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Abstract

As opposed to word sense induction, word sense disambiguation (WSD), whether supervised or
semi-supervised, has the advantage of using interpretable senses, but requires annotated data, which
are quite rare for most languages except English (Miller et al., 1993). In this paper, we investigate
which strategy to adopt to achieve WSD for languages lacking data that was annotated specifically
for the task, focusing on the particular case of verb disambiguation in French. We first study the us-
ability of Eurosense (Bovi et al. 2017), a multilingual corpus extracted from Europarl (Kohen, 2005)
and automatically annotated with BabelNet (Navigli and Ponzetto, 2010) senses. Such a resource
opened up the way to supervised and semi-supervised WSD for resourceless languages like French.
While this perspective looked promising, our evaluation showed the annotated senses’ quality was
not sufficient for supervised WSD on French verbs. Instead, we propose to use Wiktionary, a col-
laboratively edited, multilingual online dictionary, as a new resource for WSD. Wiktionary provides
both sense inventory and manually sense tagged examples which can be used to train supervised and
semi-supervised WSD systems. Yet, because senses’ distribution differ in lexicographic examples
as found in Wiktionary with respect to natural text, we then focus on studying the impact on WSD
of the training data size and senses’ distribution. Using state-of-the art semi-supervised systems, we
report experiments of wiktionary-based WSD for French verbs, evaluated on FrenchSemEval (FSE),
a new dataset of French verbs manually annotated with wiktionary senses.

1 Introduction

Word Sense Disambiguation (WSD) is a NLP task aiming at identifying the sense of a word occurrence
from its context, given a predefined sense inventory. Although the task emerged almost 70 years ago
with the first work on Automatic Machine Translation (Weaver, 1955), it remains unresolved. The recent
breakthrough in neural net models allowed a better representation of the context and thus improved the
quality of supervised disambiguation systems (Melamud et al., 2016; Yuan et al., 2016; Peters et al.,
2018). Nevertheless, although WSD has the advantage of providing interpretable senses (as opposed
to the unsupervised task of word sense induction), it also has the drawback of heavily relying on the
availability and quality of sense-annotated data, even in the semi-supervised setting.

Now, such data is available in English, essentially with SemCor (Miller et al., 1993), a corpus man-
ually sense-annotated with Wordnet (Miller, 1995) senses. But for most languages, sense disambiguated
data are very rare or simply don’t exist. This is mainly due to the fact that manual semantic annotation
is very costly in time and resources (Navigli, 2009). Nevertheless, Bovi et al. (2017) recently presented
Eurosense, a multilingual automatically sense-disambiguated corpus extracted from Europarl (Koehn,
2005) and annotated with BabelNet (Navigli and Ponzetto, 2012) senses.

In this article, we focus on supervised WSD for French verbs and investigate a way to perform the
task when no manually sense-annotated training data specifically designed for the task are available.We



focus on verbs because they are known to be central to understanding tasks, but also known to lead to
lower WSD performance (Raganato et al., 2017). In section 2 we report a study on the suitability of
using Eurosense as training data for our task. Because the results of our evaluation were inconclusive,
we decided to explore Wiktionary, a free collaboratively edited multilingual online dictionary which pro-
vides a sense inventory and manually sense tagged examples, as resource for WSD. We give a general
description of Wiktionary in section 3. In section 4, we present FrenchSemEval, a new manually sense
annotated dataset for French verbs, to serve as evaluation data for WSD experiments using Wiktionary as
sense inventory and training examples. Because senses’ distribution differ in the lexicographic examples
found in Wiktionary with respect to natural text, we provide in section 5 a descriptive statistical compar-
ison of the wiktionary example corpus and SemCor. The WSD first experiments are reported in section
6 and we provide an analysis of the results in section 7. We finally conclude and give insights of future
work in section 8.

2 Eurosense

In this section we present our investigation on the suitability of using Eurosense as training data for
supervised WSD on French verbs. We first present Eurosense and then describe our manual evaluation
of the resource regarding French verbs.

Eurosense is a multilingual Europarl-based corpus that was automatically sense-annotated using the
BabelNet (Navigli and Ponzetto, 2012) multilingual sense inventory. This sense inventory was origi-
nally built by merging the English Wordnet and the English Wikipedia. Subsequent releases integrate
senses (mapped or added) from other resources, as listed in BabelNet statistics page1. Two versions of
Eurosense are available: the “high coverage” corpus and the “high precision” corpus. Both result from
jointly disambiguating the parallel Europarl corpus using the Babelfy (Moro et al., 2014) WSD system.
A further refinement step was then performed to obtain the high precision version. The refinement aims
at enforcing the intra-sentence coherence of annotated senses, in terms of similarity of their correspond-
ing Nasari distributional vectors (Camacho-Collados et al., 2016). The resource was evaluated both
intrinsically and extrinsincally.

The intrinsic evaluation was carried out through a manual evaluation of the annotation on four lan-
guages (English, French, German and Spanish). Fifty sentences present in all four languages were ran-
domly sampled and manually evaluated both before and after the refinement step. The results showed a
good inter-annotator agreement the judges agreed 85% of the time, and the average Kappa score (Cohen,
1968) was 67.7 %) and an improvement of the precision of the annotation after refinement at the expense
of a lower coverage. For English, the high-precision Eurosense annotations cover 75% of the content
words and have a 81.5% precision2. As For French results are lower though: coverage is 71.8% and
precision is 63.5%.

Closer to our WSD objective, Bovi et al. (2017) report an extrinsic evaluation of Eurosense that uses
it as additional training data for all-words WSD, evaluated on two standard datasets for English, the
SemEval 2013 task 12 (Navigli et al., 2013) and the SemEval 2015 task 13 (Moro and Navigli, 2015).
The authors compared results of the It Make Sense (IMS) system (Zhong and Ng, 2010) when trained
on SemCor alone versus SemCor augmented with examples sampled from the high precision Eurosense
corpus (up to 500 additional training examples per sense). They report a slight improvement in the latter
case, the Fscore rising from 65.3 to 66.4 on SemEval-2013, and from 69.3 to 69.5 on SemEval-2015.

These results give a contrasted picture of the usability of Eurosense as training data for WSD for
French: the extrinsic evaluation concerns English, and a setting that uses Eurosense as additional data
(picking examples from Eurosense annotated with senses present in SemCor only). For French, the
situation is necessarily worse, given that (i) the intrinsic evaluation of Eurosense is lower for French, (ii)
we focus on verbs, whose disambiguation is known to be more difficult (Raganato et al., 2017), and (iii),

1https://babelnet.org/stats
2Note the precision is computed as an average between the two annotators, and not with respect to an adjudicated version.
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most importantly, Eurosense would be used as sole training data and not as additional data. This poses
extra constraints on the quality of the annotations, hence in order to further investigate the usability of
Eurosense for our purpose, we decided to first perform another evaluation of the Eurosense annotations,
focused on French verbs.

Evaluation of Eurosense on French verbs We randomly selected 50 sentences from the French ver-
sion of Eurosense’s high coverage corpus, and for all the non-auxiliary verbs (160 occurrences), we
manually judged whether the Eurosense automatic sense tag was correct : we split the 160 occurrences
in three sets, each set being independently annotated by two judges and adjudicated by a third one. The
judges were asked to answer “correct” if the Eurosense tag seemed correct, even if some other tag in
the BabelNet inventory3 was possible or even more precise. The agreement between the two judges was
0.72, and the kappa was 0.67, a level described as good in the literature. Note this is a binary task only,
which is different from asking the judges to annotate the correct tag as Bovi et al. (2017) did for all
parts-of-speech. Yet our agreement score is even lower, shedding light on an overall greater difficulty
of judging the annotated sense of verbs. Indeed, we were then able to measure that the proportion of
Eurosense automatic annotations that we judged correct after our adjudication is 44% only. Moreover,
during this annotation task we could notice that because BabelNet aggregates several data sources (in-
cluding Wordnet, Verbnet, FrameNet, Wiktionary among others), the BabelNet sense inventory exhibits
a high number of senses per verb. To better quantify this observation, we sampled 150 sentences, and
measured that the average number of BabelNet senses per verb type occurring in these sentences is 15,5.
More importantly, we could notice that the frontiers of the various senses sometimes appeared difficult to
judge, making it difficult to grasp the exact perimeter of a sense.These mixed results led us to investigate
other sources of sense-annotated data for French.

3 Wiktionary as data for WSD

Wiktionary is a collaboratively edited, open-source multilingual online dictionary, hosted by the Wiki-
media Foundation. It provides an interesting open-source resource and several studies already showed
its usefulness for various NLP tasks (e.g. lemmatization (Liebeck and Conrad, 2015)), especially in the
lexical semantic field, for extracting or improving thesauri (Navarro et al., 2009; Henrich et al., 2011;
Miller and Gurevych, 2014). In this section we briefly present Wiktionary’s most interesting features
along with our motivations to investigate the use of this resource for WSD on French verbs.

Wiktionary’s main advantages is that it is entirely open-source, multilingual and has a good coverage
for a substantial number of languages (according to wiktionary statistics4, 22 languages have more than
50, 000 wiktionary entries each). Each entry consists of a definition and one or several examples, either
attested or created, each example being a potential sense-annotated example for the lemma at hand. Def-
initions and examples point to other wiktionary pages, which can be useful, although not as useful as if
links to wiktionary senses (not pages) would be provided. The structured nature of wiktionary makes
it possible to extract wordnets rather easily (as was done for English, German and French by Sérasset
(2012), in the RDF format). On the qualitative level, our interest for wiktionary rose after studying ran-
dom verbal entries for French: we could observe that in general the granularity level is “natural” and that
the sense distinctions are easy to grasp. On the quantitative level, we report in table 1 several statistics
for the French wiktionary5, in which it can be seen that the resource is large (we will see in the next
section that the coverage in corpus is good indeed).

3The sense inventory had been previously extracted via the HTTP API see https://babelnet.org/guide
4https://en.wiktionary.org/wiki/Wiktionary:Statistics
5In all the following, all the statistics and work on the French wiktionary corresponds to the 04-20-2018 dump available via

Dbnary (Sérasset, 2012).
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POS Nb of entries Nb of senses Mean nb of senses per entry Nb of examples
Noun 81099 112428 1.39 1511517
Verb 27271 41207 1.51 55206
Adj 25865 33732 1.30 46212
Adv 5904 6012 1.29 5904

Table 1: Statistics from French Wiktionary of the 04-20-2018 dump available via the tool of Sérasset
(2012)

These advantages come at the cost of Wiktionary’s main potential drawback, namely its crowd-
sourced nature. Firstly, this means that it is constantly evolving, since any user can edit pages at any time
(unless pages that users with more editing rights might have protected). Indeed, new pages are created
every day while already existing pages are deleted, modified, merged (note though that every change
occurring in the resource is kept in track). Secondly, this means that the resource is not curated by skilled
lexicographers only, and the “guidelines” are themselves collaboratively built.

Despite this potential disadvantage, several features of Wiktionary seemed particularly suitable for
the task of WSD and this, combined with the fact that sense-annotated data for French verbs are quasi-
inexistent6, makes it a serious candidate for a new resource of WSD. To investigate this opportunity for
our objective of French verb WSD, we present FrenchSemEval, a new dataset manually annotated for
WSD of French verbs which we used to carry out several evaluations, we describe the new resource in
the next section.

4 FrenchSemEval : An evaluation corpus for French verb disambigua-
tion

Since the first Senseval evaluation serie in 1998 (Kilgarrif, 1998), a various number of evaluation frame-
works were proposed to evaluate different WSD tasks, but only a few include French test datasets
(Lefever and Hoste, 2010; Navigli et al., 2013) and unfortunately these only focus on nouns7. In this
section we present FrenchSemEval8 a new French dataset in which verb occurrences were manually an-
notated with Wiktionary senses. Our objective was to evaluate whether Wiktionary’s sense inventory
is operational for humans to sense-annotate a corpus, and if so, to use it as evaluation data for WSD
experiments. We describe the annotation process along with several statistics about the resulting dataset
and the quality of the annotations.

4.1 Data selection

To build FrenchSemEval, we chose to focus on moderately frequent and moderately ambiguous verbs.
Rare verbs are often monosemous, and very frequent verbs tend to be very polysemous and extremely
difficult to disambiguate (we thus left these for future work). FrenchSemEval was built using the follow-
ing steps: we first selected a vocabulary of verbs based on their frequency in corpus. We selected verbs
appearing between 50 and 1000 times in the French Wikipedia (dumped on 2016-12-12 hereafter fr-
Wikipedia). Secondly, from this pre-selected list of verbs we extracted those having a number of senses
comprised between two and ten in Wiktionary’s sense inventory. For these verbs, we chose to extract 50
occurrences primarily from corpora comprising other annotations (the French TreeBank (FTB) (Abeillé

6Verbs are annotated with frames in the French FrameNet data (Djemaa et al., 2016), but in such data, only some notional
domains were considered, and verb occurrences not pertaining to such domains were not disambiguated.

7Except for SensEval1 but only the English dataset was given to public domain.
8The dataset is available here http://www.llf.cnrs.fr/dataset/fse/
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Number of sentences 3121
Number of annotated verb tokens 3199
Number of annotated verb types 66
Mean number of annotations per verb type 48.47
Mean number of senses per verb type 3.83

Table 2: Statistics for the FrenchSemEval corpus (FSE).

and Barrier, 2004) and the Sequoia (Candito and Seddah, 2012) treebank9), supplementing the corpus
when necessary by occurrences sampled from fr-Wikipedia, in order to reach 50 occurrences per verb.

4.2 Annotation process

The annotation has been performed by three students10 for nearly a month. We used WebAnno (Yi-
mam et al., 2014; de Castilho et al., 2016) an open-source adaptable annotation tool. Sentences had
already been pre-processed into CoNLL format (Nivre et al., 2007) with the Mind The Gap (MTG)
parser (Coavoux and Crabbé, 2017) and were plugged in WebAnno. We were thus able to provide files
(one file per verb) containing sentences in which occurrences of the specific verb were marked for anno-
tation. The annotators were asked to annotate only the marked occurrences. We integrated in WebAnno
the sense inventory from Wiktionary, including definitions and examples of senses, and added two extra
tags: ”OTHER POS” and ”MISSING SENSE”. The former was to use when an occurrence was wrongly
tagged as verb, and the latter was to use when the sense of an occurrence didn’t exist in the sense in-
ventory. As Wiktionary is constantly evolving through time, we used the 04-20-2018 dump available via
Dbnary (Sérasset, 2012). The annotation was performed in double annotation and adjudication.

4.3 Resulting resource

Table 2 reports various statistics about the resulting dataset. It contains 3199 occurrences for 66 different
verbs, which means nearly 50 annotated instances per verb (about 100 OTHER POS occurrences were
discarded). The annotators agreed more than 70% of the time and obtained a Kappa score of 0.68 which
is good according to the literature. We believe that these metrics indicate an annotation quality which
may not be extremely high but still sufficient to validate the coherence of the Wiktionary sense inventory,
definitions and examples, despite its non-expert crowd-sourced nature.

5 Descriptive statistical study of the datasets

The best-suited data for training a supervised WSD system is a corpus with sense tags for all content
words. Training on such a corpus benefits from basic frequency information found in the corpus. This
is particularly striking for WSD, as the “most frequent sense” baseline is known to be very high. In
the case of French, as for the majority of languages, we lack such a corpus, and turn to the Wiktionary
examples to serve as training examples for a significant portion of the lexicon. Yet, because senses’
distribution differ in the lexicographic examples found in Wiktionary with respect to natural text, we first
provide some statistics for a running text sense-annotated corpus such as SemCor (for English) versus a
lexicographic training set such as Wiktionary examples (for French).

9The FTB contains 18500 sentences, from articles from Le Monde newspaper, and Sequoia contains 3099 sentences from
Europarl, the European Medicine Agency, a regional newspaper (L’Est Républicain) and fr-Wikipedia.

10None of them had previous experience in annotation.
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AMBIG trainSI AMBIG fullSI
Language Corpus (# annotations) type token type token
English SemCor (88334) 1.97 7.91 3.24 10.94

SenseEval2 (517) 4.90 6.7 7.58 10.28
SemEval 2007 (296) 5.15 6.89 7.78 10.17
SenseEval 2015 (251) 5.69 6.25 8.48 9.16

French Wiktionary (55206) 1.66 5.49 1.74 5.68
FSE (3199) 6.02 6.74 6.15 6.91

Table 3: Ambiguity rates for verbs, in the English usual training set (SemCor) and usual evaluation
sets, and in the French training set (Wiktionary) and evaluation set (FSE). AMBIG trainSI corresponds
to using for the number of senses the sense inventory in the corresponding training corpus, whereas
AMBIG fullSI corresponds to using the full sense inventory.

5.1 Comparison of the sense distribution in training examples

We study here the distribution of the annotated senses in training data. When looking at the number
of training examples per sense, we obtain an average of 9.6 and a mean absolute deviation of 11.9 for
SemCor, whereas the average is only 2.0 for FR-Wiktionary, and the mean absolute deviation is 0.9. It
is clear that using wiktionary examples will lack the genre-dependent but nonetheless very informative
information of sense frequency in corpus.

5.2 Evaluation of the task difficulty: comparison of ambiguity rates

We now turn to comparing the difficulty of the WSD task, when tested on English SenseEval datasets
versus on FrenchSemEval. Note that performance of WSD systems cannot be used for that purpose,
given that it is not comparable across languages and datasets. For a corpus consisting in a sequence of
tokens t1 . . . tN , we rather compute the average ambiguity rate that a WSD system has to face, in two
settings:

• token AMBIG fullSI: the ambiguity rate per token, using the full sense inventory:

1

N

N∑
i=1

n senses(ti)

• token AMBIG trainSI: the ambiguity rate per token, using the sense inventory found in the train-
ing corpus

1

N

N∑
i=1

attested n senses(ti)

For further information, although not directly measuring corpus WSD difficulty, we also provide the
ambiguity rate per verb type, both using the full inventory or that attested in the training set (shown in
the “type” columns in Table 3).

We report these metrics in Table 3. When studying the difference between the “fullSI” versus
“trainSI” modes, namely when using the full sense inventory versus that found in the training set, we
have a different trend for the English corpora (containing natural text) and the French ones: for Sem-
Cor and the English evaluation sets, there is a drop of ambiguity in trainSI mode. This illustrates the
usual difficulty to cover rare senses in a corpus of natural text. Note though that for the French corpora,
based on the wiktionary inventory, there is almost no difference between the two modes of computation,
illustrating that almost all senses have examples in wiktionary.

When comparing, for each language, the figures for the training corpora (SemCor and Wiktionary
examples) and for the evaluation datasets, it can be noted that the average ambiguity per token is similar
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for training and evaluation datasets, but the average ambiguity per type is much smaller for the training
corpora (3.24 for SemCor, and 1.74 for Wiktionary). This is because the lexicon covered in the training
corpora is much larger, and contains many more monosemic verbs. .

As far as training corpora are concerned, it can be seen that the overall average ambiguity is higher
for SemCor than for Wiktionary (e.g. in fullSI mode, 10.94 per token ambiguity for SemCor, versus
5.68 for Wiktionary). It shows that the sense inventory for Wiktionary is slightly less ambiguous than
Wordnet’s (both for the senses found in SemCor, and overall).

6 Experiments on supervised WSD

To investigate the suitability of using Wiktionary for supervised WSD on French verbs, we evaluated
state-of-the-art supervised WSD systems on FrenchSemEval, using the examples of Wiktionary’s senses
as training data. As for the representation of the instances we used two different models that we describe
below. We then applied a supervised disambiguation method to evaluate the performance of the models.
We first describe the models we used to obtain vector representations of the instances and the disam-
biguation algorithm we used for evaluation. Then we propose several experiments based on FSE and
finally we evaluate the models using Wiktionary as input for disambiguation.

6.1 Models for context representations

AWE We implemented a simple model that we use as baseline. We first train a word2vec (Mikolov
et al., 2013) model on fr-Wikipedia11 to obtain non contextual word vectors. We then represent the
context of an occurrence by averaging the vectors of the words found in its context window, which we
defined as the 5 words on the left and 5 words on the right of the target word. This is a common model
often referred in the literature as averaged-word-embeddings (AWE).

C2V Context2vec (Melamud et al., 2016) is a recurrent neural model that learns a function mapping the
context around a target word to a vectorial representation. The context2vec model represents the context
using a bi-directional recurrent neural network (Hochreiter and Schmidhuber, 1997) that allow us to take
the context of the sentence into account, thus contrasting with AWE. All codes and implementations are
available publicly so we only adapted it and trained the model on the whole French Wikipedia. We then
applied the learnt model to obtain vectorial representations of our target verb occurrences.

6.2 Supervised disambiguation algorithm

We replicated the supervised WSD method used in (Yuan et al., 2016): a sense representation is com-
puted from annotated data by averaging the context vector representation of its instances, in our case
the Wiktionary examples or instances from FSE. Then each test instance is sense tagged with the sense
whose representation is the closest, based on cosine similarity.

6.3 Protocol

Wiktionary experiment We did a first experiment simply using the examples of the senses in the
Wiktionary sense inventory as training data and then we performed disambiguation on FSE.

In domain experiments In order to better identify the potential error sources, we also performed ex-
periments with “in-domain” training instances, namely instances directly taken from FSE. To evaluate
the impact of the number of training examples per sense, a property that is quite different for a lexico-
graphic training set as opposed to a corpus-based training set, we performed experiments on different
sets, using Nmax a varying maximum number of examples per sense. More precisely, for each verb we

11We used the fr-Wikipedia dump of 10-20-2017
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selected respectively 1, 2, 5 and 10 maximum training examples per sense from the dataset and evaluated
the disambiguation on the remaining examples.

6.4 Results and Analysis

The results of our experiments on Wiktionary are presented in table 4. Although both automatic systems
perform better than the Most Frequent Sense baseline (MFS), using only the literary Wiktionary examples
to build a classifier for newspaper and Wikipedia test instances remains a rather adversarial setup12. We
thus investigated two potential ways to leverage the hardness of this initial setup: domain adaptation and
the amount of training examples.

Models score
MFS 0.30
AWE 0.40
C2V 0.43

Table 4: WSD accuracies when training on Wiktionary examples, and testing on FSE.

To study the effect of the amount of training instances, since Wiktionary is limited in terms of number
of examples per sense, we switched to using FSE both for training and testing. We used a variable number
of maximum training examples per sense from Nmax = 1 to Nmax = 10 and we used the remaining
examples as test set13. The results of these experiments are summarized in Table 5 and illustrated in
Figure 1.

Let us observe first the impact the amount of training data. The mean number of examples in Wik-
tionary for the verbs occurring in FSE is Navg = 3.1 and the results show that all classifiers dramatically
improve when the available training examples per verb grows up to Nmax = 10. This means that if we
were able to expand with absolute certainty the small amount of examples in Wiktionary, we could get a
much higher disambiguation performance.

Second, using the same setup we can compare the behaviour of the classifiers when predicting out
of domain (Table 4) with in domain predictions (Table 5). Recall that Wiktionary examples are often
long literary sentences whereas the test instances are sampled from newspaper or Wikipedia. Again as
Wiktionary has Navg ≈ 3 training examples per sense we can see that the domain adaptation effect is
worth roughly 20 points in accuracy.

Models Nmax = 1 Nmax = 2 Nmax = 3 Nmax = 5 Nmax = 10
MFS 0.32 0.38 0.45 0.52 0.70
AWE 0.44 0.53 0.58 0.64 0.70
C2V 0.5 0.57 0.62 0.68 0.74
Mean number of training ex. per sense 1 1.81 2.61 3.86 6.30
Mean size training data per verb 3.83 6.95 9.81 14.8 24.15
Mean size test data per verb 44.63 41.51 38.65 33.66 24.31

Table 5: Training on FSE examples, with varying maximum number of examples per sense (Nmax).
Top: WSD accuracies. Bottom: training / test sets statistics.

Third, we can observe that the 3 classifiers (MFS, AWE,C2V) do behave consistently in the different
configurations. To understand why MFS is a rather weak predictor in our setup, we have to recall that

12As a comparison, results for supervised WSD for English verbs are around 0.55 in the benchmark of Raganato et al. (2017).
13We say that we use Nmax as a maximum number of training examples because some senses may have only K < Nmax

annotated instances in the whole data set.
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Figure 1: Illustration of results reported in table 5.

contrary to Semcor and Senseval, FSE is built following a lexicographic perspective: the sentences are
sampled in a non natural way (e.g. monosemic words are excluded). We observe (table 5) that in these
conditions the MFS is a weaker (although still strong) baseline and that standard sequential neural models
are able to outperform it, especially when there are few training examples. Among the neural models
C2V performs consistently better than AWE but we believe that these models or some extensions of these
models to be designed in the future might well still show significant improvements.

Lastly, we can observe that among all models, C2V performs best on every test setup. It supports
(Melamud et al., 2016)’s results, especially regarding the fact that Context2vec succeeds better in cap-
turing context information than the common averaging of word vector representations.

7 Conclusions and future work

Word Sense Disambiguation is a task rarely seen for languages other than English. One obvious reason
to explain that is the lack of costly sense annotated resources for those languages. In this paper we
provide some elements seeking to set up a methodology to perform word sense disambiguation for other
languages than English, such as French, without requiring the cost of annotating sense disambiguated
corpora.

For this purpose we considered using Eurosense and Wiktionary as training data for Verb Sense
Disambiguation. As our first experiments with Eurosense turned out to be inconclusive, we then turned
our attention to Wiktionary. We studied how to use it as a resource for Word Sense Disambiguation
and we develop FrenchSemEval, a new French WSD evaluation dataset, thanks to which we were able to
extract preliminary evaluation results. Our current results showed that the Wiktionary sense inventory has
an appropriate granularity for a good quality sense annotation, and that training on Wiktionary examples
only leads to encouraging WSD results for verbs. But we could also quantify the gain in performance
that could be obtained by adding a moderate number of seed instances. Hence automating the selection
and annotation of additional instances might pay off to improve verb sense disambiguation.
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