce a vector for the predicate dog′.

In addition, we consider two ways to augment this original setup. One is by adding situational infor-
mation to the mix: while relations give us a handle on what type of things a particular entity associates
with via a particular predicate, this information does not include the type of things the entity simply co-
occurs with. For instance, we may have a situation where a dog interacts with a ball (encoded by some
relation dog - chew - ball), but VG relations do not directly tell us that the dog entity co-occurs with a
park entity or a cloud entity. Another way to augment the data is by adding encyclopedic information
to the VG data, which could be part of a more ‘complete’ model including some generalizations over
the encoded sets. To do this, we extract hypernyms from WordNet (Miller et al., 1990) using the nltk
package.2 Only one level – the immediate parents of the concept – is taken into account. We note that
hypernyms are different from the other VG features in that they don’t come from natural utterances (no
one would say “domestic animal” in place of “dog” in a natural context).

In what follows, we build variations of the model M by counting co-occurrences between our basic
entity set (aggregated into predicates with function A) and the following features D ⊆ P : attributes
(Att), relations (Rel), situations (Sit), hypernyms (Hyp), and all combinations thereof.3

4 Evaluation

To measure the quality of constructed models, we evaluate them on two standard datasets: MEN and
SimLex-999. The MEN dataset is supposed to capture the relatedness notion, which is defined as the
relation between pairs of entities that are associated but not actually similar. SimLex-999 accounts for
similarity, which is defined as the relation between words which share physical or functional features,
as well as categorical information (Hill et al., 2015). Both datasets are structured in the same way: they
consist of word pairs human-coded for their level of association. They respectively include 3000 (MEN)
and 999 (SimLex) word pairs. To evaluate our DSMs, we follow standard practice and compute the
Spearman ρ correlation between the cosine similarity scores given by the model and the gold annotation.
Results are shown in Table 1. To maximise comparability between different spaces and with text corpora,
scores are given for raw co-occurrence matrices, and no dimensionality reduction or other optimization
of the space is conducted. Note that due to the size of VG, we cannot evaluate on all pairs in the datasets.
We show actual coverage in brackets next to the correlation scores.

Trends are similar both for MEN and SimLex-999. We get overall best results (highlighted in bold)
for the models built using relations, situational information, and relations together with situations. Other
models have significantly lower quality, both for single features and for their combinations. It should be
noted that taking all the features together does not improve the quality of the space.

In the last column of Table 1 we report the total number of co-occurrences in each variation of the
world-based model. They are included in order to make sure that we do not observe solely the effect of
increasing the amount of data. Indeed, models with the greatest number of co-occurrences show medium
quality, and for some combinations of features the score even decreases with more data (e.g., compare
the Hyp and Hyp + Sit models, where the MEN score stays more or less the same and the SimLex score

2http://www.nltk.org/
3The code to pre-process the Visual Genome and the data to reproduce the experiments can be found at https:

//github.com/lizaku/dsm-from-vg.

http://www.nltk.org/
https://github.com/lizaku/dsm-from-vg
https://github.com/lizaku/dsm-from-vg


Setting MEN SimLex-999 Num. co-occurrences

Attributes (Att) 0.1801 (871) 0.1119 (217) 1 854 033
Relations (Rel) 0.5499 (847) 0.2861 (216) 6 481 872
Situations (Sit) 0.5294 (847) 0.2480 (216) 22 894 730
Hypernyms (Hyp) 0.3399 (956) 0.2128 (244) 1 989 576
Att + Rel 0.346 (871) 0.1840 (217) 10 720 260
Att + Sit 0.4492 (871) 0.2042 (217) 25 988 265
Rel + Sit 0.5326 (847) 0.2463 (216) 32 170 563
Att + Hyp 0.2385 (975) 0.2055 (244) 5 114 997
Rel + Hyp 0.5193 (956) 0.2979 (244) 10 878 274
Hyp + Sit 0.3860 (956) 0.1731 (244) 26 882 218
Att + Rel + Hyp 0.3430 (975) 0.2367 (244) 16 391 743
Att + Rel + Sit 0.4503 (871) 0.2018 (217) 37 652 176
Att + Sit + Hyp 0.3260 (975) 0.1319 (244) 31 252 206
Rel + Hyp + Sit 0.3900 (956) 0.1760 (244) 38 571 325
Att + Rel + Hyp + Sit 0.3283 (975) 0.1337 (244) 45 329 361

Table 1: Spearman ρ correlation for various models on MEN and SimLex-999.

Count-based Predictive (word2vec) Co-occurrencesMEN SimLex-999 MEN SimLex-999

0.081 (749) 0.050 (462) 0.024 (749) 0.003 (462) 2 000 000
0.158 (995) 0.010 (546) 0.043 (995) 0.019 (546) 5 000 000
0.225 (1226) 0.038 (610) 0.049 (1226) 0.020 (610) 15 000 000
0.226 (1455) 0.037 (688) 0.031 (1455) 0.046 (688) 30 000 000
0.253 (1554) 0.056 (696) 0.031 (1554) 0.044 (696) 40 000 000

Table 2: Spearman correlation on MEN and SimLex-999 datasets (Wikipedia spaces)

becomes lower). Moreover, the Rel model shows the highest score on a moderately small amount of data
for the MEN dataset, and for the SimLex-999 dataset the score is a bit lower, whereas the Rel + Hyp
model becomes the best (though hypernyms come from outside the model).

To compare performance of our truth-theoretic models with traditional DSMs built from text corpora,
we create count-based models from the English Wikipedia using a window of ± 2 words around a
target. We modulate corpus size to roughly match the number of co-occurrences extracted from VG.4

Additionally, we train predictive models with Word2Vec (Mikolov et al., 2013) with the same number of
co-occurrences as in the count-based variants. We use the same window size of 2, and the dimensionality
of vectors is set to 300. The evaluation scores for different corpora sizes are shown in Table 2. We can
see that, in contrast with the VG models, the score for count-based models is dependent on the amount
of data provided to the DSM, and generally lower for similar numbers of co-occurrences (scores are
consistent with results reported by Sahlgren and Lenci, 2016). Predictive models are simply not able to
construct high-quality word representations from such amount of data.

When we try to improve the quality of our best world-based model (Rel) by applying normalisation,
dimensionality reduction (to 300 dimensions) and PPMI weighting, we reach scores of 0.6539 on MEN
(847 pairs are evaluated because not all of the pairs in the evaluation dataset are present in the VG
space) and 0.3353 on SimLex-999 (216 pairs evaluated). Whilst results are not directly comparable,
we nevertheless note that the MEN score is close to the figure of 0.68 reported for the inter-annotator

4Models are built using https://github.com/akb89/entropix.

https://github.com/akb89/entropix


correlation on the full 3000 pairs.5 It is also only a few points lower than the best score of 0.72 obtained
by Baroni et al. (2014) over 2.6B words (around 1600 times more data than in Rel on the basis of a ±2
word window size). The SimLex figure is also well above the figure of 0.233 reported by Hill et al.
(2015) on an SVD model trained over 150M words (≈ 100 times more data).

5 Discussion

Some interesting observations can be made with regard to the type of properties that seem to be relevant
to modeling conceptual association. First, the relative results we are observing across the VG models
are not artefactual of model size. Thus, a model based on situations, with 22M co-occurrences, performs
worse than the model with relations, which comprises only 6M co-occurrences. This tells us that some
aspects of the model-theoretic data are much more important than others and that some can even be
detrimental. This finding echoes results in Emerson and Copestake (2016), which indicated that selecting
particular relations from parsed data can improve performance on SimLex.

Second, the VG models outperform the standard spaces by a large margin on SimLex, even with
small amounts of data. This confirms that SimLex encodes a notion of similarity that is better captured
by looking at how things ‘are’ truth-theoretically rather than what we say about them. The fact that
attributes perform badly on that dataset, however, contradicts the idea that SimLex encodes similarity
of intrinsic features. Indeed, relations outperform any other combination of features, showing that how
things associate with other things may be more important than how they intrinsically are.

Third, an additional point can be made about relations and situations. While both Rel and Sit models
perform well on their own, the combined Rel + Sit model has lower quality (around two points are lost
on MEN and four points on SimLex, compared to Rel alone), which means that situations take the score
down. This can be explained by the fact that situations are a “noisy superset” of relations: some of the
entities that co-occur in a situation will have an explicit relation associated with them (e.g., cat and mouse
related by chase’(x,y)), while others may indeed solely co-occur (e.g., cat and fork in a scene with a pet
sitting next to a dining table). So it seems that aspects of the world that entities are actively involved in
are more important to define them than simple ‘bystander’ individuals.

Finally, using hypernyms improves the quality of models when evaluated on SimLex. This confirms
previous results showing that using dictionaries and lexical databases helps getting better performance on
SimLex (Faruqui and Dyer, 2015; Recski et al., 2016). It also indicates than when computing similarity,
humans may indeed activate some ‘meta-knowledge’ which is not directly encoded in the basic level
categories (Rosch et al., 1976) people use to describe a situation.

6 Conclusion

Both distributional semantics and formal semantics have their own advantages and disadvantages, but
their unification provides a really powerful tool for studying the interaction between similarity and relat-
edness, as well as finding out which properties human tap into when making association judgments.

This paper has shown that we can study the distributional behaviour of concepts from a (large enough)
truth-theoretic model. Thus, standard distributional semantics is not unique in accounting for conceptual
distance. Further, the vector spaces we created have the advantages of formal models, by linking to a
clear notion of entity and associated properties. Crucially, we have also demonstrated that by choosing
the right properties, the truth-theoretic vector space achieves superiour performance compared to a usage-
based DSM on considerably less data. While this point does not have practical application, we believe
this result may have implications for understanding how humans themselves build concepts from the
limited set of situations they are exposed to.

In the future, we will experiment with other image-annotated datasets or knowledge graphs to further
understand which formal relations might be at the basis of human similarity judgments.

5See https://staff.fnwi.uva.nl/e.bruni/MEN.

https://staff.fnwi.uva.nl/e.bruni/MEN
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