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Abstract

Open Information Extraction (Open IE) aims at generating entity-relation-entity triples from a
large amount of text, aiming at capturing key semantics of the text. Given a triple, the relation
expresses the type of semantic relation between the entities. Although relations from an Open IE
system are more extensible than those used in a traditional Information Extraction system and a
Knowledge Base (KB) such as Knowledge Graphs, the former lacks in semantics; an Open IE relation
is simply a sequence of words, whereas a KB relation has a predefined meaning. As a way to provide
a meaning to an Open IE relation, we attempt to align it with one of the predefined set of relations
used in a KB. Our approach is to use a Siamese network that compares two sequences of word
embeddings representing an Open IE relation and a predefined KB relation. In order to make the
approach practical, we automatically generate a training dataset using a distant supervision approach
instead of relying on a hand-labeled dataset. Our experiment shows that the proposed method can
capture the relational semantics better than the recent approaches.

1 Introduction

Open Information Extraction (Open IE) aims at extracting key information from a large amount of text
into a structured format, commonly in the form of triples, (subject entity, relation, object entity), where
the relation denotes the type of a semantic relation between the entities. As opposed to the traditional
Information Extraction that generates triples over a predefined relation set, Open IE can extract all pos-
sible relations without having to be restricted to a predefined set of relations. However, a relation from
an Open IE system is merely a sequence of words coming from the sentence containing the entities, re-
sulting in ambiguous and semantically redundant relations. For example, Open IE may extract ”died in”
and ”location of death” as two distinct relations although they should be treated as semantically equal
and expressed (or canonicalized) with a single relation type.

In order to address this problem, some methods have been proposed to canonicalize Open IE re-
lations (Yates and Etzioni, 2009; Galárraga et al., 2014; Vashishth et al., 2018). Given that they rely
on a clustering method, however, they tend to suffer from over-generalization. For example, the latest
canonicalization method called CESI (Vashishth et al., 2018) would put ”is brother of,” ”is son of,” ”is
main villain of,” and ”was professor of ” into the same relation cluster. While these relation phrases
have a common pattern (to be + noun + of) and expresses that the subject entity has a certain role, the
overarching relational category is too general to be useful.

Besides Open IE, Knowledge Base (KB) systems such as DBpedia, Freebase, and Wikidata, also
store general facts in a triple format. Different from Open IE, the relations in a KB are already classified
into distinct semantic categories. Although KB relations are better defined semantically than Open IE
relations, they are limited in terms of quantity and coverage. Dutta et al. (2015) attempted to mitigate
the weaknesses of the two approaches by aligning the relations of Open IE triples to those in DBpedia,



thereby adding semantics to Open IE triples. While useful, their approach is primarily based on the
frequency of triples without explicitly taking into account the relational semantics.

In this paper, we propose a new model using a Siamese network for aligning relations from Open IE
to those from KB (i.e. relation alignment task) for the purpose of providing more semantics to Open IE
relations, which are to be used for question answering as in TriviaQA (Joshi et al., 2017). The Siamese
network, a form of a neural network, takes two sequences of word embeddings representing an Open IE
relation and a KB relation and compares them. The network is trained to learn the semantic similarities
between an Open IE relational phrase and a KB relation type name that are considered identical in their
meanings. By utilizing word embeddings as the input of the network and encode relational descriptions,
we can incorporate their semantics information without an extra process of extracting linguistic features
from the training data. In order to mitigate the problem of manually constructing training data, i.e. pairs
of an Open IE relational phrase and a KB relation type name, we propose a distant supervision method
that does not require manual annotations. Our contributions in this paper are:

• We propose a novel method of applying a Siamese network for the relation alignment task. To the
best of our knowledge, our model is the first attempt that incorporates the semantic information of
the textual descriptions of relations, specifically for the relation alignment task.

• We propose to automatically generate a training dataset using a distant supervision approach so that
we avoid manual creation of training data, which can be prohibitive, thereby making the proposed
approach practical.

• We experimentally confirm that our model better captures relational semantics than the clustering
and the statistical rule-based approaches with a significant margin. We also analyze different
variations of the Siamese network to provide insights about the relation alignment task.

2 Related Work

Open IE Canonicalization. Yates and Etzioni (2009) proposed a simple probabilistic method for iden-
tifying Open IE triples which has a similar meaning. They calculated similarity between two relation
phrases and clustered them with a greedy agglomerative clustering method. Although their model works
well in finding synonyms for relation phrases, it still suffers from the polysemy problem. Galárraga et al.
(2014) canonicalized relation phrases by employing a rule mining algorithm called AMIE (Galárraga
et al., 2013) to mine the relationship rules between relation phrases and clustered the relation phrases
based on the generated rules. Recently, Vashishth et al. (2018) improved Dutta’s model by using relation
embeddings and side information as the features for the clustering method. They canonicalized the Open
IE relations by clustering the embedding. Our task is different from their task since we focus on adding
more semantics to the Open IE relations by aligning them to the KB relations.

Instead of relying on only one Open IE systems, Bovi et al. (2015) proposed a method called KB-
Unify to integrate the triples from different Open IE systems into a single repository. Our work differs
from their work since we attempt to align the Open IE and KB relations. Our task is mostly similar to
the alignment task presented by Dutta et al. (2015), which was introduced in Section 1. They aimed to
bring the benefits of Open IE and KB by mapping the Open IE triples to existing KB triples (DBpedia)
by using a statistical rule-based approach. While their result seems promising, it only relies on frequency
of the triples without considering semantics. Besides, it suffers from an efficiency problem arising from
frequency calculation.

Word Sense Alignment. Gurevych et al. (2016) define Word Sense Alignment as linking senses or
concepts that has an identical meaning from multiple Lexical Knowledge Bases (LKB). There has been
a lot of work with various goals such as aligning WordNet, Cyc, and VerbNet for building knowledge
representation (Crouch and King, 2005), aligning FrameNet, VerbNet, and WordNet for semantic pars-
ing (Shi and Mihalcea, 2005), and building large-scale LKB alignments (Matuschek, 2015; Gurevych



et al., 2012; Navigli and Ponzetto, 2012). Although this task is conceptually similar with our relation
alignment task, we focus on aligning the relation meaning of Open IE and KB, not word sense in general.

Relation Extraction using Distant Supervision. There are many works that used distant supervision
method to generate the dataset for relation extraction task such as Mintz et al. (2009) and Riedel et al.
(2010). Sorokin and Gurevych (2017) proposed a LSTM-based neural network to extract relation using
another relation in the same sentence as a contextual information and utilized Wikidata to construct the
dataset. Even though we also use Wikidata in our dataset generation method, however, we aim to align
the Open IE relations to the extracted relations in Wikidata.

3 Model Description

3.1 Task Description

Let xOIE be an Open IE triple and xKB be a KB triple. Given xOIE and xKB as the input, the goal
is to determine whether the relation in xOIE can be aligned to (i.e. expressed with) that of xKB . If
they can be aligned, the model will give 0 (”semantically same”) as the output, or 1 (”not semantically
same” or ”semantically different”) otherwise. For example, given (English, are language of, England)
as the Open IE triple and (English, official language, England) as the KB triple, we want to determine
whether the relation are language of is semantically close enough to and hence can be replaced by the
KB relation official language. Given the task, our proposed model essentially gives the distance of the
Open IE and KB relations based on the weights learned for the network so that it predicts whether the
pair is semantically same or not.

3.2 A Siamese Network for Relation Alignment

The concept of a Siamese network was introduced by Bromley et al. (1993) and typically used for mea-
suring the similarity of two inputs. It consists of two identical sub-networks that extract the features
from two inputs, respectively. Then the distance from the two sub-network outputs is calculated to deter-
mine the input similarity. Note that the two sub-networks will have been learned at the training stage in
such a way that the distance between the semantically identical inputs is minimized. The overall model
architecture is in Figure 1.

Figure 1: General architecture of the proposed model including the input and output example. The blue
text represents positive example and the red text represents negative example.

In the proposed network, the first and second sub-networks attempt to capture the features from the
Open IE and the KB relations, respectively. The embeddings of the input words on each sub-network are
encoded to produce a new vector. Note that the encoders share the same weights. For training, we use a
contrastive loss function. The details of the model are described in the following sub-section.



(a) Relational Phrase (b) Relation Definition

(c) Entity Information

Figure 2: The illustration of input representation.

3.2.1 Input Representation

Before an input is fed into the encoder, each word in the input is converted into a fixed size n-dimensional
word embedding. Given that relation phrases from Open IE and names (from a KB) can be too short to
carry enough semantics, we also utilize relation definitions and entity information when input represen-
tations are computed. Therefore, we have three input representations as follows:

• Relational Phrase. For a relational phrase input (Figure 2a), each word w is transformed into
real-valued vector rw ∈ Rd where d is the dimension of the word embedding. For the encoding of
the entire phrase, we concatenate the word vectors for the phrase to generate a phrase embedding,
x = [rw1 , r

w
2 , ..., r

w
n ], where n is the number of words in the phrase.

• Relation Definition. For a relation definition input (Figure 2b), we utilize WordNet to obtain an
Open IE relation phrase definition and Wikidata for additional relation description of each KB
relation. For an Open IE relation, we transform each word in the relation phrase into WordNet
synset using the Lesk algorithm1. The definition of each synset is then obtained from the WordNet
dictionary. For a KB relation, we utilize Wikidata API2 to get its description that serves as the
definition. Finally, the input representation is formed by concatenating of the word vectors in the
definition text, i.e., x = [rw1 , r

w
2 , ..., r

w
n ] where n is the number of words in the definition.

• Entity Information. Besides relation information, we consider entity information as an additional
feature in our model (Figure 2c). The entity information is construed as the context surrounding the
relation and hence providing the semantics of the relation. The subject and the object entity phrases
are concatenated to the relation phrase or definition, i.e., x = [S,R,O] where S = [sw1 , s

w
2 , ..., s

w
t ],

R = [rw1 , r
w
2 , ..., r

w
u ], O = [ow1 , o

w
2 , ..., o

w
v ]; t and v denotes the number of words in the subject and

object entities, respectively, and u denotes the number of words in the relation phrase.
1https://www.nltk.org/_modules/nltk/wsd.html
2https://query.wikidata.org



3.2.2 Encoder

After we have the input representations for Open IE and KB relations, the next step is to feed them to the
encoder. Considering the past success of CNN in extracting appropriate features for relation extraction
from a sequence of words (Nguyen and Grishman, 2015), we opt for two encoders as follows:

• Convolutional Neural Network (CNN). CNN has three main parts: convolution, max-pooling,
and fully-connected linear layers. In the convolution layer, we aim to extract the local features
from the given input text. By extracting local features, we can create a subject, a relation, and an
object representation similar to n-gram features. The max-pooling layer selects the most important
features contained in the phrase. The output from the max-pooling layer is fed to a feed-forward
fully-connected linear layer. Finally, its output is used as our final relation representation.

• Piecewise Convolutional Neural Network (PCNN). In PCNN, which was first introduced by
Zeng et al. (2015), the original max-pooling layer is modified into piecewise max-pooling. We
apply a max operation over a segment of the phrase so that the model can extract the important
features without losing the information coming from the subject entity, the relation, and the object
entity, separately. Finally, similar to the CNN encoder, the output from the feed-forward linear
layer is used as the final relation representation.

3.3 Contrastive Loss Function

For learning, we apply a contrastive loss function defined as the sum of the loss of positive examples
(semantically same relations) and the loss of negative examples (semantically different relations). More
formally, the loss function is defined as:

L = (1− Y )D2 + Y (max(0,m−D))2;m > 0 (1)

D = |x’OIE − x’KB| (2)

where Y and D denote the label of the input pairs (0 for semantically same, 1 for semantically different)
and the euclidean distance between the Open IE and the KB relation vectors (i.e. the output from the
encoder explained in the previous section) respectively, with m being a margin. Note that the first term
of Equation 1 is used for positive examples and the second term for negative examples. When training,
we want to make the distance of the positive pairs smaller and the distance of the negative pairs inside
the margin larger.

4 Dataset Generation using Distant Supervision

The distant supervision method for the task of relation extraction was first introduced by Mintz et al.
(2009). It assumes that any sentence containing an entity pair participating in a triple of a known KB
is likely to contain a relevant expression of the relation of the triple. As a result, it becomes possible to
construct positive training instances for the relation in the triple by taking the expressions between the
occurrences of the two entities. The collection of textual expressions can be used as revealing the target
relation. By adopting this approach, we can obtain the sentences containing the target relation in KB and
use them to extract Open IE triples with the relation. Once the Open IE triples are generated, we apply
some rules to annotate them as positive or negative automatically so that we obtain training data for the
KB relations used in collection the Open IE triples. The training data generation steps are as follows:

1. Select the top 200 most frequent relations3 in the KB and collect the KB triples containing one of
the relations. We utilize Wikidata (Vrandečić and Krötzsch, 2014) as our KB.

3As of October, 2018



2. Crawl the sentences for each triple using the distant supervision method. In other words, we pick
the sentences containing the two entities of the triple. In order to reduce ambiguities associated
with the occurrences of the entities, we retrieve sentences from the Wikipedia page of each entity.

3. Apply Open IE to each sentence to extract Open IE triples. In this paper, we use the existing
Stanford Open IE system (Angeli et al., 2015).

4. Align Open IE and KB triples. The triples sharing the same entity pair are labeled as semantically
same or positive (0). But if one of the entities is different, it labeled as different or negative (1).

5. From the previous step, we will get a small amount of positive examples but a high number of
negative examples. To handle the data imbalance problem, we add more positive examples by
swapping a pair of alignments when the other sides of the two alignments share the same relation
but with different entities. For example, when we have positive examples as follows:

(Inn, country, Switzerland), (Inn, is river in, Switzerland), 0
(Villavicencio, country, Colombia), (Villavicencio, is city in, Colombia), 0

we generate two additional positive examples by swapping the right hand side triples as follows:

(Inn, country, Switzerland), (Villavicencio, is city in, Colombia), 0
(Villavicencio, country, Colombia), (Inn, is river in, Switzerland), 0

5 Experiments

The goal of our experiments are two-fold: the first is to examine the influence of different input repre-
sentations and encoder variations of our model in capturing the semantics of the relations of the Open IE
and the KB and the second is to compare our model against the existing approaches for aligning Open
IE and KB relations. The existing approaches that serve as the baselines are:

• CESI (Vashishth et al., 2018): For this model, we adjust the clustering result so that it can be
compared with our model for the evaluation tasks to be described below. If two relations are in the
same cluster, then they are labeled as semantically same; otherwise different.

• Dutta et al. (2014): This model uses a statistical rule-based approach for aligning relations. It
calculates a confidence score of every possible Open IE relations mapping to a KB relations based
on occurrence statistics of the particular mapping. If the mapping has a higher confidence than the
threshold determined by linear regression, it is labeled as semantically same; otherwise different.
Because the code has not been shared by the authors, we implemented their method on our own.

Besides the above baselines, we also apply our alignment rule (denotes as rule-based in Table 2)
used in the dataset generation process (see Section 4) for predicting the label, i.e., the triples sharing the
same entity pair are labeled as semantically same; otherwise different. Note that this case is used as a
reference point in explaining the performance of the proposed method and the other baselines. It also
can be used to measure the quality of the distant supervision dataset.

Since there is no standard evaluation suit available for the relation alignment task, we provide three
evaluations to reveal different aspects of the proposed model and compensate for the limitations of each.

1. Internal Evaluation with Automatically Generated Dataset. The goal is to examine different
variations of the proposed model using automatically generated test data of a large quantity. It
is internal because we only compare different variations of the proposed model, not against other
methods. We split our automatically generated dataset into training, validation, and testing datasets
(see Table 1 for details).



• CNN no def: This version uses CNN as the encoder and relational phrases and relation
names (no definitions) as the input representation for both Open IE and KB relations.

• CNN def: This is the same as CNN no def except that relation definitions are added.

• CNN def ent: This version is the same as CNN def except that entity information is added.

• PCNN no def ent: This version uses PCNN as the encoder and relational phrases and rela-
tion names for Open IE and KB relations as the input, respectively, as well entity information.

• PCNN def ent: This is the same as PCNN no def ent except relation definitions are added.

Set # triples # sentences # alignments
Positive Negative Total

Training 86,178 102,863 430,364 430,364 860,728
Validation 34,726 42,874 184,621 184,621 369,242
Testing 32,309 39,477 168,257 168,257 336,514

Table 1: Statistics of our dataset generated by the distant supervision method.

Since we use a large number of sentences and triples extracted thereof, this evaluation allows us to
test different variations for all the relations exhaustively.

2. Manual Evaluation. This evaluation is intended to overcome a drawback of the internal evalu-
ation, which relies on the assumption that the gold standard generated by distant supervision is
always correct. Another limitation is that it does not include external evaluation. Therefore, in this
evaluation, we use a manually annotated test data set and use it as the gold standard to make the
evaluation more reliable and compare the performance of the proposed model with the two exist-
ing approaches mentioned above.4 An added value is that we can indirectly examine the reliability
of the internal evaluation method by comparing the relative ordering of the variations. To build
the dataset, we randomly sampled 400 alignments from the distant supervision testing data. The
dataset has all unique entity pairs and it covers 90 unique KB relations. For each pair of relations,
one from Open IE and the other from KB, we asked three annotators to decide whether the rela-
tions were semantically same or not, resulting in 258 ”same” and 142 ”different” relation pairs.
The inter-judge agreement was 81.88% in Fleiss’ Kappa.

3. Qualitative Analysis. The goal is to examine the strengths and weaknesses of the proposed model
by looking at different lexico-syntactic complexities of the relational phrase patterns, relative to
the two baselines. We chose a smaller sample of the alignment result than the above ”manual
evaluation”, including ten semantically same relation pairs and five semantically different ones.
For the semantically same relation pairs, we divide the set into two categories: lexical similarity
vs difference. Lexical similarity means the relations share at least one similar word, for example
”died in” and ”place of death” relations. Lexical difference means the relational phrases do not
share a lexically similar word at all, for example ”’s son is” and ”child” relations.

For the evaluation metric, we use precision (P ), recall (R), F1, and accuracy (Acc) scores.

P =
TP

TP + FP
R =

TP

TP + FN
F1 = 2 · P ×R

P +R
Acc =

ncorrect

ntotal
(3)

where TP denotes the number of true positives, FP the number of false positives, FN the number of false
negatives, ncorrect the number of correct predictions, and ntotal the number of total testing data. Note
that the score presented in this paper is the best score over multiple runs.

In the training process, we applied the filter height of 1 and 2 with 100 feature maps for the convo-
lutional layer. For the input, we used pre-trained fastText (Bojanowski et al., 2017) with 300 dimension
size and update the weight of the word embeddings. For learning, we applied a stochastic gradient de-
scent algorithm using Adam optimizer (Kinga and Adam, 2015) with 0.001 as the learning rate. The

4The dataset and code are available at: https://github.com/rifkiaputri/rel-aligner



batch with size was 128. Also, we employed dropout in the feed-forward linear layer with a probability
of 0.5. For the loss function, we set the margin m as 2.

6 Result and Discussion

6.1 Internal Evaluation

The relative performance differences among the five versions are summarized in Figure 3a. In addition
to the ordering of the five variations, the difference between CNN and PCNN encoders is most notable.
Detailed analyses are as follows.

(a) P-R curve (b) Improvement with definitions (c) Performance drop with definitions

Figure 3: Internal evaluation result.

Relational Phrase vs. Relation Definition. While our intuition was that the additional information ob-
tainable from the relation definitions would help compensate for the lack of semantics in a short relation
phrases and names, it turns out that the overall gain shown in Figure 3a is not as significant as our expec-
tation. A further analysis shows, however, that definitions help reduce incorrect predictions as in Figure
3b. Out of 137 errors (82 false positives and 55 false negatives) made by CNN no def, 40 were predicted
correctly by including definitions (CNN def), resulting in 29.2% improvement. On the other hand, out
of 263 correct prediction in CNN no def (203 true positives and 60 true negatives), 52 were predicted
incorrectly in CNN def, resulting in 19.77% drop. This suggests that adding definition has potential to
enrich the semantics; more sophisticated approaches are left for future research.

Impact of entity information. We observe that the performance of CNN def ent is significantly higher
than that of the CNN def model. From this result, we can conclude that adding entity information con-
tributes to predicting the similarity between two relations. It suggests that entity information provides the
context with which relation phrases and names can be aligned more accurately. It is consistent with the
result in Zeng et al. (2015) that also shows the importance of including entities in relation classification.

CNN vs. PCNN. Compared to the performance CNN def ent, PCNN def ent is clearly better, strongly
suggesting that for the relation alignment task, the PCNN encoder is better than CNN, regardless of
whether relation definitions are used. A rational explanation for this result is that we lose important in-
formation when we apply max-pooling to the entire input representation including entities and relational
phrases in CNN. Note that in PCNN, piecewise max-pooling allows the model to extract major features
from three different segments of the representation (i.e. subject entity, relation, and object entity). There-
fore, this result confirms that the piecewise max-pooling helps in preserving more meaningful features
resulting from the convolutional layer for the relation alignment task.

6.2 Manual Evaluation

For more reliable evaluation of the proposed model, we compared it against the baselines using the 400
gold standards labeled by human. The summary result for predicting the semantically same and different



Model Semantically Same Semantically Different Overall
P R F1 P R F1 Acc

Dutta 0.740 0.496 0.594 0.427 0.683 0.526 56.25%
CESI 1.000 0.066 0.124 0.371 1.000 0.541 39.75%
Rule-based 0.645 1.000 0.784 0.000 0.000 0.000 64.50%
CNN no def 0.742 0.547 0.629 0.443 0.655 0.528 58.50%
CNN def 0.726 0.678 0.701 0.478 0.535 0.505 62.75%
CNN def ent 0.659 0.891 0.758 0.451 0.162 0.238 63.25%
PCNN no def ent 0.678 0.880 0.766 0.523 0.239 0.329 65.25%
PCNN def ent 0.669 0.922 0.775 0.545 0.169 0.258 65.50%

Table 2: Manual evaluation result.

relation pairs in Table 2 clearly shows the proposed model (CNN and PCNN) outperforms the baselines,
CESI and Dutta, in predicting the semantically same pairs. Although CESI has the highest precision
score, it has the lowest recall among all models variations due to the bias of predicting most of the data as
semantically different. While it is possible to apply a different threshold in forming clusters for different
precision and recall pairs, the low F1 value precludes its moderate performance for relation alignment.
Compared to CESI models, Dutta’s model shows better performance, especially in recall and F1 scores
for predicting semantically same pairs. Based on this result, it is obvious that using a simple probabilistic
rule-based approach is better than using the clustering approach for the relation alignment task. However,
it is much worse than our model variations, with a high number of false negatives, resulting in the low
recall and F1 scores.

The scores of the rule-based model in Table 2 is provided as a reference point of our proposed mod-
els. Since the rule-based model predicts the label using the alignment rules in our distant supervision
dataset generation, a pair (one from Open IE and the other from KB) sharing the same entities in respec-
tive triples is judged to be semantically same by this model. That is, all the 400 pairs are predicted to be
semantically same. From the alignment task perspective, it gives 100% recall for the semantically same
case (all of the 258 ”same” pairs are predicted correctly) and 0% recall for semantically different case.
Since all the 142 ”different” pairs are predicted as ”same”, the overall accuracy score is 64.5%. It shows
that the training process is still needed since we cannot only rely on the alignment rules in our dataset
generation. Moreover, since the rule-based model predictions are made with the distant supervision rule,
we can also infer the quality of our distant supervision dataset based on the scores of the model (64.5%
alignments are correctly labeled by distant supervision). Note that the low F1 score for predicting se-
mantically different pairs in the proposed model is attributed to the high number of false negatives in the
dataset. However, it still has the highest overall accuracy score compared to the two baselines.

6.3 Qualitative Analysis

We selected a sample of the alignment result and examined the label of each model to obtain insights
about success and failure cases. As in Table 3, the variations of the proposed model tend to perform
very well in predicting positive examples. For negative examples (labeled as ”semantically different” in
Table 3), almost no model predicts the alignment label perfectly, with an exception of the CESI model.
Note that CESI has the tendency of predicting most alignments as semantically different, generating
many false negatives. The ”correct” decisions made for the semantically different pairs are likely to be
attributed to this tendency.

Furthermore, the proposed model appears to make correct predictions for a pair where the relation
expressions are lexically different but semantically same, as in 〈’s son is, child〉, 〈’s serial is, notable
work〉, and 〈was first married to, spouse〉. However, CESI and Dutta’s fail to predict them correctly
because they are difficult to be predicted the models using symbolic representation of words. This result
indicates that distributed representation of words as in embeddings has a clear advantage in dealing
with semantics even when radically different words are used in relation phrases. For semantically and
lexically similar relational phrase pairs such as 〈died in, place of death〉, 〈died of, cause of death〉, and
〈was filmed in, filming location〉, almost all models predict the alignment correctly, except CESI, again



Open IE Relation KB Relation Dutta CESI CNN PCNN Goldno def def def ent no def ent def ent
Semantically same - lexically similar

died in place of death 0 1 0 0 0 0 0 0
died of cause of death 0 1 0 0 0 0 0 0
founding member of member of 1 0 0 0 0 0 0 0
was filmed in filming location 0 1 0 0 0 0 0 0
permanent capital of capital of 1 0 0 0 0 0 0 0

Semantically same - lexically different
’ son is child 1 1 0 0 0 0 0 0
’s serial is notable work 1 1 0 0 0 0 0 0
was first married to spouse 1 1 0 0 0 0 0 0
is main villain of present in work 0 1 0 1 0 0 0 0
first aired with original language of work 1 1 1 1 0 0 0 0

Semantically different
was born in place of death 0 1 0 0 0 0 0 1
have won nominated for 1 1 0 0 0 0 0 1
began trip to place of death 1 1 1 0 1 1 0 1
was born in work location 0 1 0 0 0 0 0 1
leave father 1 1 1 1 1 1 1 1

Table 3: Alignment results of some Open IE and KB relations.

due to its tendency of judging pairs as semantically different. In another example, 〈founding member of,
member of 〉 and 〈permanent capital of, capital of 〉, Dutta’s model makes an incorrect prediction which
attributed to the fact that the model relies heavily on the frequency of the training instance and that the
frequency of the pairs is low.

Note that most models fail to correctly predict the cases where the pairs look similar but are in fact
semantically different as in 〈was born in, place of death〉. We argue that this is caused by the existence
of noisy instances in our training dataset. As explained in Section 4, when we automatically labeled the
dataset with distant supervision, it assumed that the triples sharing the same subject and object entities
would have a semantically same label. Obviously, this assumption does not always hold. Out of 4,274
examples of 〈was born in, place of death〉 pair in the training set, around 96% of the instances are
labeled as semantically same because the triples share the same entities. In other words, the false positive
problem is due to the distance supervision used for constructing training instances.

7 Conclusion and Future Works

In this paper, we present a Siamese network for aligning the relations of Open IE (Stanford Open IE) and
relations of KB (Wikidata). As a way to overcome the difficulty of acquiring a large number of training
instances, we built an extensive amount of training dataset using the distant supervision method which
does not require manual annotation. In the experiments, we first confirm that using word embedding
as the input of Siamese network is effective in extracting the semantics information compared to the
probabilistic rule-based model and the clustering-based model. Adding a textual definition and entity
information as the additional feature may also help to reduce the false positive and false negative errors
that occur when we only use short relational phrases input.

Despite the superiority of the performance over the baselines, the dataset resulting from the distant
supervision method still suffers from noises, i.e., incorrectly labeled alignment instances. The model
variations presented in this paper have not been able to handle this problem, which we leave for future
work. Another thing to consider is the number of KB relations. In this paper, we covered the top-200
most frequent relations over a total of more than 1000 relations in Wikidata. Even though we can include
all the relations, the number of triples and sentence examples of the last relation is not as much as those
of the first relation. Future work will have to investigate on how to handle the imbalance number of
relation instances and increase the number of KB relations that are aligned through it.

Finally, relation alignment can be useful for several downstream tasks such as KB completion and
question answering. In KB completion, we can combine the Open IE and KB relations by aligning



semantically same relations to the existing KB and adding new relations from Open IE, which are not
semantically the same as any of the KB relations. In question answering task, less ambiguous triples
resulting from the alignment process can be also used for question answering systems.
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Vrandečić, D. and M. Krötzsch (2014, September). Wikidata: A free collaborative knowledgebase.
Commun. ACM 57(10), 78–85.

Yates, A. and O. Etzioni (2009, March). Unsupervised methods for determining object and relation
synonyms on the web. J. Artif. Int. Res. 34(1), 255–296.

Zeng, D., K. Liu, Y. Chen, and J. Zhao (2015). Distant supervision for relation extraction via piecewise
convolutional neural networks. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1753–1762.


