A Type-coherent, Expressive Representation as an Initial Step to
Language Understanding

Gene Louis Kim and Lenhart Schubert
Department of Computer Science, University of Rochester
{gkim21, schubert}@cs.rochester.edu

Abstract

A growing interest in tasks involving language understanding by the NLP community has led to
the need for effective semantic parsing and inference. Modern NLP systems use semantic represen-
tations that do not quite fulfill the nuanced needs for language understanding: adequately modeling
language semantics, enabling general inferences, and being accurately recoverable. This document
describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for
a semantic representation that balances these needs. ULFs fully resolve the semantic type structure
while leaving issues such as quantifier scope, word sense, and anaphora unresolved; they provide a
starting point for further resolution into EL, and enable certain structural inferences without further
resolution. This document also presents preliminary results of creating a hand-annotated corpus of
ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannota-
tor agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach
to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to
subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.

1 Introduction

Episodic Logic (EL) is a semantic representation extending FOL, designed to closely match the expres-
sivity and surface form of natural language and to enable deductive inference, uncertain inference, and
NLog-like inference (Morbini and Schubert, 2009; [Schubert and Hwang, 2000; Schubert, 2014). |[Kim
and Schubert| (2016) developed a system that transforms annotated WordNet glosses into EL axioms
which were competitive with state-of-the-art lexical inference systems while achieving greater expres-
sivity. While EL is representationally appropriate for language understanding, the current EL parser is
too unreliable for general text: The phrase structures produced by the underlying Treebank parser leave
many ambiguities in the semantic type structure, which are disambiguated incorrectly by the hand-coded
compositional rules; moreover, errors in the phrase structures can further disrupt the resulting logical
forms (LFs). [Kim and Schubert| (2016) discuss the limitations of the existing parser as a starting point
for logically interpreting glosses of WordNet verb entries. In order to build a better EL parser, it seems
natural to take advantage of recent advances in corpus-based parsing techniques.

This document describes a type-coherent initial LF, or unscoped logical forms (ULF), for EL. which
captures the predicate-argument structure in the EL semantic types and is the first critical step in fully-
resolved semantic interpretation of sentences. Montague’s profoundly influential work (Montague, 1973)
demonstrates that systematic assignments of appropriate semantic types to words and phrases allows us
to view language as akin to formal logic, with meanings determined compositionally from syntactic
structures. This view of language directly supports inferences, at least to the extent that we can resolve
— or are prepared to tolerate — ambiguity, context-dependence, and indexicality, towards which semantic
types are agnostic. ULF takes a minimal step across the syntax-semantics interface by doing exactly
this — selecting the semantic types of words within EL. Thus ULFs are amenable to corpus-construction
and statistical parsing using techniques similar to those used for syntax, and they enable generation of
context-dependent structural inferences. The nature of these inferences is discussed in more detail in
Section[3.4]

Key : English She wants to eat the cake. !

structure flow — }) l Parsing

information flow - >
ULF (she.pro ((pres want.v)
/ (Unscoped) (to (eat.v (the.d cake.n)))))]
Anaphora /i NSeoping \
' x — |Cake3], SLF (pres (the.d x (x cake.n) l
‘\she.pro — |Chell]| , ‘ (Scoped) (she.pro (want.v (to (eat.v x)))))) 3

(|E|.sk at-about.p [Nowl17]),
((the.d x (x cake.n)

(she.pro (want.v (to (eat.v x))))) =*x |E|.sk)

I CLF
~ s (Contextual)

| eat.v — eatl.v,

|
. cake.n — cakel.n !

3/ ELF (|E|.sk at-about.p |Now17]),

‘ . . (C |Chell| (wantl .v (to (eatl .v |Cake3]|))))

i (Episodic) o E].sK)

Figure 1: The semantic interpretation process, with the ULF step in the fore. Structurally dependent steps in the
interpretation process are connected by solid black arrows and structurally independent information flow is repre-
sented with dashed blue arrows. The components that changed from the previous structural step are highlighted in
yellow. Backward information arrows indicate that arriving at the optimal choice at a particular step may depend
on “later” — or structurally dependent — steps.

Our working hypothesis in designing ULF is that a divide-and-conquer approach starting with pre-
liminary surface-like LFs is a practical way to generate fully resolved interpretations of natural language
in EL. Figure|l{shows a diagram of our divide-and-conquer approach, which is elaborated upon in Sec-
tion[3.3] We also outline a framework for quickly and reliably collecting ULF annotations for a corpus
in a multi-pronged approach. Our evaluation of the annotation framework shows that we achieve an-
notation speeds and agreement comparable to those for the abstract meaning representation (AMR)
project, which has successfully built a large enough corpus to drive research into corpus-based pars-
ing (Banarescu et al. 2013). Further resources relating to this project, including a more in-depth
description of ULFs, the annotation guidelines, and related code are available from the project web-
site|http://cs.rochester.edu/u/gkim21/ulf/.

2 Episodic Logic

EL is a semantic representation that extends FOL to more closely match the expressivity of natural
languages. It echoes both the surface form of language, and more crucially, the semantic types that
are found in all languages. Some semantic theorists view the fact that noun phrases denoting both
concrete and abstract entities can appear as predicate arguments (Aristotle, everyone, the fact that there
is water on Mars) as grounds for treating all noun phrases as being of higher types (e.g., second-order
predicates). EL instead uses a small number of reification operators to map predicate and sentence
intensions to individuals. As a result, quantification remains first-order (but allows quantified phrases
such as most people who smoke, or hardly any errors). Another distinctive feature of EL is that it treats the
relation between sentences and episodes (including events, situations, and processes) as a characterizing
relation, written “**’. This coincides with the Davidsonian treatment of events as extra variables of
predicates (Davidson, |1967) when we restrict ourselves to positive, atomic predications. However, ‘**’
also allows for logically complex characterizations of episodes, such as not eating anything all day, or
each superpower menacing the other with its nuclear arsenal (Schubert, 2000).

EL defines a hierarchical ontology over the domain of individuals, D. D includes simple individuals,

http://cs.rochester.edu/u/gkim21/ulf/

e.g. John, possible situations, S, possible worlds, WS, various numerical types, propositions, P,
and kinds, %, as well as others that are not important for the purposes of this document. A complete
description of the ontology is provided by |Schubert and Hwang| (2000). The types of some predicates
are further restricted by these categories. For example, the predicate claim.v —as in “I claim that grass
is red.” — has the type P — (D — (§ — 2)), since its first argument is a proposition and the second
argument is a simple individual (in the semantics of EL the agent argument is supplied last, though it
precedes the predicate in the surface syntax).

The semantic types in EL are defined by recursive functions over individuals, 9, and truth val-
ues, {0,1}, written as 2. Semantic values of predicates applied to their surface arguments can yield
a value in 2 at a given (possible) situation, or be undefined there (indicating irrelevance of the predi-
cation in the given situation). Most predicates in EL are of type D" — (S — 2) (where D? — 2 ab-
breviates D — (D — 2), D3 — 2 abbreviates D — (D — (D — 2)), and so on). That is, they are
first-order intensional predicatesﬂ Monadic predicates play a particularly important role in EL as well
as ULF, and we will abbreviate their type D — (§ — 2) as A'. In EL syntax, square brackets indicate
infixed operators (i.e. [T, T T ... T,— | where T is the operator) and parentheses indicate prefixed opera-
tors (i.e. (T T; ... T,) where T is the operator). Predicative formulas such as [|Aristotle| famous.a] or
[|Romeo| love.v |Juliet|] are regarded as temporal and must be evaluated with respect to a situation
via an episode-relating operator (e.g. “**’) to supply the episode and thus produce an atemporal formula.

There are also a limited number of type-shifting operators in EL to map between some of these types.
The kind operator, ‘k’, shifts a monadic predicate into a kind, (D — (§ — 2)) — X, and the operator ,
‘that’, forms propositions from sentence intensions, (S — 2) — P. “that grass is red”, a segment of an
earlier example, is formulated as (that [(k grass.n) red.al) in EL, uses both of these operators.

3 Unscoped logical form

ULFs are type-coherent initial LFs which provide a stepping stone to capturing full sentential EL. mean-
ings. They enable interesting classes of structural inferences that are of broader scope than those enabled
by Natural Logic (NLog) (Sanchez Valencia, |1995), and unlike NLog inferences do not depend on prior
knowledge of the propositions to be confirmed or refuted. ULF captures the full predicate argument
structure of EL while leaving word sense, scope, and anaphora unresolved. Therefore, ULFs can be
analyzed using the formal EL type system while taking the scopal ambiguities into account. There is not
enough space here to exhaustively discuss how ULF handles various phenomena, so the discussion will
be restricted to the broad framework of ULF and the most crucial aspects of the semantics. Please refer
tohttp://cs.rochester.edu/u/gkim21/ulf/|for complete information on ULF.

3.1 ULF Syntax

All atoms in ULF, with the exception of certain logical functions and syntactic macros, are marked with
an atomic syntactic type. The atomic syntactic types are written with suffixed tags: .v,.n,.a,.p,
.pro, .d, .aux-v, .aux-s, .adv-a, .adv-e, .adv-s, .adv-f, .cc, .ps, .pq, .mod-n, or .mod-a, ex-
cept for names, which use wrapped bars, e.g. |John|. These are intended to echo the part-of-speech
origins of the constituents, such as verb, noun, adjective, preposition, pronoun, determiner, etc., re-
spectively; some of them contain further specifications as relevant to their entailments, e.g., .adv-e for
locative or temporal adverbs (implying properties of events). The distinctions among predicates of sorts
.v,.n,.a, .p, corresponding to English parts of speech, are often suppressed in other LFs for language,
but are semantically important. For example, “Bob danced" can refer to a brief episode while “Jill was
a dancer"” generally cannot (and may suggest Jill is no longer alive); this is related to the fact that verbal
predicates are typically “stage-level" (episodic) while nominal predicates are generally “individual-level"
(enduring). Whereas in EL the bracket type specifies whether prefix or infix notation is being used, in
ULF this distinction is inferred from the semantic types of the constituents and only parentheses are used.

'Some predicates allow for a monadic predicate complement such as look in “They look happy”.

http://cs.rochester.edu/u/gkim21/ulf/

(1) Could you dial for me?

(((pres could.aux-v) you.pro (dial.v {ref1}.pro (adv-a (for.p me.pro)))) ?)
(2) If I were you I would be able to succeed.

((if.ps (i.pro ((cf were.v) (= you.pro))))

(i.pro ((cf will.aux-s) (be.v (able.a (to succeed.v))))))

(3) Flowers are weak creatures
((k (plur flower.n)) ((pres be.v) (weak.a (plur creature.n))))

(4) Very few people still debate the fact that the earth is heating up
(((fquan (very.mod-a few.a)) (plur person.n))
(still.adv-s (debate.v
(the.d (n+preds fact.n (= (that ((the.d [Earth]|.n)

((pres prog) heat_up.v))))))))

Figure 2: Example sentences with corresponding raw ULF annotations. Examplesandare from the Tatoeba
database, [(3)|is from The Little Prince, and[(4)]is from the Web. Strictly speaking, weak . a in[(3)]is actually missing
a type-shifting operator mod-n, a simplification discussed in Section Ef}

Atoms that are implicit in the sentence or elided and thus supplied by the annotator are wrapped in curly
brackets, such as {ref}.pro in example [(T)] of Figure[2]

For practical purposes we distinguish raw ULF from postprocessed ULF. In raw ULF we allow cer-
tain argument-taking constituents to be dislocated from their “proper" place, so as to adhere more closely
to linguistic surface structure and thereby facilitate annotation. For example, sentence-level operators (of
type adv-s) appearing mid-sentence may be left “floating” (e.g., (|Alice| certainly.adv-s ((pres
know.v) |Bob]|))), since they can be automatically lifted to the sentence-level; and verb-level adverbs
(of type adv-a) can be interleaved with arguments (e.g., ((past speak.v) sternly.adv-a (to.p-arg
[Bob|))), even though semantically they operate on the whole verb phrase. Kim and Schubert (2017)
presented this method of dislocated annotation for sentence-level operators. In postprocessed ULF, we
can understand all atoms and subexpressions of well-formed formulas (wffs) as being one of the follow-
ing ULF constituent types (modulo some following remarks):

entity, predicate, determiner, monadic predicate modifier, sentence, sentence modifier,

connective, lambda abstract, or one of a limited number of type-shifting operators,
where the predicates and operators that act on predicates are subcategorized by whether the predicate is
derived from a noun, verb, adjective, or preposition. These constituent types uniquely map to particular
semantic types, i.e., are aliases for the formal types. Clausal constituents are combined according to their
bracketing and semantic types.

A qualification of the above general claim is that unscoped tense operators, determiners, and coor-
dinators remain in their surface position even in postprocessed ULF. For example, in (|Bob| ((pres
own.v) (a.d dog.n))), pres is actually an unscoped sentence-level operator (which, in conversion
to EL, is deindexed to yield a characterization of an episode by the sentence, and a temporal predi-
cation about that episode). We also retain coordinated expressions such as ((in.p |Rome]|) and.cc
happy . a), where this will ultimately lead to a sentential conjunction in EL. Similarly, (a.d dog.n) is
kept in argument position as if it were of semantic type D (thus, as if the determiner were of seman-
tic type N — Q))E] Such unscoped constituents do not disrupt type coherence, because the possible
conversions to type-coherent EL are well-defined.

Finally, both raw ULFs and postprocessed ULFs can contain macros. For example, the macro op-
erator n+preds is used for postmodified nominal predicates such as (n+preds dog.n (on.p (a.d
leash.n))) — see also example in Figure [2} this avoids immediate introduction of a A-abstracted
conjunction of predicates, simplifying the annotation task. Appendix [C]discusses macros further, includ-
ing their formal definitions. Section] will ground the high-level discussions in this and the following
section with a concrete discussion of modifiers.

2The actual semantic type of determiners in EL, after lambda-abstraction of the restrictor and matrix formula, is Al —
(N — (8§ —2)). See Appendixfor full details.

3.2 ULF Type Structure

The type-shifting operators mentioned in the previous section are crucial for type coherence in ULFs.
In example the phrase “for me” is coded as (adv-a (for.p me.pro)), rather than simply (for.p
me.pro) because it is functioning as a predicate modifier, semantically operating on the verbal predicate
(dial.v {ref1}.pro) (dial a certain thing). Let Nap;, Ny, and Ay be the sortal refinements of the
monadic predicate type A corresponding to adjectives, nouns, and verbs, respectively. (adv-a (for.p
me.pro)) has type Ay — Ay . Without the adv-a operator the prepositional phrase is just a 1-place pred-
icate. Its use as a predicate is apparent in contexts like “This puppy is for me". Note that semantically the
1-place predicate (for.p me.pro) is formed by applying the 2-place predicate for . p to the (individual-
denoting) term me. pro. If we apply (for.p me.pro) to another argument, such as | Snoopy| (the name
of a puppy), we obtain a sentence intensionE] So semantically, adv-a is a type-shifting operator of type
A — (A — AQ).

This brings up the issue of intensionality, which is preserved in ULF. Example [2)]is a counterfactual
conditional, and the consequent clause “I would be able to succeed" is not evaluated in the actual world,
but in a possible world where the (patently false) antecedent is imagined to be true. ULF captures this
with the ‘cf’ operator in place of the tense and the EL formulas derived from it are evaluated with
respect to possible situations (episodes), whose maxima are possible worlds. The type of ‘cf’ is (§ —
2) — (S5 — 2) after operator scoping to the sentence-level, but like tense operators is kept with the verb
in raw ULF, essentially functioning as a predicate-level identity function, (AX.X), there.

‘to’ in[(2)] ‘k” in[(3)} and ‘that’ in [(4)| are all operators that reify different semantic categories,
shifting them to abstract individuals. ‘to’ (synonym: ka) shifts a verbal predicate to a kind (type) of
action or attribute, Ny — Ku; ‘k’ shifts a nominal predicate to a kind of thing, Ay — X (so the subject
in example is the abstract kind, flowers, whose instances consist of sets of flowers); and ‘that’
produces a reified proposition, (S — 2) — P (again an abstract individual) from a sentence meaning.
Using these type shifts, EL and ULF are able to maintain a simple, classical view of predication, while
allowing greater expressivity than the most widely employed LFs.

3.3 Role of ULF in Comprehensive Semantic Interpretation

ULFs are underspecified, but their surface-like form and the type structure they encode make them well-
suited to reducing underspecification by using well-established linguistic principles and exploiting the
distributional properties of language. Figure [1| shows the interpretation process for EL formulas and
the role of ULFs in providing the first step into it. Due to the structural dependencies between the
components in the interpretation process, the optimal choice at any given component depends on the
overall coherence of the final interpretation; hence the backward arrows in the figure. Word sense dis-
ambiguation (WSD) and anaphora have no structural dependencies in the interpretation process so they
are separated from and fully connected to the post-ULF components. These resolutions are depicted in
the last step in the figure.

WSD & Anaphora: While (weak.a (plur creature.n)) in example[(3)|does not specify which of the
dozen WordNet senses of weak or three senses of creature is intended here, the type structure is perfectly
clear: A predicate modifier is being applied to a nominal predicate. ULF also does not assume unique
adicity of word-derived predicates such as run.v, since such predicates can have intransitive, simple
transitive and other variants, but the adicity of a predicate in ULF is always clear from its structural
context — we know that it has all its arguments in place when an argument (the “subject") is placed on its
left, as in English.

Linguistic constraints (e.g. binding constraints) exist for coreference resolution. For example, in
“John said that he was robbed", he can refer to John; but this is not possible in “He said that John was
robbed", because in the latter, he C-commands John, i.e., in the phrase structure of the sentence, it is a
sibling of an ancestor of John. ULF preserves this structure, allowing use of such constraints. While ULF

3(for.p me.pro) has type D — (S — 2) and |Snoopy| has type D, so (|Snoopy| (for.p me.pro)) has a type that
resolves to § — 2 (i.e. a sentence intension).

constrains the word senses and coreferences through adicity and syntactic structure, WSD and anaphora
resolution should not be applied to isolated sentences since word sense patterns and coreference chains
often span multiple sentences.

Scoping: Unscoped constituents (determiners, tense operators, and coordinators) can generally “float”
to more than one possible position. Following a view of scope ambiguity developed by |Schubert and Pel-
letier) (1982) elaborated by Hurum and Schubert| (1986)), these constituents always float to pre-sentential
positions, and determiner phrases leave behind a variable that is then bound at the sentential level. The
accessible positions are constrained by linguistic restrictions, such as scope island constraints in subor-
dinate clauses (Ruys and Winter, 2010). Beyond this, many factors influence preferred scoping possi-
bilities, with surface form playing a prominent role (Manshadi et al., 2013). The proximity of ULF to
surface syntax enables the use of these constraints.

Deindexing and Canonicalization: Much of the past work relating to EL has been concerned with
the principles of deindexing (Hwangl [1992; Hwang and Schubert, |1994; Schubert and Hwang, [2000).
Deindexing corresponds to the introduction of event variables for explicitly characterizing the sentence it
is linked to via the ‘**’ operator (this variable becomes |E]| . sk in Figure after Skolemization). Hwang
and Schubert’s approach to tense-aspect processing, constructing tense trees for temporally relating event
variables, is only possible if the LF being processed reflects the original clausal structure — as ULF indeed
does. Canonicalization is the mapping of an LF into “minimal”, distinct propositions, with top-level
Skolemization. The CLF step in Figure [I] contains two separate formulas as a result of this process.

Episodic Logical Forms (ELF): When episodes have been made explicit and all anaphoric and word
ambiguities are resolved the result is a set of episodic logical forms. These can be used in the EPILOG in-
ference engine for reasoning that combines linguistic semantic content with world knowledgeﬂ A variety
of complex EPILOG inferences are reported by [Schubert| (2013)), and Morbini and Schubert (2011)) give
examples of self-aware metareasoning. EPILOG also reasoned about snippets from the Little Red Riding
Hood story, for example using knowledge about the world and goal-oriented behavior to understand why
the presence of nearby woodcutters prevented the wolf from attacking Little Red Riding Hood when he
first saw her (Hwang, |1992; |Schubert and Hwang, [2000).

3.4 Inference with ULFs

An important insight of NLog research is that language can be used directly for inference, requiring
only phrase structure analysis and upward/downward entailment marking (polarity) of phrasal contexts.
This means that NLog inferences are situated inferences, i.e., their meaning is just as dependent on the
utterance setting and discourse state as the linguistic “input” that drives them. This insight carries over
to ULFs, and provides a separate justification for computing ULFs, apart from their utility in the process
of deriving EL interpretations from language. The semantic type structure encoded by ULFs provides
a more reliable and general basis for situated inference than mere phrase structure. Here, briefly, are
some kinds of inferences we can expect ULFs to support with minimal additional knowledge due to their
structural nature:

* NLog inferences based on generalizations/specializations. For example, “Every NATO member
sent troops to Afghanistan”, together with the knowledge that France is a NATO member and that
Afghanistan is a country entails that France sent troops to Afghanistan and that France sent troops
to a country.

* Inferences based on implicatives. For example, “She managed to quit smoking" entails that She
quit smoking (and the negation of the premise leads to the opposite conclusion). Inferences of this
sort have been demonstrated for headlines using ELFs by |Stratos et al.|(2011).

* Inferences based on attitudinal and communicative verbs. For example, “John denounced Bill as
a charlatan” entails that John probably believes that Bill is a charlatan, that John asserted to his

4EPILOG is competitive against state-of-the-art FOL theorem provers (Morbini and Schubert, [2009).

listeners (or readers) that Bill is a charlatan, and that John wanted his listeners (or readers) to
believe that Bill is a charlatan. These inferences would be hard to capture within NLog, since they
are partially probabilistic, require structural elaboration, and depend on constituent types.

* Inferences based on counterfactuals. For example, “If I were rich, I would pay off your debt" and
“I wish I were rich" both implicate that the speaker is not rich. This depends on recognition of the
counterfactual form, which is distinguished in ULF.

o Inferences from questions and requests. For example, “When are you getting married?" enables
the inferences that the addressee will get married (in the foreseeable future), that the questioner
wants to know the expected date of the event, and that the addressee probably knows the answer
and will supply it. Similarly an apparent request such as “Could you close the door?" implies that
the speaker wants the addressee to close the door, and expects that he or she will do so.

4 Predicate and Sentence Modification in Depth

Here we ground the general description of ULF given so far with an in-depth discussion of how ULF
handles modification. This is done with the purpose of demonstrating how the core syntax of ULF, its
syntactic looseness, and semantic types fit together in practice. EL semantic types represent predicate
modifiers as functions from monadic intensional predicates to monadic intensional predicates, i.e., A —
A, which enables handling of intersective, subsective, and intensional modifiers such as in the examples

((mod-n wooden.a) shoe.n), ((mod-n ice.n) pick.n), (fake.mod-n ruby.n),

((mod-a worldly.a) wise.a), (very.mod-a fit.a), (slyly.adv-a grin.v).
Modifier extensions .mod-n, and .mod-a respectively reflect the linguistic categories of noun-
premodifying (attributive) adjectives and adjective-premodifying adverbs; correspondingly, operators
mod-n, and mod-a type-shift prenominal predicates to modifiers applicable to predicates of sorts . n and
.a respectively. Modifier extension .adv-a reflects the linguistic category of VP adverbials, and oper-
ator adv-a creates such modifiers from predicates. Thus, “walk with Bob" is represented in raw and
postprocessed ULF respectively as

(walk.v (adv-a (with.p |Bob]))) and ((adv-a (with.p [Bob]|)) walk.v).
Adverbial modifiers of the sort .adv-a intuitively modify actions, experiences, or attributes, as distinct
from events. Thus “He lifted the child easily" refers to an action that was easy for the agent, rather than
to an easy event. Actions, experiences, and attributes in EL are individuals comprised of agent-episode
pairs, and this allows modifiers of the sort .adv-a to express a constraint on both the agent and the
episode it characterizes. As such, actions are not explicitly represented in ULF but rather derived during
deindexing when event variables are introduced.

A formula or nonatomic verbal predicate in ULF may contain sentential modifiers of type (5§ — 2) —
(§ —2): .adv-s, .adv-e, and .adv-f. Again there are type-shifting operators that create these sorts of
modifiers from monadic predicates. Ones of the sort . adv-s are usually modal (and thus opaque), e.g.,

perhaps.adv-s, (adv-s (without.p (a.d doubt.n)));
However, negation is transparent in the usual sense — the truth value of a negated sentence depends only
of the truth value of the unnegated sentence. Modifiers of sort . adv-e are transparent, typically implying
temporal or locative constraints, e.g.,

today.adv-e, (adv-e (during.p (the.d drought.n))), (adv-e (in.p |Romel|));
these constraints are ultimately cashed out as predications about episodes characterized by the sentence
being modified. (This is also true for the past and pres tense operators.) Similarly any modifier of
sort .adv-f is transparent and implies the existence of a multi-episode (characterized by the sentence
as a whole) whose temporally disjoint parts each have the same characterization (Hwang and Schubert,
1994); e.g.,

regularly.adv-f, (adv-f (at.p (three.d (plur time.n))));
The earlier walk with Bob example shows how in ULF the operator and operand can be inferred from the
constituent types. Consider the types for play.v and (adv-a (with.p (the.d dog.n))). Since they

have types Ay and Ay — Ay, respectively, we can be certain that (adv-a (with.p (the.d dog.n)))
is the operator while play.v is the operand.

In practice, we’re able to drop the mod-a, mod-n, and nnp type-shifters during annotation since we
can post-process them with the appropriate type-shifter to make the composition valid. We assume in
these cases that the prefixed predicate is intended as the operator, which reflects a common pattern in
English. Thus, “burning hot melting pot” would be hand annotated as

((burning.a hot.a) (melting.n pot.n))
which would be post-processed to

((mod-n ((mod-a burning.a) hot.a)) ((mod-n melting.n) pot.n))

While the prefixed predicate modification allows us to formally model non-intersective modification,
there are modification patterns in English that force an intersective interpretation, e.g., post-nominal
modification and appositives, and we annotate them accordingly. “The buildings in the city” is annotated

(the.d (ntpreds (plur building.n) (in.p (the.d city.n))))
which is equivalent (via the n+preds macro) to

(the.d (Ax ((x (plur building.n)) and.cc (x (in.p (the.d city.n)))))).

5 Annotating a ULF Corpus

The syntactic relaxations in ULF and the annotation environment work hand-in-hand to enable quick
and consistent annotations. ULF syntax relaxations are designed to: (1) Preserve surface word order
and (2) Make the annotations match linguistic intuitions more closely. As a result, annotating a sentence
with its ULF interpretation boils down to marking the words with their semantic types, bracketing the
sentence according to the operator-operand relations, then introducing macros and logical operators as
necessary to make the ULF type-consistent. The annotation environment is designed to assist in this
process by improving the readability of long ULFs and catching mistakes that are easy to miss. The
environment is shared across annotators with certainty marking so that more experienced annotators can
correct and give feedback to trainees. This streamlines the training process and minimizes the mistakes
entering into the corpus. Here are the core annotator featuresE]

1. Syntax and bracket highlighting. Highlights the cursor location and the closing bracket, un-
matched brackets and quotes, operator keywords, and badly placed operators.

2. Sanity checker. Alerts the annotator to invalid type compositions and suggests corrections for
common mistakes.

3. Certainty marking. Annotators can mark whether they are certain of an annotation’s correctness
so that partial progress can be made while preserving the integrity of the corpus.

4. Sentence-specific comments. Annotators can record their thoughts on partially complete annota-
tions so that others can pick up where they left off.

The ULF type system makes it possible to build a robust sanity checker for the annotator. The type
system severely restricts the space of valid ULF formulas and usually when an annotator makes an error
in annotation, it leads to a type inconsistency.

6 Experimental Results and Current Progress

We ran a timing study and an interannotator agreement (IA) study to quantify the efficacy of the presented
annotation framework. We timed 80 annotations of the Tatoeba dataset and found the average annotation
speed to be 8 min/sent with 4 min/sent among the two experts and 11 min/sent among the three trainees
that participated. AMRs reportedly took on average 10 min/sent (Hermjakob) [2013)). In the IA study five

5The annotator can be accessed from the ULF project website and a screenshot of it is in Appendix@

annotators each annotated between 18 and 23 sentences from the same set of 23 sentences, marking their
certainty of the annotations as they normally would. The sentences were sampled from the four datasets
listed in Table|l] The mean and standard deviation of sentence length were 15.3 words and 10.8 words,
respectively.

We computed a similarity score between two anno-
tations using EL-smatch (Kim and Schubert, 2016)), a
generalization of smatch (Cai and Knight, [2013)) which
handles non-atomic operators. The document-level EL-
smatch score between all annotated sentence pairs was
0.70. When we restricted the analysis to just annotations
that were marked certain, the agreement rose to 0.78. The
complete pairwise scores are shown in Table [2] Notice
that annotators 1, 2, and 3 had very high agreement with Eaéoeba ?33 gg 24 896 12;9
each other. If we restrict the agreement to just those three uucQce | 179 [s0 o |0 | 229
annotators, the full and certain-subset scores are 0.79 and | pg 113 1so 117 lo |189
0.88, respectively. Out of all the annotations, less than a | Total 927 | 212 |45 |396 | 1580
third were marked as uncertain or incomplete. AMR an-
notations reportedly have annotator vs consensus IA of 0.83 for newswire and 0.79 for web text (I'sialos,
2013).

This study also demonstrates that the certainty
marking indeed reflects the quality of the annotation,
thus performing the role we intended. Also, based
on the high agreement between annotators 1, 2, and
3, we can conclude that consistent ULF annotations
across multiple annotators is possible. However, the
lower scores of annotators 4 and 5, even in annotations
marked as certain, indicates room for improvement in
the annotation guidelines and training of some anno-
tators.

We have so far collected 927 certain annotations and have 1,580 in total. The full annotation break-
down is in Table[I] We started with the English portion of the Tatoeba dataset (https://tatoeba.org/
eng/), a crowd-sourced translation dataset. This source tends to have shorter sentences, but they are more
varied in topic and form. We then added text from Project Gutenberg (http://gutenberg.org), the
UIUC Question Classification dataset (Li and Roth, 2002), and the Discourse Graphbank (Wolf} [2005]).
Preliminary parsing experiments on a small dataset (900 sentences) show promising results and we ex-
pect to be able to build an accurate parser with a moderately-sized dataset and representation-specific
engineering (Kim), 2019).

Table 1: Current sentence annotation counts
broken down by dataset and certainty. DG and
PG are the Discourse Graphbank and Project
Gutenberg, respectively. The Old column anno-
tations are from before we added the certainty
feature.

Cert. | Unc. | Inc. | Old | All

Table 2: Pairwise IA scores, where the left score is
over all annotations and the right score is only over
annotations marked as certain.

2 3 4 5

0.80/0.88 | 0.79/0.89 | 0.69/0.77 | 0.63/0.75
- 0.77/0.86 | 0.72/0.77 | 0.62/0.75
- - 0.69/0.75 | 0.63/0.73
- - - 0.62/0.71

EENEOSIE ol

7 Related Work

A notable development in general representations of semantic content has been the design of AMR (Ba-
narescu et al., [2013) followed by numerous research studies on generating AMR from English and on
using it for downstream tasks. AMR is intended as a kind of intuitive normal form for the relational
context of English sentences in order to assist in machine translation. Given this goal, AMR deliberately
neglected issues such as articles, tense, the distinction between real and hypothetical entities, and non-
intersective modification. In the context of inference, this risks making false conclusions such as that a
“big ant” is bigger than a “small elephant”.

Still, this development was an inspiration to us in terms of both the quest for broad coverage and
methods of learning and evaluating semantic parsers. There has also been much activity in developing
semantic parsers that derive logical representations, raising the possibility of making inferences with
those representations (Artzi et al., |2015; |Artzi and Zettlemoyer, 2013} |[Howard et al., 2014; Kate and

https://tatoeba.org/eng/
https://tatoeba.org/eng/
http://gutenberg.org

Mooney, 2006; [Konstas et al., [2017; [Kwiatkowski et al., [2011}; [Liang et al., |2011}; [Poon, |2013}; [Popescu
et al., 2004; [Tellex et al 2011)). The techniques and formalisms employed are interesting (e.g., learn-
ing of CCG grammars that generate A-calculus expressions), but the targeted tasks have generally been
question-answering in domains consisting of numerous monadic and dyadic ground facts (“triples"), or
simple robotic or human action descriptionsE]

Noteworthy examples of formal logic-based approaches, not targeting specific applications are
Bos’ (2008)) and Draiccio et al.’s (2013)), whose hand-built semantic parsers respectively generate FOL
formulas and OWL-DL expressions. But these representations preclude generalized quantifiers, modifi-
cation, reification, attitudes, etc. Manshadi and Allen|(2012)) presented an intuitive graphical representa-
tion, like AMR, but allowing for modals, generalized quantifiers, etc., and not attempting to canonicalize
meanings in the way AMR does. The difference from ULF is that it focuses on binary structural relations
such as restrictor, body, or modifier between semantic components, rather than operator-operand type
structure. It is not directly intended for inference, but readily lends itself to incremental disambiguation.
We are not aware of any work on inference generation of the type ULFs targets, based on these projects.

A couple of yet-unmentioned but notable semantic annotation projects are the Groningen Mean-
ing Bank (Bos et al., 2017), with discourse representation structure (DRS) annotations (Kamp), [1981)
and the Redwoods treebank (Flickinger et al., [2012; |Oepen et al., 2002) with Minimal Recursion Se-
mantics (MRS) (Copestake et al.l 2005) annotations. DRSs have the same representational limitations
as Bos’ (2008) system. MRS is descriptively powerful and linguistically motivated, with significant
resources including a hand-built grammar, multiple parsers, and a large annotated dataset (Bub et al.,
1997; |Callmeier} 2001). Given that MRS and Manshadi and Allen’s graphical representation are object-
language agnostic, meta-level semantic representations, inference systems cannot be built directly for
them based on model-theoretic notions of interpretation, truth, satisfaction, and entailment. However,
the lack of an object-language leaves open the possibility of forming a correspondence between these
representations and ULF that fully respects both formalisms. Finally, the use of unscoped LFs in a rule-
to-rule framework was first introduced by |Schubert and Pelletier; (1982) and a similar approach to scope
ambiguity was taken by the Core Language Engine (Alshawi and van Eijck, [1989).

8 Conclusion & Future Work

ULEF, the underspecified initial representation for EL described in this document, captures a subset of the
semantic information of EL that allows it to be annotated reliably, participate in the complete resolution
to EL, and form the basis for structural inferences that are important for language understanding tasks.
We will continue this work by expanding the corpus of ULF annotations and training a statistical parser
over that corpus. Automatic ULF parses could then be used as the backbone for a complete EL parser
or as the core representation for NLP tasks that require sentence-level formal semantic information or
structural inferences.

9 Acknowledgements

We would like to thank Burkay Donderici, Benjamin Kane, Lane Lawley, Tianyi Ma, Graeme McGuire,
Muskaan Mendriatta, Akihiro Minami, Georgiy Platonov, Sophie Sackstein, and Siddharth Vashishta for
raising thoughtful questions in the development of this work. We are grateful to the anonymous reviewers
for their helpful feedback. This work was supported by DARPA CwC subcontract W911NF-15-1-0542.

SFor example, Ross et al|(2018) develop a CCG-based semantic parser for action annotations in videos, representing
sentences in an approximate way—neglecting determiners and treating all entity references as variables.

References

Alshawi, H. and J. van Eijck (1989, June). Logical forms in the core language engine. In Proceed-
ings of the 27th Annual Meeting of the Association for Computational Linguistics, Vancouver, British
Columbia, Canada, pp. 25-32. Association for Computational Linguistics.

Artzi, Y., K. Lee, and L. Zettlemoyer (2015, September). Broad-coverage CCG semantic parsing with
AMR. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
Lisbon, Portugal, pp. 1699-1710. Association for Computational Linguistics.

Artzi, Y. and L. Zettlemoyer (2013). Weakly supervised learning of semantic parsers for mapping in-
structions to actions. Transactions of the Association for Computational Linguistics 1(1), 49-62.

Banarescu, L., C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight, P. Koehn,
M. Palmer, and N. Schneider (2013, August). Abstract Meaning Representation for sembanking.
In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, Sofia,
Bulgaria, pp. 178-186. Association for Computational Linguistics.

Barwise, J. and R. Cooper (1981). Generalized quantifiers and natural language. In Philosophy, language,
and artificial intelligence, pp. 241-301. Springer.

Bos, J. (2008). Wide-coverage semantic analysis with Boxer. In Proceedings of the 2008 Conference
on Semantics in Text Processing, STEP ’08, Stroudsburg, PA, USA, pp. 277-286. Association for
Computational Linguistics.

Bos, J., V. Basile, K. Evang, N. Venhuizen, and J. Bjerva (2017). The Groningen Meaning Bank. In N. Ide
and J. Pustejovsky (Eds.), Handbook of Linguistic Annotation, Volume 2, pp. 463—496. Springer.

Bub, T., W. Wahlster, and A. Waibel (1997, Apr). Verbmobil: the combination of deep and shallow
processing for spontaneous speech translation. In /997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Volume 1, pp. 71-74 vol.1.

Cai, S. and K. Knight (2013, August). Smatch: an evaluation metric for semantic feature structures. In
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Sofia, Bulgaria, pp. 748—752. Association for Computational Linguistics.

Callmeier, U. (2001). Efficient parsing with large-scale unification grammars. Master’s thesis, Univer-
sitdt des Saarlandes, Saarbriicken, Germany.

Copestake, A., D. Flickinger, C. Pollard, and I. A. Sag (2005). Minimal Recursion Semantics: An
introduction. Research on Language and Computation 3(2), 281-332.

Davidson, D. (1967). The logical form of action sentences. In N. Rescher (Ed.), The Logic of Decision
and Action. University of Pittsburgh Press.

Draicchio, F., A. Gangemi, V. Presutti, and A. Nuzzolese (2013). FRED: From natural language text to
rdf and owl in one click. In P. Cimiano et al. (eds.) , ESWC 2013, pp. 263—-267. Springer.

Flickinger, D., Y. Zhang, and V. Kordoni (2012). DeepBank: A dynamically annotated treebank of
the wall street journal. In Proceedings of the Eleventh International Workshop on Treebanks and
Linguistic Theories, pp. 85-96. EdiAgAtes Colibri.

Hermjakob, U. (2013). AMR Editor: A tool to build abstract meaning representations.

Howard, T. M., S. Tellex, and N. Roy (2014). A natural language planner interface for mobile manipu-
lators. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6652—6659.

Hurum, S. and L. Schubert (1986, May). Two types of quantifier scoping. In Proc. 6th Can. Conf. on
Artificial Intelligence (AI-86), Montreal, Canada, pp. 19-43.

Hwang, C. and L. Schubert (1993). Episodic Logic: A situational logic for natural language processing.
In P. Aczel, D. Israel, Y. Katagiri, and S. Peters (Eds.), Situation Theory and its Applications 3 (STA-3),
pp. 307-452. CSLI.

Hwang, C. H. (1992). A logical approach to narrative understanding. Ph. D. thesis, University of
Alberta.

Hwang, C. H. and L. K. Schubert (1994). Interpreting tense, aspect and time adverbials: A compositional,
unified approach. In Proceedings of the First International Conference on Temporal Logic, ICTL *94,
London, UK, pp. 238-264. Springer-Verlag.

Kamp, H. (1981). A theory of truth and semantic representation. In J. A. G. Groenendijk, T. M. V.
Janssen, and M. B. J. Stokhof (Eds.), Formal Methods in the Study of Language, Volume 1, pp. 277-
322. Amsterdam: Mathematisch Centrum.

Kate, R. J. and R. J. Mooney (2006, July). Using string-kernels for learning semantic parsers. In Pro-
ceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting
of the Association for Computational Linguistics, Sydney, Australia, pp. 913-920. Association for
Computational Linguistics.

Kim, G. and L. Schubert (2016, August). High-fidelity lexical axiom construction from verb glosses. In
Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, Berlin, Germany,
pp. 34—44. Association for Computational Linguistics.

Kim, G. and L. Schubert (2017, April). Intension, attitude, and tense annotation in a high-fidelity se-
mantic representation. In Proceedings of the Workshop Computational Semantics Beyond Events and
Roles, Valencia, Spain, pp. 10-15. Association for Computational Linguistics.

Kim, G. L. (2019). Towards parsing unscoped episodic logical forms with a cache transition parser. In
the Poster Abstracts of the Proceedings of the 32nd International Conference of the Florida Artificial
Intelligence Research Society.

Konstas, 1., S. Iyer, M. Yatskar, Y. Choi, and L. Zettlemoyer (2017, July). Neural AMR: Sequence-
to-sequence models for parsing and generation. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada, pp. 146—
157. Association for Computational Linguistics.

Kwiatkowski, T., L. Zettlemoyer, S. Goldwater, and M. Steedman (2011, July). Lexical generalization in
CCG grammar induction for semantic parsing. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, Edinburgh, Scotland, UK., pp. 1512-1523. Association for
Computational Linguistics.

Li, X. and D. Roth (2002). Learning question classifiers. In Proceedings of the 19th International
Conference on Computational Linguistics - Volume I, COLING ’02, Stroudsburg, PA, USA, pp. 1-7.
Association for Computational Linguistics.

Liang, P, M. Jordan, and D. Klein (2011, June). Learning dependency-based compositional semantics.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu-
man Language Technologies, Portland, Oregon, USA, pp. 590-599. Association for Computational
Linguistics.

Manshadi, M. and J. Allen (2012, May). A universal representation for shallow and deep semantics. In
Joint ISA-7 Workshop on Interoperable Semantic Annotation SRSL-3 Workshop on Semantic Repre-
sentation for Spoken Language I2MRT Workshop on Multimodal Resources and Tools, pp. 52.

Manshadi, M., D. Gildea, and J. Allen (2013, August). Plurality, negation, and quantification:towards
comprehensive quantifier scope disambiguation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Sofia, Bulgaria, pp. 64—72. As-
sociation for Computational Linguistics.

Montague, R. (1973). The proper treatment of quantification in ordinary English. In K. J. J. Hintikka,
J. Moravcsic, and P. Suppes (Eds.), Approaches to Natural Language: Proceedings of the 1970 Stan-
ford Workshop on Grammar and Semantics, pp. 221-242. Dordrecht: Reidel.

Morbini, F. and L. Schubert (2009, June). Evaluation of Epilog: A reasoner for Episodic Logic. In
Proceedings of the Ninth International Symposium on Logical Formalizations of Commonsense Rea-
soning, Toronto, Canada.

Morbini, F. and L. Schubert (2011, January). Metareasoning as an Integral Part of Commonsense and
Autocognitive Reasoning. In M. T. Cox and A. Raja (Eds.), Metareasoning: Thinking about thinking.
MIT Press.

Oepen, S., K. Toutanova, S. Shieber, C. Manning, D. Flickinger, and T. Brants (2002). The LinGo Red-
woods Treebank: Motivation and preliminary applications. In Proceedings of the 19th International
Conference on Computational Linguistics - Volume 2, COLING ’02, Stroudsburg, PA, USA, pp. 1-5.
Association for Computational Linguistics.

Poon, H. (2013, August). Grounded unsupervised semantic parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Sofia, Bulgaria,
pp- 933-943. Association for Computational Linguistics.

Popescu, A.-M., A. Armanasu, O. Etzioni, D. Ko, and A. Yates (2004). Modern natural language in-
terfaces to databases: Composing statistical parsing with semantic tractability. In Proceedings of the
20th International Conference on Computational Linguistics, COLING ’04, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ross, C., A. Barbu, Y. Berzak, B. Myanganbayar, and B. Katz (2018, October 31 - November 4). Ground-
ing language acquisition by training semantic parsers using captioned videos. In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), Brussels, Bel-
gium, pp. 2647-2656.

Ruys, E. and Y. Winter (2010). Quantifier scope in formal linguistics. In D. M. Gabbay and F. Guenthner
(Eds.), Handbook of Philosophical Logic, pp. 159-225. Springer, Dortrecht.

Séanchez Valencia, V. (1995). Natural logic: parsing driven inference. Linguistic Analysis 25, 258-285.

Schubert, L. (2013). NLog-like inference and commonsense reasoning. In A. Zaenen, V. de Paiva, and
C. Condoravdi (Eds.), Perspectives on Semantic Representations for Textual Inference, special issue
of Linguistic Issues in Language Technology (LiLT 9), Volume 9, pp. 1-26.

Schubert, L. (2014, June). From treebank parses to Episodic Logic and commonsense inference. In
Proceedings of the ACL 2014 Workshop on Semantic Parsing, Baltimore, MD, pp. 55-60. Association
for Computational Linguistics.

Schubert, L. and F. Pelletier (1982). From English to logic: Context-free computation of ’conventional’
logical translations. Am. J. of Computational Linguistics 8 [now Computational Linguistics] 8, 26—44.

Schubert, L. K. (2000). The situations we talk about. In J. Minker (Ed.), Logic-based Artificial Intelli-
gence, pp. 407-439. Norwell, MA, USA: Kluwer Academic Publishers.

Schubert, L. K. and C. H. Hwang (2000). Episodic Logic meets Little Red Riding Hood: A comprehen-
sive natural representation for language understanding. In L. M. Iwarska and S. C. Shapiro (Eds.),
Natural Language Processing and Knowledge Representation, pp. 111-174. Cambridge, MA, USA:
MIT Press.

Stratos, K., L. K. Schubert, and J. Gordon (2011). Episodic Logic: Natural Logic + reasoning. In
Proceedings of the International Conference on Knowledge Engineering and Ontology Development
(KEOD).

Tellex, S., T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy (2011). Understanding
natural language commands for robotic navigation and mobile manipulation. In AAAI Conference on
Artificial Intelligence.

Tsialos, A. (2015, March). Abstract meaning representation for sembanking. Available at www.inf.ed.
ac.uk/teaching/courses/tnlp/2014/Aristeidis. pdf, accessed December 8, 2018.

Wolf, F. (2005). Coherence in natural language : data structures and applications. Ph. D. thesis,
Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences.

A Quantifier Semantics

Noun phrases can occur in any position here an individual variable or constant can occur, and in post-
processing are replaced by bound variables. Therefore the positional types of noun phrases are individu-
als, D. Therefore, we can treat determiners such as every.d in ULF as if they were of type (A_ — D, i.e.
a function from a predicate to an individual. For example consider the ULF formula ((every.d dog.n)
(pres run.v)). (every.d dog.n) seems to be able to occur in any place that | John| and they.pro

can occur.
((every.d dog.n) (pres run.v)), (i.pro ((pres like.v) (every.d dog.n))),

(|John| (pres run.v)), (i.pro ((pres like.v) |John])),
(they.pro (pres run.v)); (i.pro ((pres like.v) they.pro));

Semantically we consider they.pro and them.pro to be the same, as they only differ in syntactic posi-
tion. Then since dog.n (and any other argument of a determiner) is a monadic predicate, we can infer
that the positional type of determiners is A’ — 2. This will be transformed after scoping into a formula
of the form (dv : ¢ y), where 3 is the determiner, and ¢ and y correspond to the formulas resulting from
substituting the scoped variable into the restrictor and matrix predicates, respectively. These formulas are
interpreted in EL via satisfaction conditions over the quantified variable and two formulas (a restrictor
formula and the nuclear scope), e.g., for an sentence such as “Most car crashes are due to driver error”,

(most v: ¢ y)MU = [iff

for most d € D for which ¢M W — | yM Ut — |

where Mis the model, Uis the variable assignment function, and U,.; is the same as U except that its
value for variable v is d. When this formula is evaluated with respect to an episode, it corresponds to a
formula of the form

[(several v: ¢ y) 1],
where ‘x#’ is the operator relating a sentence to the episode it characterizes (describes as a whole),
which is discussed in Section[2l (3v : ¢ y) can equivalently be rewritten as (8 (Av ¢) (Av y)) and we can
define § as a second-order intensional predicate of type Al — A — S — 2 similar to the approach used
in generalized quantifier theory (Barwise and Cooper, [1981)).

B Episodic Operators

ek 9k and ‘@’ are episodic operators, which relate formulas to episode variables in Episodic Logic.
They do not appear in ULFs since ULFs do not have explicit episode variables. However, these operators

www.inf.ed.ac.uk/teaching/courses/tnlp/2014/Aristeidis.pdf
www.inf.ed.ac.uk/teaching/courses/tnlp/2014/Aristeidis.pdf

are foundational to Episodic Logic semantics in handling event structure and intensional semantics. All
formulas in EL. must be evaluated with respect to one of these operators to obtain a truth value since
sentence intensions in EL have the type § — 2.

o “¥*¥’ _the characterizing operator

“*% relates an episode variable to a formula that characterizes it. In other word, the formula describes
the episode as a whole, or the nature of the episode, rather than a tangential part or a temporal segment
of it. This, however, does not mean that the characterizing formula must describe every detail of the
episode. It can in fact be quite abstract. For instance, “John had a car accident” and “John hit some
black ice and his car skidded into a tree” might characterize the same event. As such, for most news
stories the headline and the first sentence of the article are likely to both characterize the same event
even though the headline is much shorter. Formally,

[0] Y = 1iff oMU (M Y) = 1;
[(not ¢) s n] MY = 1 iff M UM YU) = 0.

The semantic type of ¢ is S — 2 (a sentence intension) and the semantic type of 1M is S, a situation.
Therefore, 1 characterizes ¢ just in the case that the interpretation of ¢ with respect to the model M
and variable assignment function U evaluated over the interpretation of 1 with respect to M and U is
true.

e “¥’ _the truth operator

“*” relates an episode variable to a formula that is true in that episode. This is a weaker operator than
“*%** in that a formula that is ‘*’-related can be a just a segment or an incidental aspect of the episode
to be true. Therefore, [¢ ** 1] entails [¢0 = 1], but not the other way. Therefore, “There was black
ice on the road” and “John was driving” could both be ‘*’-related to the episode characterized by the
example given in for the ‘**’ operator. Formally,

[0 = n]MU = 1 iff there is an episode s = nMﬂ such that q)M‘”(s) =1.

Where C is an episode part-of relation. It’s formal definition is given by [Hwang and Schubert (1993).
Intuitively we can think of s = 1 to mean that s is a subepisode of 1.

* ‘@’ - the concurrent operator

‘@’ relates an episode variable to a formula characterizes another episode that runs concurrent with
it. So this operator can be rewritten in the following way. [¢ @ 1] entails and is entailed by (some e :
[e same-time M] [#= ¢]). Formally, @ us defined as

[0 @ n]™Y = 1 iff there is an episode s € § with time(s) = rime(m™ %) such that 6™ ¥(s) = 1.

C More About Macros

ULF macros are different syntactic rewriting operators to reduce the annotator burden of encoding com-
plex, but regular, semantic structures or avoid unnecessary word reordering. Table [3]lists the definitions
and simple examples of the basic ULF macros. The sub macro is the substitution macro which performs
a simple substitution of its first argument into the position of *h within the second argument. This is
used for topicalization, such as “Swiftly, the fox ran away”, which topicalizes “Swiftly” from the sen-
tence “The fox swiftly ran away”. The rep macro is the replace operator and the exact same as sub
with the arguments swapped and using *p instead of *h as the placeholder variable. This is used for
rightward-displaced clauses, such as, “A man answered the door with a white beard”, in which with a
white beard is really displaced from the expected post-nominal position, i.e “A man with a white beard

3

Table 3: List of basic rewriting macros in ULF. =, is the macro defining operator.

Name Definitions Example
sub (sub C S[*h]) =, S[*h<C] (sub A (B *h)) =,, (B A)
rep (rep S[*p] C) =, S[*p<C] (rep (A *p) B) =, (A B)
n+preds (ntpreds N P Py) =m (ntpreds dog.n red.a) =,
(Ax ((x N) and.cc (x Py) ... (x P (Ax ((x dog.n) and.cc (x red.a)))
(nptpreds NP Py ... P,) =, (nptpreds he.pro red.a) =,
np+preds (the.d (Ax ((x = NP) and.cc (the.d (Ax ((x = he.pro) and.cc
(x P1) ... (xPu)))) (x red.a))))
's ((NP ’s) N) =, (the.d ((poss-by NP) N)) (('(i;’:”('j (Zo;":i‘);) Tannly dog.n)

Next, n+preds and np+preds are macros for
handling post-nominal modification. n+preds
modifies a noun and returns a noun, whereas
np+preds modifies an entity and returns a mod-
ified entity. Intuitively, np+preds handles non-
restrictive modifiers, whereas n+preds handles
restrictive modifiers. This makes sense since the
modifying predicates in n+preds are added before
the determiner, thus introduced into the restrictor
of the quantification.

The ’s macro is for handling possession us-
ing an appended marker to the possessor just as
is done in English (e.g. “John’s dog”). For-
mally, this maps to a pre-modifying possession
relation. So “John’s dog” is hand-annotated as
((|John| ’s) dog.n), which expands out to
(the.d ((poss-by |John|) dog.n)). poss-by
is a binary predicate relating two entities, seman-
tic type D — (D — (5 — 2)). so (poss-by
| John|) resolves to semantic type of a predicate,
A’. Notice that this is a predicate-noun pair so

Episodic Logic Annotator ;‘j““”' EEET

-ount

Written by Gene Kim

Version 0.2.0

Resources: PDF Tutorial
Inference eval lists
Sentence (Sid: 737611) | prev
Why don't you give it to him?

Next

Annotation | expand all || Collapse all

Annotation Timestamp: 2018-06-23 20:28:29
User That Saved Annotation: muskaan
Annotation Certainty: uncertain

v Bracketing*
Why don't you give it to him?

v | Final Annotation

((sub why.adv-s
[((pres do.aux-s)
not.adv-s (give.v it.pro *h) (to.p-arg him.pro))) 7)

Run Sanity Checker
See Bracket Highlighting

Certainty* ' Certain
Comments

| don't know if | put *h in the right place.

Uncertain ' Incomplete/skipped

Save

as discussed in Section [] the mod-n type-shifter

is automatically introduced, resulting in (the.d Fjgure 3: Current ULF annotator state with example

((mod-n (poss-by |John|)) dog.n)).

D Additional Annotator Info

annotation process.

Here we reiterate the annotator features as described in Section [5] with reference to an image of it in

Figure[3]

1. Syntax and bracket highlighting. Highlights the cursor location and the closing bracket, un-
matched brackets and quotes, operator keywords, and badly placed operators. The “Final Anno-
tation” window in Figure [3] shows the cursor matching bracket in yellow-green highlighting, an
unmatched bracket in red, the sub macro in purple, and sentence-level operators in blue.

common mistakes.

Sanity checker. Alerts the annotator to invalid type compositions and suggests corrections for

Certainty marking. Annotators can mark whether they are certain of an annotation’s correctness

so that partial progress can be made while preserving the integrity of the corpus. The bottom of

Figure [3] shows radio buttons for selecting the certainty of the annotation.

4. Sentence-specific comments. Annotators can record their thoughts on partially complete annota-
tions so that others can pick up where they left off. The bottom-most window in view in Figure 3]
is the sentence-specific comment window. These comments are viewable by all annotators when
accessing this sentence.

E Additional Grounding Examples

Here are a couple of additional sections that ground the high-level ULF background in concrete examples.

E.1 More Resources on Predicate Modifiers

A type of modification not covered in the main document is entity-predicate modification. The type
shifter from an individual to a nominal predicate modifier is named nnp and has semantic type, D —
(ANy — Ny). It is for indicating premodification of a common noun by a proper noun; e.g.,

((nnp |Seattle|) skyline.n).
All of the operators discussed in Sectiond]and here are listed alongside a ULF example, and its semantic
type in Table [4]

Table 4: Predicate and sentence modifier forming operators in ULF along with examples and their se-
mantic types.

Name | Example Semantic Type

mod-a | ((mod-a worldly.a) wise.a) N — (Naps — Napy)
mod-n | ((mod-n (very.mod-n happy.a)) dog.n) N — (Ny — Ny)
adv-a | (play.v (adv-a (with.p (a.d dog.n)))) N— (Ny — Ay)
nnp ((nnp |Seattle|) skyline.n) D — (Ny — Ny)
adv-s | (show_up.v (adv-s (to.p (my.d surprise.n)))) | (§—2)— (§—2)
adv-e | (eat.v (adv-e (at.p (a.d cafe.n)))) (§—2)—>(5—2)
adv-f | (run.v (adv-f (very.mod-a often.a))) (§—-2)—>(5—2)

Ultimately in EL, adv-a, adv-e, and adv-f will be reconstrued as predications over actions and events
via meaning postulate inferences. Agent-episode pairs that intuitively represent actions, experiences, or
attributes are distinct from events. For example, “He fell painfully" refers to a painful experience rather
than to a painful event and “He excels intellectually” refers an intellectual attribute rather than to an
intellectual event or situation. .adv-a type modifiers constrain both the agent and the episode in the pair.
No sharp or exhaustive classification of such pairs into actions, experiences, and attributes is presupposed
by this — the point is just to make available the subject of sentences in working out entailments of
VP-modification. Since actions are formed by pairing an agent with an event variable, they are not
explicitly represented in ULF. The meaning postulate inferences on .adv-a type modifiers would infer
from (he.pro (play.v (adv-a (with.p (a.d dog.n))))) the following deindexed ULF [[[he.pro
play.v] *x El1.sk] and.cc [(pair he.pro El.sk) (with.p (a.d dog.n))]]. The meaning
postulate inference of .adv-e type modifiers to predications over events is also straightforward. The
ULF formula (she.pro (eat.v (adv-e (at.p (a.d cafe.n))))) leads to the deindexed, inferenced
formula [[[she.pro eat.v] *x E1.sk] and.cc [(pair she.pro E1.sk) (at.p (a.d cafe.n))]l.

E.2 Topicalization & Relative Clauses in ULF

The sub macro was introduced to reduce the amount of lexical reordering by annotators when annotating
sentences with syntactic movement such as topicalization. sub takes two constituents, the second of
which must contain the symbol *h. When the operator is evaluated the first argument is inserted into the

position of *h in the second argument. “Swiftly, the fox ran away” for example would be annotated as
(in raw ULF form)

(sub swiftly.adv-a ((the.d fox.n) ((past run.v) away.adv-a *h)))
and when the sub macro is evaluated, becomes

((the.d fox.n) ((past run.v) away.adv-a swiftly.adv-a)).
For relative clauses we introduce one extra post-processed element which is the relativizer, annotated
with a .rel extension. “The coffee that you drank” is annotated in raw ULF with macros as

(the.d (n+preds coffee.n (sub that.rel (you.pro ((past drink.v) *h)))))
During post-processing, the embedded sentence in which the . rel variable lies is A-abstracted and the
lambda variable replaces the . rel variable. Post-processing that.rel leads to

(the.d (n+preds coffee.n (Ax (sub x (you.pro ((past drink.v) *h))))))
Now if we evaluate both n+preds and sub, and perform one lambda reduction we get

(the.d (Ay ((y coffee.n) and.cc (you.pro ((past drink.v) y)))))
which is exactly the meaning that is expected that is expected from the relative clause. That is, “The
coffee that you drank” is a coffee ((y coffee.n)) and is something that you drank ((you.pro ((past
drink.v) y))).

	Introduction
	Episodic Logic
	Unscoped logical form
	ULF Syntax
	ULF Type Structure
	Role of ULF in Comprehensive Semantic Interpretation
	Inference with ULFs

	Predicate and Sentence Modification in Depth
	Annotating a ULF Corpus
	Experimental Results and Current Progress
	Related Work
	Conclusion & Future Work
	Acknowledgements
	Quantifier Semantics
	Episodic Operators
	More About Macros
	Additional Annotator Info
	Additional Grounding Examples
	More Resources on Predicate Modifiers
	Topicalization & Relative Clauses in ULF

