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Abstract

Implicit discourse relation classification is one of the most difficult steps in discourse parsing.
The difficulty stems from the fact that the coherence relation must be inferred based on the content
of the discourse relational arguments. Therefore, an effective encoding of the relational arguments
is of crucial importance. We here propose a new model for implicit discourse relation classification,
which consists of a classifier, and a sequence-to-sequence model which is trained to generate a repre-
sentation of the discourse relational arguments by trying to predict the relational arguments including
a suitable implicit connective. Training is possible because such implicit connectives have been an-
notated as part of the PDTB corpus. Along with a memory network, our model could generate more
refined representations for the task. And on the now standard 11-way classification, our method out-
performs the previous state of the art systems on the PDTB benchmark on multiple settings including
cross validation.

1 Introduction

Discourse relations describe the logical relation between two sentences/clauses. When understanding a
text, humans infer discourse relation between text segmentations. They reveal the structural organization
of text, and allow for additional inferences. Many natural language processing tasks, such as machine
translation, question-answering, automatic summarization, sentiment analysis, and sentence embedding
learning, can also profit from having access to discourse relation information. Recent years have seen
more and more works on this topic, including two CoNNL shared tasks (Xue et al., 2015, 2016).

Penn Discourse Tree Bank (Prasad et al., 2008, PDTB) provides lexically-grounded annotations of
discourse relations and their two discourse relational arguments (i.e., two text spans). Discourse relations
are sometimes signaled by explicit discourse markers (e.g., because, but). Example 1 shows an explicit
discourse relation marked by “because”; the presence of the connective makes it possible to classify
the discourse relation with high reliability: Miltsakaki et al. (2005) reported an accuracy of 93.09% for
4-way classification of explicits.

Discourse relations are however not always marked by an explicit connective. In fact, implicit dis-
course relations (i.e. relations not marked by an explicit discourse cue) outnumber explicit discourse
relations in naturally occurring text. Readers can still infer these implicit relations, but automatic clas-
sification becomes a lot more difficult in these cases, and represents the main bottleneck in discourse
parsing today. Example 2 shows an implicit contrastive relation which can be inferred from the two text
spans that have been marked Arg1 and Arg2. When annotating implicit relations in the PDTB, annotators
were asked to first insert a connective which expresses the relation, and then annotate the relation label.
This procedure was introduced to achieve higher inter-annotator agreement for implicit relations between
human annotators. In the approach taken in this paper, our model mimics this procedure by being trained
to explicitate the discouse relation, i.e. to insert a connective as a secondary task.



1. [I refused to pay the cobbler the full $95]Arg1 because [He did poor work.]Arg2
— Explicit, Contingency.Cause

2. [In the energy mix of the future, bio-energy will also have a key role to play in boosting rural employment
and the rural economy in Europe .]Arg1 (Implicit = However) [At the same time , the promotion of bio-
energy must not lead to distortions of competition.]Arg2

— Implicit, Comparison.Contrast

The key in implicit discourse relation classification lies in extracting relevant information for the
relation label from (the combination of) the discourse relational arguments. Informative signals can
consist of surface cues, as well as the semantics of the relational arguments. Statistical approaches have
typically relied on linguistically informed features which capture both of these aspects, like temporal
markers, polarity tags, Levin verb classes and sentiment lexicons, as well as the Cartesian products of the
word tokens in the two arguments (Lin et al., 2009). More recent efforts use distributed representations
with neural network architectures (Qin et al., 2016a).

The main question in designing neural networks for discourse relation classification is how to get the
neural networks to effectively encode the discourse relational arguments such that all of the aspects rele-
vant to the classification of the relation are represented, in particular in the face of very limited amounts
of annotated training data, see e.g. Rutherford et al. (2017). The crucial intuition in the present paper is
to make use of the annotated implicit connectives in the PDTB: in addition to the typical relation label
classification task, we also train the model to encode and decode the discourse relational arguments, and
at the same time predict the implicit connective. This novel secondary task forces the internal represen-
tation to more completely encode the semantics of the relational arguments (in order to allow the model
to decode later), and to make a more fine-grained classification (predicting the implicit connective) than
is necessary for the overall task. This more fine-grained task thus aims to force the model to represent
the discourse relational arguments in a way that allows the model to also predict a suitable connective.
Our overall discourse relation classifier combines representations from the relational arguments as well
as the hidden representations generated as part of the encoder-decoder architecture to predict relation
labels. What’s more, with an explicit memory network, the network also has access to history represen-
tations and acquire more explicit context knowledge. We show that our method outperforms previous
approaches on the 11-way classification on the PDTB 2.0 benchmark.

The remaining of the paper is organized as follows: Section 2 discusses related work; Section 3
describes our proposed method; Section 4 gives the training details and experimental results, which is
followed by conclusion and future work in section 5.

2 Related Work
2.1 Implicit Discourse Relation Classification

Implicit discourse relation recognition is one of the most important components in discourse parsing.
With the release of PDTB (Prasad et al., 2008), the largest available corpus which annotates implicit
examples with discourse relation labels and implicit connectives, a lot of previous works focused on
typical statistical machine learning solutions with manually crafted sparse features (Rutherford and Xue,
2014).

Recently, neural networks have shown an advantage of dealing with data sparsity problem, and many
deep learning methods have been proposed for discourse parsing, including convolutional (Zhang et al.,
2015), recurrent (Ji et al., 2016), character-based (Qin et al., 2016a), adversarial (Qin et al., 2017) neural
networks, and pair-aware neural sentence modeling (Cai and Zhao, 2017). Multi-task learning has also
been shown to be beneficial on this task (Lan et al., 2017).

However, most neural based methods suffer from insufficient annotated data.Wu et al. (2016) ex-
tracted bilingual-constrained synthetic implicit data from a sentence-aligned English-Chinese corpus.
Shi et al. (2017, 2018) proposed to acquire additional training data by exploiting explicitation of connec-
tives during translation. Explicitation refers to the fact that translators sometimes add connectives into
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Figure 1: The Architecture of Proposed Model.

the text in the target language which were not originally present in the source language. They used ex-
plicitated connectives as a source of weak supervision to obtain additional labeled instances, and showed
that this extension of the training data leads to substantial performance improvements.

The huge gap between explicit and implicit relation recognition (namely, 50% vs. 90% in 4-way
classification) also motivates to incorporate connective information to guide the reasoning process. Zhou
et al. (2010) used a language model to automatically insert discourse connectives and leverage the infor-
mation of these predicted connectives. The approach which is most similar in spirit to ours, Qin et al.
(2017), proposed a neural method that incorporates implicit connectives in an adversarial framework to
make the representation as similar as connective-augmented one and showed that the inclusion of implicit
connectives could help to improve classifier performance.

2.2 Sequence-to-sequence Neural Networks

Sequence to sequence model is a general end-to-end approach to sequence learning that makes minimal
assumptions on the sequence structure, and firstly proposed by Sutskever et al. (2014). It uses multi-
layered Long Short-Term Memory (LSTM) or Gated Recurrent Units (GRU) to map the input sequence
to a vector with a fixed dimensionality, and then decode the target sequence from the vector with another
LSTM / GRU layer.

Sequence to sequence models allow for flexible input/output dynamics and have enjoyed great suc-
cess in machine translation and have been broadly used in variety of sequence related tasks such as
Question Answering, named entity recognition (NER) / part of speech (POS) tagging and so on.

If the source and target of a sequence-to-sequence model are exactly the same, it is also called Auto-
encoder, Dai and Le (2015) used a sequence auto-encoder to better represent sentence in an unsupervised
way and showed impressive performances on different tasks. The main difference between our model
and this one is that we have different input and output (the output contains a connective while the input
doesn’t). In this way, the model is forced to explicitate implicit relation and try to learn the latent pattern
and discourse relation between implicit arguments and connectives and then generate more discriminative
representations.

3 Methodology
Our model is based on the sequence-to-sequence model used for machine translation (Luong et al., 2015),
an adaptation of an LSTM (Hochreiter and Schmidhuber, 1997) that encodes a variable length input as a
fix-length vector, then decodes it into a variable length of outputs. As illustrated in Figure 1, our model



consists of three components: Encoder, Decoder and Discourse Relation Classifier. We here use different
LSTMs for the encoding and decoding tasks to help keep the independence between those two parts.

The task of implicit discourse relation recognition is to recognize the senses of the implicit relations,
given the two arguments. For each discourse relation instance, The Penn Discourse Tree Bank (PDTB)
provides two arguments (Arg1, Arg2) along with the discourse relation (Rel) and manually inserted
implicit discourse connective (Conni). Here is an implicit example from section 0 in PDTB:

3. Arg1: This is an old story.
Arg2: We’re talking about years ago before anyone heard of asbestos having any questionable properties.
Conni: in fact
Rel: Expansion.Restatement

During training, the input and target sentences for sequence-to-sequence neural network are [Arg1;Arg2]
and [Arg1;Conni;Arg2] respectively, where “;” denotes concatenation.

3.1 Model Architecture

3.1.1 Encoder

Given a sequence of words, an encoder computes a joint representation of the whole sequence.
After mapping tokens to Word2Vec embedding vectors (Mikolov et al., 2013), a LSTM recurrent

neural network processes a variable-length sequence x = (x1, x2, ..., xn). At time step t, the state of
memory cell ct and hidden ht are calculated with the Equations 1:

it
ft
ot
ĉt

 =


σ
σ
σ

tanh

W · [ht−1, xt]
ct = ft � ct−1 + it � ĉt
ht = ot � tanh(ct)

(1)

where xt is the input at time step t, i, f and o are the input, forget and output gate activation respec-
tively. ĉt denotes the current cell state, σ is the logistic sigmoid function and � denotes element-wise
multiplication. The LSTM separates the memory c from the hidden state h, which allows for more
flexibility incombining new inputs and previous context.

For the sequence modeling tasks, it is beneficial to have access to the past context as well as the
future context. Therefore, we chose a bidirectional LSTM as the encoder and the output of the word
at time-step t is shown in the Equation 2. Here, element-wise sum is used to combine the forward and
backward pass outputs.

ht =
[−→
ht ⊕

←−
ht

]
(2)

Thus we get the output of encoder:

he = [he1, h
e
2, ..., h

e
n] (3)

3.1.2 Decoder

With the representation from the encoder, the decoder tries to map it back to the targets space and predicts
the next words.

Here we used a separate LSTM recurrent network to predict the target words. During training, target
words are fed into the LSTM incrementally and we get the outputs from decoder LSTM:

hd =
[
hd1, h

d
2, ..., h

d
n

]
(4)



Global Attention

In each time-step in decoding, it’s better to consider all the hidden states of the encoder to give the
decoder a full view of the source context. So we adopted the global attention mechanism proposed in
Luong et al. (2015). For time step t in decoding, context vector ct is the weighted average of he, the
weights for each time-step are calculated with hdt and he as illustrated below:

αt =
exp(hdt

>
Wαhe)

n∑
t=1

exp(hdt
>
Wαhe)

(5)

ct = αhe (6)

Word Prediction

Context vector ct captured the relevant source side information to help predict the current target word yt.
We employ a concatenate layer with activation function tanh to combine context vector ct and hidden
state of decoder hdt at time-step t as follows:

ĥdt = tanh(Wc

[
ct;h

d
t

]
) (7)

Then the predictive vector is fed into the softmax layer to get the predicted distribution p̂(yt|s) of the
current target word.

p̂(yt|s) = softmax(Wsĥd + bs)

ŷt = arg max
y

p̂(yt|s)
(8)

After decoding, we obtain the predictive vectors for the whole target sequence ĥd =
[
hd1, h

d
2, ..., h

d
n

]
.

Ideally, it contains the information of exposed implicit connectives.

Gated Interaction

In order to predict the coherent discourse relation of the input sequence, we take both the hencoder and
the predictive word vectors hd into account. K-max pooling can “draw together” features that are most
discriminative and among many positions apart in the sentences, especially on both the two relational
arguments in our task here; this method has been proved to be effective in choosing active features in
sentence modeling (Kalchbrenner et al., 2014). We employ an average k-max pooling layer which takes
average of the top k-max values among the whole time-steps as in Equation 9 and 10:

h̄e =
1

k

k∑
i=1

topk(he) (9)

h̄d =
1

k

k∑
i=1

topk(ĥd) (10)

h̄e and h̄d are then combined using a linear layer (Lan et al., 2017). As illustrated in Equation 11, the
linear layer acts as a gate to determine how much information from the sequence-to-sequence network
should be mixed into the original sentence’s representations from the encoder. Compared with bilinear
layer, it also has less parameters and allows us to use high dimensional word vectors.

h∗ = h̄e ⊕ σ(Wih̄d + bi) (11)

Explicit Context Knowledge

To further capture common knowledge in contexts, we here employ a memory network proposed in Liu
et al. (2018), to get explicit context representations of contexts training examples. We use a memory
matrix M ∈ RK×N , where K,N denote hidden size and number of training instances respectively.
During training, the memory matrix remembers the information of training examples and then retrieves
them when predicting labels.



Given a representation h∗ from the interaction layer, we generate a knowledge vector by weighted
memory reading:

k = Msoftmax(MTh∗) (12)

We here use dot product attention, which is faster and space-efficient than additive attention, to
calculate the scores for each training instances. The scores are normalized with a softmax layer and the
final knowledge vector is a weighted sum of the columns in memory matrix M .

Afterwards, the model predicts the discourse relation using a softmax layer.

p̂(r|s) = softmax(Wr[k;h∗] + br)

r̂ = arg max
y

p̂(r|s) (13)

3.2 Multi-objectives

In our model, the decoder and the discourse relation classifier have different objectives. For the decoder,
the objective consists of predicting the target word at each time-step. The loss function is calculated with
masked cross entropy with L2 regularization, as follows:

Lossde = − 1

n

n∑
t=1

yt log(p̂y) +
λ

2
‖ θde ‖22 (14)

where yt is one-hot represented ground truth of target words, p̂y is the estimated probabilities for each
words in vocabulary by softmax layer, n denotes the length of target sentence. λ is a hyper-parameter of
L2 regularization and θ is the parameter set.

The objective of the discourse relation classifier consists of predicting the discourse relations. A rea-
sonable training objective for multiple classes is the categorical cross-entropy loss. The loss is formulated
as:

Losscl = − 1

m

m∑
i=1

ri log(p̂r) +
λ

2
‖ θcl ‖22 (15)

where ri is one-hot represented ground truth of discourse relation labels, p̂r denotes the predicted prob-
abilities for each relation class by softmax layer, m is the number of target classes. Just like above, λ is
a hyper-parameter of L2 regularization.

For the overall loss of the whole model, we set another hyper-parameterw to give these two objective
functions different weights. Larger w means that more importance is placed on the decoder task.

Loss = w · Lossde + (1 − w) · Losscl (16)

3.3 Model Training

To train our model, the training objective is defined by the loss function we introduced above. We use
Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) with different learning rate for different
parts of the model as our optimizer. Dropout layers are applied after the embedding layer and also on the
top feature vector before the softmax layer in the classifier. We also employ L2 regularization with small
λ in our objective functions for preventing over-fitting. The values of the hyper-parameters, are provided
in Table 2. The model is trained firstly to minimize the loss in Equation 14 until convergence, we use
scheduled sampling (Bengio et al., 2015) during training to avoid “teacher-forcing problem”. And then
to minimize the joint loss in Equation 16 to train the implicit discourse relation classifier.

4 Experiments and Results
4.1 Experimental Setup

We evaluate our model on the PDTB. While early work only evaluated classification performance be-
tween the four main PDTB relation classes, more recent work including the CoNLL 2015 and 2016
shared tasks on Shallow Discourse Parsing (Xue et al., 2015, 2016) have set the standard to second-level
classification. The second-level classification is more useful for most downstream tasks. Following other



Settings Train Dev Test
PDTB-Lin 13351 515 766
PDTB-Ji 12826 1165 1039

Cross valid. per fold avg. 12085 1486 14861

Table 1: Numbers of train, development and test set on different settings for 11-way classification task.
Instances annotated with two labels are double-counted and some relations with few instances have been
removed.

works we directly compare to in our evaluation, we here use the setting where AltLex, EntRel and NoRel
tags are ignored. About 2.2% of the implicit relation instances in PDTB have been annotated with two
relations, these are considered as two training instances.

To allow for full comparability to earlier work, we here report results for three different settings.
The first one is denoted as PDTB-Lin (Lin et al., 2009); it uses sections 2-21 for training, 22 as dev and
section 23 as test set. The second one is labeled PDTB-Ji (Ji and Eisenstein, 2015), and uses sections 2-20
for training, 0-1 as dev and evaluates on sections 21-22. Our third setting follows the recommendations
of Shi and Demberg (2017), and performs 10-fold cross validation on the whole corpus (sections 0-23).
Table 1 shows the number of instances in train, development and test set in different settings.

The advantage of the cross validation approach is that it addresses problems related to the small cor-
pus size, as it reports model performance across all folds. This is important, because the most frequently
used test set (PDTB-Lin) contains less than 800 instances; taken together with a lack in the community
to report mean and standard deviations from multiple runs of neural networks (Reimers and Gurevych,
2018), the small size of the test set makes reported results potentially unreliable.

Preprocessing
We first convert tokens in PDTB to lowercase and normalize strings, which removes special characters.
The word embeddings used for initializing the word representations are trained with the CBOW archi-
tecture in Word2Vec2 (Mikolov et al., 2013) on PDTB training set. All the weights in the model are
initialized with uniform random.

To better locate the connective positions in the target side, we use two position indicators (〈conn〉,
〈/conn〉) which specify the starting and ending of the connectives (Zhou et al., 2016), which also indicate
the spans of discourse arguments.

Since our main task here is not generating arguments, it is better to have representations generated
by correct words rather than by wrongly predicted ones. So at test time, instead of using the predicted
word from previous time step as current input, we use the source sentence as the decoder’s input and
target. As the implicit connective is not available at test time, we use a random vector, which we used
as “impl conn” in Figure 2, as a placeholder to inform the sequence that the upcoming word should be a
connective.

Hyper-parameters
There are several hyper-parameters in our model, including dimension of word vectors d, two dropout
rates after embedding layer q1 and before softmax layer q2, two learning rates for encoder-decoder lr1
and for classifier lr2, top k for k-max pooling layer, different weights w for losses in Equation (16) and λ
denotes the coefficient of regularizer, which controls the importance of the regularization term, as shown
in Table 2.

1Cross-validation allows us to test on all 15057 instances.
2https://code.google.com/archive/p/word2vec/

d q1 q2 lr1 lr2 k w λ
100 0.5 0.2 2.5e−3 5e−3 5 0.2 5e−4

Table 2: Hyper-parameter settings.



Methods PDTB-Lin PDTB-Ji Cross Validation

Majority class 26.11 26.18 25.59
Lin et al. (2009) 40.20 - -
Qin et al. (2016a) 43.81 45.04 -
Cai and Zhao (2017) - 45.81 -
Qin et al. (2017) 44.65 46.23 -
Shi et al. (2017) (with extra data) 45.50 - 37.84

Encoder only (Bi-LSTM) (Shi et al., 2017) 34.32 - 30.01
Auto-Encoder 43.86 45.43 39.50
Seq2Seq w/o Mem Net 45.75 47.05 40.29
Proposed Method 45.82 47.83 41.29

Table 3: Accuracy (%) of implicit discourse relations on PDTB-Lin, PDTB-Ji and Cross Validation
Settings for multi-class classification.

4.2 Experimental Results

We compare our models with six previous methods, as shown in Table 3. The baselines contain feature-
based methods (Lin et al., 2009), state-of-the-art neural networks (Qin et al., 2016a; Cai and Zhao, 2017),
including the adversarial neural network that also exploits the annotated implicit connectives (Qin et al.,
2017), as well as the data extension method based on using explicitated connectives from translation to
other languages (Shi et al., 2017).

Additionally, we ablate our model by taking out the prediction of the implicit connective in the
sequence to sequence model. The resulting model is labeled Auto-Encoder in Table 3. And seq2seq
network without knowledge memory, which means we use the output of gated interaction layer to predict
the label directly, as denoted as Seq2Seq w/o Mem Net.

Our proposed model outperforms the other models in each of the settings. Compared with perfor-
mances in Qin et al. (2017), although we share the similar idea of extracting highly discriminative fea-
tures by generating connective-augmented representations for implicit discourse relations, our method
improves about 1.2% on setting PDTB-Lin and 1.6% on the PDTB-Ji setting. The importance of the
implicit connective is also illustrated by the fact that the “Auto-Encoder” model, which is identical to our
model except it does not predict the implicit connective, performs worse than the model which does. This
confirms our initial hypothesis that training with implicit connectives helps to expose the latent discrim-
inative features in the relational arguments, and generates more refined semantic representation. It also
means that, to some extent, purely increasing the size of tunable parameters is not always helpful in this
task and trying to predict implicit connectives in the decoder does indeed help the model extract more
discriminative features for this task. What’s more, we can also see that without the memory network,
the performances are also worse, it shows that with the concatenation of knowledge vector, the training
instance may be capable of finding related instances to get common knowledge for predicting implicit
relations. As Shi and Demberg (2017) argued that it is risky to conclude with testing on such small test
set, we also run cross-validation on the whole PDTB. From Table 3, we have the same conclusion with
the effectiveness of our method, which outperformed the baseline (Bi-LSTM) with more than 11% points
and 3% compared with Shi et al. (2017) even though they have used a very large extra corpus.

For the sake of obtaining a better intuition on how the global attention works in our model, Figure 2
demonstrates the weights of different time-steps in attention layer from the decoder. The weights show
how much importance the word attached to the source words while predicting target words. We can
see that without the connective in the target side of test, the word filler still works as a connective to
help predict the upcoming words. For instance, the true discourse relation for the right-hand example is
Expansion.Alternative, at the word filler’s time-step, it attached more importance on the negation “don’t”
and “tastefully appointed”. It means the current representation could grasp the key information and try
to focus on the important words to help with the task. Here we see plenty room for adapting this model
to discourse connective prediction task, we would like to leave this to the future work.



Figure 2: Visualization of attention weights during predicting target sentence in train and test, x-axis
denotes the source sentence and the y-axis is the targets. First two figures are examples from training
set with implicit connectives inside, while the following one, in which the implicit connective has been
replaced by the word filler “impl conn”, is from test.

In recent years, U.S. steelmakers have supplied about 80% of the 100 million tons of steel used annually by the nation. (in
addition,) Of the remaining 20% needed, the steel-quota negotiations allocate about 15% to foreign suppliers.

— Expansion.Conjunction

1. The average debt of medical school graduates who borrowed to pay for their education jumped 10% to $42,374 this year
from $38,489 in 1988, says the Association of American Medical Colleges. (furthermore) that’s 115% more than in 1981

— Expansion.Conjunction
2. ... he rigged up an alarm system, including a portable beeper, to alert him when Sventek came on the line. (and) Some
nights he slept under his desk.

— Expansion.Conjunction

Prices for capital equipment rose a hefty 1.1% in September, while prices for home electronic equipment fell 1.1%. (Mean-
while,) food prices declined 0.6%, after climbing 0.3% in August.

— Comparison.Contrast

1. Lloyd’s overblown bureaucracy also hampers efforts to update marketing strategies. (Although) some underwriters have
been pressing for years to tap the low-margin business by selling some policies directly to consumers.

— Comparison.Contrast
2. Valley National ”isn’t out of the woods yet. (Specifically), the key will be whether Arizona real estate turns around or at
least stabilizes

— Expansion.Restatement

Table 4: Example of attention in Context Knowledge Memory. The sentences in italic are from PDTB
test set and following 2 instances are the ones with top 2 attention weights from training set.

Relation Train Dev Test
Comparison 1855 189 145
Contingency 3235 281 273
Expansion 6673 638 538
Temporal 582 48 55

Total 12345 1156 1011

Table 5: Distribution of top-level implicit discourse relations in the PDTB.

We also try to figure out which instances’ representations have been chosen from the memory matrix
while predicting. Table 4 shows two examples and their context instances with top 2 memory attentions
among the whole training set. We can see that both examples show that the memory attention attached
more importance on the same relations. This means that with the Context Memory, the model could fa-
cilitate the discourse relation prediction by choosing examples that share similar semantic representation
and discourse relation during prediction.



Methods Four-ways One-Versus-all Binary (F1)
F1 Acc. Comp. Cont. Expa. Temp.

Rutherford and Xue (2014) 38.40 55.50 39.70 54.42 70.23 28.69
Qin et al. (2016b) - - 41.55 57.32 71.50 35.43
Liu et al. (2016) 44.98 57.27 37.91 55.88 69.97 37.17
Ji et al. (2016) 42.30 59.50 - - - -
Liu and Li (2016) 46.29 57.17 36.70 54.48 70.43 38.84
Qin et al. (2017) - - 40.87 54.46 72.38 36.20
Lan et al. (2017) 47.80 57.39 40.73 58.96 72.47 38.50
Our method 46.40 61.42 41.83 62.07 69.58 35.72

Table 6: Comparison of F1 scores (%) and Accuracy (%) with the State-of-the-art Approaches for four-
ways and one-versus-all binary classification on PDTB. Comp., Cont., Expa. and Temp. stand for
Comparison, Contingency, Expansion and Temporal respectively.

4.2.1 Top-level Binary and 4-way Classification

A lot of the recent works in PDTB relation recognition have focused on first level relations, both on
binary and 4-ways classification. We also report the performance on level-one relation classification for
more comparison to prior works. As described above, we followed the conventional experimental settings
(Rutherford and Xue, 2015; Liu and Li, 2016) as closely as possible. Table 5 shows the distribution of
top-level implicit discourse relation in PDTB, it’s worth noticing that there are only 55 instances for
Temporal Relation in the test set.

To make the results comparable with previous work, we report the F1 score for four binary classifi-
cations and both F1 and Accuracy for 4-way classification, which can be found in Table 6. We can see
that our method outperforms all alternatives on COMPARISON and CONTINGENCY, and obtain compa-
rable scores with the state-of-the-art in others. For 4-way classification, we got the best accuracy and
second-best F1 with around 2% better than in Ji et al. (2016).

5 Conclusion and Future Work

We present in this paper a novel neural method trying to integrate implicit connectives into the represen-
tation of implicit discourse relations with a joint learning framework of sequence-to-sequence network.
We conduct experiments with different settings on PDTB benchmark, the results show that our proposed
method can achieve state-of-the-art performance on recognizing the implicit discourse relations and the
improvements are not only brought by the increasing number of parameters. The model also has great
potential abilities in implicit connective prediction in the future.

Our proposed method shares similar spirit with previous work in Zhou et al. (2010), who also tried
to leverage implicit connectives to help extract discriminative features from implicit discourse instances.
Comparing with the adversarial method proposed by Qin et al. (2017), our proposed model more closely
mimics humans’ annotation process of implicit discourse relations and is trained to directly explicitate
the implicit relations before classification. With the representation of the original implicit sentence and
the explicitated one from decoder, and the help of the explicit knowledge vector from memory network,
the implicit relation could be classified with higher accuracy.

Although our method has not been trained as a generative model in our experiments, we can see
potential for applying it to generative tasks. With more annotated data, minor modification and fine-
tuned training, we believe our proposed method could also be applied to tasks like implicit discourse
connective prediction, or argument generation in the future.
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