The use of Extract Morphology for Automatic
Generation of Language Technology for Votic

Kristian Kankainen
University of Tartu
Institute of Estonian and General Linguistics
kristian@keeleleek.ee

Abstract

The article presents a source code generating extension to Sprakbanken’s
morphological dictionary building tool, the “Morphology lab”. This is done for
three reasons: 1) to include the speech community in the morphological dictio-
nary making 2) to enable a time-resistant, human readable description of Votic
morphology 3) source code generation minimizes the efforts keeping multiple
language technologies in sync when the morphological dictionary is updated.

The morphological dictionary tool uses Extract Morphology that extracts the
paradigm descriptions automatically from user input inflection tables. In this way
the user’s linguistic and technological knowledge is kept at a bare minimum.

The presented extension encodes both the lexical information and the pro-
cedural paradigm descriptions into the ISO standard Lexical Markup Framework
(LMF). From this central representation program source code is generated for
morphological analysis and synthesis modules in two language technological sys-
tems: the Grammatical Framework and the Giellatekno infrastructure.

Integration into the Giellatekno infrastructure is still work in progress, but
the extension has allready been successfully used as a continuous integration
platform for developing the morphology module of the Votic Resource Grammar
Library in the Grammatical Framework.

In the end the article discusses four main implications of the presented ap-
proach: 1) the work on morphology is reduced to an interface similar to Wik-
tionary, 2) the lexical resource is put in the middle, 3) the general benefits of
source code generation, 4) benefits of lemma form agnosticity inherent in the
approach.

Teesid

Artikkel tutvustab koodigenereerimise laiendust Sprakbankeni morfoloogi-
liste sdnaraamatute koostamissiisteemile. Laiendusel on kolm eesmirki: 1) kaa-
samaks konelejaskonda morfoloogilise sonastiku koostamisprotsessi; 2) voimal-
dada arhiveeritava ja inimloetava morfoloogiakirjelduse koostamise; 3) koodige-
nereerimine minimeerib jdupingutused, et hoida mitut r66pset keeletehnoloogiat
ajakohastena morfoloogilise sonaraamatu uuendamise puhul.

Morfoloogilise sdnaraamatu koostamissiisteem pohineb ekstraktmorfoloogial,
mis eraldab automaatselt paradigmakirjelduse tiiipsdéna muutvormitabelist. Sel-
lisel viisil viiakse kasutaja vajatud keelelised ja tehnoloogilised teadmised miini-
mumi.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

192

Proceedings of the fifth Workshop on Computational Linguistics for Uralic Languages, pages 192-204,
Tartu, Estonia, January 7 - January 8, 2019.

kristian@keeleleek.ee
http://creativecommons.org/licenses/by/4.0/

Tutvustatud laiendus teisendab nii leksikaalse informatsiooni, kui ka para-
digmade arvutuslikud kirjeldused rahvusvahelise standardi kujule ISO Lexical
Markup Framework. Sellest kesksest kujust genereeritakse programmkood kahe
keeletehnoloogilise raamistiku morfoloogiamoodulite jaoks: programmeerimis-
keel Grammatical Framework ja Giellatekno infrastruktuur.

Integreerimine Giellatekno infrastruktuuri on pooleli. Ent tutvustatud laien-
dust on edukalt kasutatud vadja keele Grammatical Framework’i morfoloogia-
mooduli genereerimiseks.

Artikli 1opus késitletakse neli teemat, mida tutvustatud lahenemine toob kaa-
sa: 1) t66 morfoloogilise kirjelduse kallal on taandatud muutvormide tabelite esi-
tamisele, 2) t66 keskseks osaks on leksikaalse ressursi loomine, 3) koodigene-
reerimise ildised hiived, ning 4) tutvustatud ldhenemise lemmavormi valimise
soltumatuse hiived.

1 Introduction

The presented system is part of a broader work on defining a normative description
of Votic morphology to be used in corpus planning, language teaching and language
revitalization efforts.

There was no literature developed for Votic in the 1930s (unlike for Karelian,
Veps, Ingrian and other languages in the Soviet Union). But still the Votic language
has many linguistic descriptions, including grammars (e.g. Ahlgvist (1856), Tsvetkov
(2008), |Ariste (1968), Mapkyc and Poxxanckuii (2011)) and big (electronic) dictionar-
ies (Tsvetkov| (1995), Griinberg et al! (2013)) but very few that gives definitive answers
to language learners asking how is lexeme xvz in genitive form? For this a standard-
ization or normative description of the morphology is needed. Metaphorically, the
presented system tries to give the fishing rod instead of only the fish. That is, to give
to the language community not only the normative morphology but a system where
the normative can be altered. This is seen as crucial for the group of less than 20 active
Votic language activists.

To minimize efforts, a morphological dictionary is compiled in such a way that it
can be used both as a reference guide of the normative morphological description and
as a basis for automatically generating the source codes implementing the morpho-
logical analysis and synthesis modules for two language technological platforms: the
Giellatekno infrastructure and the Grammatical Framework.

Planned future applications for the generated morphological modules is proofing
tools obtained from the integration with Giellatekno’s infrastructure, and a bilingual
Russian-Votic phrasebook application done in the Grammatical Framework.

The morphological dictionary is built with an existing tool called the “Morphology
Lab”. The presented method is not language dependent, but so far work has only been
done with the Votic language. The most language dependent part of the system is the
type system for the generated Grammatical Framework source code and this concerns
only the optimization of computer memory usage.

The system has been successfully used for continuous integration when working
on the morphology module of the Votic Resource Grammar Library in the Grammat-
ical Framework. New paradigm functions has continuously and automatically been
added to the morphology module when the corresponding words’ inflection tables
have been added to the dictionary through the Morphology Lab.

Initial work for generating source code and integrating with the Giellatekno in-
frastructure is presented. This is work in progress that has not been deployed nor

193

fully tested.

The article first presents the Morphology Lab tool’s workflow for working on the
Votic morphological dictionary and how it uses Extract Morphology for paradigm
extraction. Section [introduces source code generation and section .1 how the mor-
phological dictionary’s data is used as its ontology represented in the Lexical Markup
Framework. Section B.J explains the source code generation for GF and section .3
for Giellatekno. Lastly, section | discusses the advantage and main implications of
using the presented approach. Generated source code examples are added at the end.

2 Workflow: Morphology Lab and Extract Morphology

The Morphology Lab is a separate online tool for working with morphological dic-
tionaries. It was created as a prototype to integrate Extract Morphology into Sprak-
banken’s lexical infrastructure Karp. It uses Extract Morphology to predict correct
paradigms for new lexical entries, and to extract new paradigms not yet existing in
the system from user input example inflection tables. It also integrates with the corpus
tool Korp and shows frequency counts for wordforms in the inflection tables.

The workflow for building the Votic morphological dictionary with the Morphol-
ogy Lab has been straight forward. Although no users from the Votic speech commu-
nity has yet been found, the tool is seen simple enough to encourage their inclusion.

For a new entry, the user first inserts the new word (or any of its wordforms)
and chooses the correct paradigm(s) for it. The paradigm can be specified either by
inserting another word that shares the same paradigm or by reviewing the generated
inflection tables and choosing the appropriate one(s). The generated inflection tables
show for each wordform also their frequency count in a corpus.

If a correct paradigm does not yet exist in the system, the user has to input all
wordforms in the inflection table which is then saved as a new paradigm. The user
can do this by filling a blank inflection table or by editing wordforms in a generated
(wrong) inflection table. The newly saved paradigm is directly reflected in the system
and can be chosen when adding the next new entry to the system.

Next we will introduce Extract Morphology. The paradigm extraction facility of
Extract Morphology has been proposed as a more natural way for a linguist to define a
computational morphology (Forsberg (2016)) as it doesn’t rely on any specific knowl-
edge other than wordforms. It has been presented in detail in (Ahlberg et al| (2014))
and (Ahlberg et al! (2015)). Extract Morphology has been used for deriving morpho-
logical guessers as weighted and unweighted finite state transducers (Forsberg and
Hulder| (2016)). The design of its extraction techniques in finite state calculus has
been presented more thoroughly in (Hulden (2014)).

At the core, Extract Morphology’s paradigm extraction finds the longest common
subsequence (LCS) across all wordforms in an inflection table. These common parts
are used as a technical stem for defining the lexeme. The common and non-common
parts make up concatenation patterns for each wordform.

As a simplified example, consider the two wordforms tSiutto and tSiutod (shirt’).
Their longest common subsequences are highlighted in table fi.

The common parts are abstracted away into variables and thus define concatena-
tion templates for the paradigm’s wordforms, such as: 1 @t @ zo and z; S x2 S d.

It is obvious that replacing the variables with the values z;=tsiut and x2=0 recre-
ates the inital inflection table. Furthermore, other words sharing the same paradigm

194

Wordform MSD LCS
tSiutto Se Nom tSiutto
tSiutod PLNom tSiutod

Table 1: Inflection table with morphosyntactic descriptions and underlined longest
common subsequence.

can also be instantiated, for example z;=kat and x2=0 instantiates the lexeme’s katto
paradigm.

The technical stem creates a too low-level interface for any practical human use.
But by choosing one wordform to be used as lemma, the concatenation pattern can
be used to construct a dispatch function that segment the complete lemma wordform
into the needed technical stem parts. This approach is illustrated in the Grammatical
Framework source code generation in section B.4.

Since the technical stem is independent of any wordform in the paradigm, it is
also independent from the choice of what is used as the dictionary lemma.

This has several implications. The choice of lemma form in the dictionary meant
for human consumption can be post-poned after analysing the principal parts of the
paradigms or consulting the end dictionary users. Also, the choice of lemma form
used in the generated language technology need not be the same and can be chosen in
accordance to specific needs of each generated software individually. Ideally though,
the same form is used in all systems, but the point here is that this choice can be made
on-the-go, or when enough data has been collected.

This kind of lemma agnosticity in the work flow is seen as a good thing for lan-
guages that lack a lexicographic tradition and is discussed more closely in section J.

3 Source code generation

Source code generation is a loose term used here to designate the automatic process
where program source code is generated from a description or ontology. The ontology
describes the what, not the how of the morphological knowledge, whereas the gener-
ators transform this knowledge into a program implementation. The implementation
is a derived kind of how, trying as close as possible to resemble the original what of
the ontology.

In our work we represent the ontology using the ISO standard Lexical Markup
Framework (LMF). All the data recorded by the Morphology Lab is converted into
LMF form and this is used as input for the source code generator.

Two source code generators are presented below, one for the Grammatical Frame-
work and one for the Giellatekno infrastructure. The source code generators are im-
plemented with the XQuery programming language.

A shared architectural feature of both code generators is the use of translation
tables for translating terms used in the LMF ontology to their corresponding terms
used in the host environment. For example the names of paradigms are prefixed with
as in the LMF (e.g. asT8iutto), but named like actions in the GF (mkT8iutto), and
prefixed by their part of speech in Giellatekno (N_TSIUTTO). Also the terminology for
grammatical features differ between the environments.

In this way different terminological traditions are supported and respected.

195

3.1 Lexical Markup Framework

The Lexical Markup Framework (LMF, ISO 24613:2008) is an ISO standard for natural
language processing lexicons and machine readable dictionaries. It provides a com-
mon model for managing exchange of data and enables merging of different resources.
(Francopoula, 2013).

The LMF standard consists of a core model and several extensions. In our work we
use two extensions: the NLP Morphological Pattern extension to model the extracted
paradigm information, and the Morphology extension to represent each lexeme’s in-
flected wordforms.

Representing the lexeme’s morphology with both paradigms (describing in inten-
sion) and inflected wordform tables (describing in extension) might seem superfluous.
But both representations serve their own purpose.

Listing extensionally all inflectional wordforms for each lexeme is in this work
considered part of documentation and what adds value to the work’s 50-year per-
spective (discussed in section H).

Recording lexeme’s all inflected wordforms extensionally also creates the possi-
bility to further annotate the individual wordforms, such as real attested corpus at-
testations, or other meta-linguistic information such as judgements.

Listing wordform information explicitly is also beneficial for the dictionary sys-
tem, enabling quick searches and statistics.

Next, we will introduce our data and how it is represented in the LMF.

3.1.1 Representing the lexical entries

All lexical entries carry information about their part of speech, their paradigm(s), the
(chosen) lemma form, and the inflected wordforms together with their morphosyntac-
tic descriptors. Also some additional information specific to Karp and the Morpholoy
Lab is stored.

The lexical entry for our simplified example is shown in figure [i.

3.1.2 Representing the paradigms

The extracted paradigms are represented as LMF Morphological Patterns. These hold
information about their part of speech and are name-tagged with an ID. The names
follow the LMF tradition and are prefixed with as, such as asT§iutto.

The LMF Morphological Patterns model all the information extracted by Extract
Morphology. The attested variable values, i.e. the technical stems, of all lexemes
added in the Morphology Lab is saved. This information could be utilized to inte-
grate prediction models into the generated source code, as have been demonstrated
by Forsberg and Hulden (2016). This has not been done, as the work has focused on
integrating the lexical resources as a first stage.

The extracted paradigm’s concatenation patterns are represented as LMF Trans-
form Sets. These hold, for each inflected wordform, the morphosyntactic description
and an ordered list of Processes which model the concatenation of constant strings
(e.g. the non-common parts) and instantiable variables (e.g. the common parts, the
LCS).

Furthermore, the full LMF Lexical Resource also holds global meta information
such as language name and language code. This is used mainly to name the generated
source code files.

196

Thus, for our simplified example we get its extracted paradigm represented as
shown in figure .

3.2 Generating Source Code for the Grammatical Framework

Grammatical Framework (GF) is a special purpose programming language for gram-
mars (Ranta, 2011). It can treat grammars as software libraries called Resource Gram-
mar Libraries (Ranta, 2008) and the aim of the work presented here is to generate the
source code that implements the morphology module for the Votic resource grammar
library.

GF’s concept of a paradigm is similar to that of Extract Morphology, and writing
the source code generator has been intuitive.

3.2.1 Generating the lexicon

GF is a multilingual framework and each application is expected to define their own
semantics in an abstract grammar. No attempt is made to include semantic pivots to
the Votic resource, instead a simple monolingual word list is generated as a lexicon.

This lexicon specifies for each entry in the resource its lemma, which is appended
with its part of speech and a call to the paradigm function. In the case a lemma has
multiple paradigms, each one is declared as variants.

The GF developer could use this word list when translating the application-specific
vocabulary names of the abstract grammar.

The source code of the generated word list is illustrated in figure B.

3.2.2 Generating the paradigm functions

In GF, a paradigm is a function that produces an inflection table. To generate the
function for an extracted paradigm description, we need to specify its name, interface
and body.

The name of the function is the paradigm’s ID from the LMF, where the prefix as
is simply replaced with mk.

The function’s interface is declared in the oper section and parameter types in
the param section. The names and values of the parameters reflect the attributes and
values of the grammatical features in the IMF, with minor modifications. The oper
definition is largely templatic, reflecting only the parts of speech from the LMF.

To help readers navigate the code, the paradigms are ordered by their part of
speech and headers are generated in the form of comments for each part of speech
section. These are the only comments generated at the moment.

Every paradigm is split into two separate functions a high-level dispatch function
(mkT8iutto, and low-level to mkTSiuttoConcrete). This is to allow a developer to
use the low-level function for debugging or testing purposes.

The high-level function takes a string with the chosen lemma form as its input and
splits it into the technical stem parts, which are then simply delegated to the low-level
function. An error message is thrown in case the input string is not able to match.

The names of the variables holding the technical stem parts are taken from the
paradigm’s name.

The low-level, or concrete, function is the one that generates the inflection table.
On the left-hand side of the table is the grammatical features and on the right-hand
side are the concatenation patterns that instantiates the wordforms.

197

Note that GF’s implementation of regular expressions is non-greedy as opposed to
many other programming languages. Because of this the expression @ (- (_+"t"+_))
is appended to the last part of the pattern. This expression is automatically created
and makes the ~t~ match the last letter t in the wordform. This matching strategy is
suspect to be language dependent.

The source code of the generated morphology module for our example is shown
in figure .

It can be noticed that the language code is used for naming the module (MorphoVot).

3.3 Giellatekno infrastructure source code integration

The Giellatekno infrastructure has been characterized in Moshagen et al| (2013) to
be a development environment infrastructure (as opposed to a resource infrastructure),
offering a framework for building language-specific analysers and directly turn them
into a wide range of useful programs.

From the point of view of our work on Votic morphology, the programs of interest
are proofing tools and morphological analyzers.

For the integration with Giellatekno’s infrastructure, several components are needed:
a lexicon, paradigm descriptions in FST, automatic test declarations, and a Makefile
that binds all the components together.

At the work’s current stage all but the Makefile is being generated. Because of
this, each component has only been tested on its own but not integrated in the infras-
tructure.

We don’t include any examples of generated code for the Giellatekno infrastruc-
ture because of space considerations. We will only present and discuss the main de-
sign choices made.

3.3.1 Generating the lexicon

Instead of generating the lexicon straight into FST representation, we use Giellate-
kno’s Sanat XML format. This is achieved by simple XML transformations from the
LMF format.

The Giellatekno infrastructure uses the Sanat XML to generate its own source
codes.

In its essence, the Sanat XML contains the lexical entry’s lemma, the name of
the paradigm (e.g a FST continuation class) and the technical stem needed by the
continuation class.

What is crucially missing from our implementation is the Finnish translation equiv-
alents used as interlingual pivots in the Giellatekno infrastructure. These equivalents
will be generated when our work on the Votic morphological dictionary resource has
reached the stage of adding them.

3.3.2 Generating the paradigm functions

The FST source code generated for the paradigm functions follow the general struc-
ture for realizational morphology introduced in (Karttunen, 2003). This differs from
Giellatekno’s tradition of using two-level rules as introduced in Koskenniemj ({1983).
This choice should not reflect any ideological stance, it was chosen only for pragmatic
reasons.

198

A design decision was made so that currently only the low-level paradigm func-
tions are generated. The segmenting of the lemma is done when generating the dic-
tionary.

3.3.3 Generating tests

Tests are optional but used in Giellatekno’s infrastructure for verifying that the paradigm
functions work as intended.

For verifying generated wordforms they need to be matched with known to be
correct wordforms. For this purpose the inflected wordforms stored in the original
dictionary are used.

Note that the “correct” wordforms are currently the ones generated by the Mor-
phology Lab. This means that the tests now only validate the performance of the
generated FST paradigm functions. This could in the future be enhanced when infor-
mation about corpus attestations or prescriptive information has been added to the
Votic dictionary.

3.3.4 The Makefile

Giellatekno’s template for the Makefile that orchestrates the building of all the com-
ponents uses two-level of the Giellatekno infrastructure. It is currently not generated
by the presented system and will not be discussed here.

4 Discussion

It is not yet known, which way of building language technology is the best or most
beneficial for different stakeholders. The key points that will be discussed here, with
regard to the presented work, is centered around the following four aspects: 1) work
on morphology is done through an user interface similar to Wiktionary 2) work on a
lexical resource is put in the middle 3) the general benefits of source code generation
4) inherent lemma form agnosticity.

The work on morphology is reduced to an interface similar to Wiktionary. In
the presented approach, all that is needed by the user working on the morphological
resource is knowledge of wordforms, not morphology per se.

This interface brings together the work on creating a normative morphology for
Votic, but opens the process up for collaboration with the Votic language community.

Setting up a project in this way, the computational linguist could earlier start
working on a higher level (e.g. describing the syntax) and delegate work on the mor-
phology to language activists. By developing traditional GF applications, like the city
or foods phrasebooks, the linguist could show the direct effect of the activists adding
words to the dictionary and how the words show up in multiple phrases of the phrase-
book. This direct connection is hoped to motivate the activists.

Other “motivators” are the benefits gained from integration with Giellatekno’s
infrastructure, mainly the proofing tools. Even though this is an indirect link, it is a
parallel and simultaneous benefit.

Advantages of putting the resource in the middle. The key advantage of the
presented approach springs out of putting the lexical resource in the middle. Here
we keep in mind the LMF representation of the lexical resource. This centrality has
several implications.

199

One aspect is the technological neutrality this brings. The resource models the
procedural (or operational) knowledge of morphology, but this is not reflected in the
shape of the resource. The resource does not use terminology from Finite State Trans-
ducers, nor from functional programming, even though the resource is used as an
ontology for source code generation into both these programming paradigms.

Because of this neutrality, the lexical resource is believed to be readable and un-
derstandable in a 50 year perspective, whereas any program code implementing the
same kind of knowledge might not be. In fact, a working platform for executing the
code will most likely not even exist after 50 years.

The advantage of this self-documenting aspect is believed to be situated some-
where between the areas of computational linguistics, descriptive linguistics and doc-
umentational linguistics. Because of the close connection to language documentation,
further research in this area is believed to be a worthwhile endeavor by the authors,
especially for small and under-resourced languages.

Another advantage of putting the resource in the middle is that any faults found
during the usage of the generated language technology, will get fixed up-streams in
the lexical resource itself. In this way it is the resource that gets worked on, not only
the language technology.

This is highly connected to the benefits of source code generation, discussed next.

General benefits of source code generation. The general benefits of using source
code generation is that changes need only be done in one place. The usefulness of this
gets larger for every added target platform, our work comprises only two.

By only needing to change faults in one central place might also encourage in the
future to keep what is then considered “old” software functioning and up to date.

Not only fixing any found faults or simply improving the resource needs to be
done in one central place. The centrality of code also ensures consistent style in the
generated source code. Changing style throughout all the generated code is done by
changing only in one place: in the source code generator.

Benefits of lemma-form agnosticity. The lemmaform agnosticity of the presented
approach is seen beneficial to languages that lack a lexicographic tradition. Since Ex-
tract Morphology is independent of the choice of which wordform is used as lemma,
this choice can be post-poned. This could permit more time and resources to inves-
tigate appropriate forms by linguists or lexicographers, or simply give more time to
the real dictionary users to get acquainted using the dictionary.

Acknowledgments

Acknowledgments should be un-numbered last section. Do not include acknowledge-
ments in anonymised review version.

References

Malin Ahlberg, Markus Forsberg, and Mans Hulden. 2014. Semi-supervised learn-
ing of morphological paradigms and lexicons. In Proc. of EACL. pages 569-578.
http://www.aclweb.org/anthology/E/E14/E14-1.pdf#page=595.

Malin Ahlberg, Markus Forsberg, and Mans Hulden. 2015. Paradigm classifica-
tion in supervised learning of morphology! In HLT-NAACL. pages 1024-1029.
http://www.aclweb.org/old anthology/N/N15/N15-1107.pdf.

200

http://www.aclweb.org/anthology/E/E14/E14-1.pdf#page=595
http://www.aclweb.org/anthology/E/E14/E14-1.pdf#page=595
http://www.aclweb.org/anthology/E/E14/E14-1.pdf#page=595
http://www.aclweb.org/old_anthology/N/N15/N15-1107.pdf
http://www.aclweb.org/old_anthology/N/N15/N15-1107.pdf
http://www.aclweb.org/old_anthology/N/N15/N15-1107.pdf

August Ahlqvist. 1856. Wotisk grammatik jemte sprakprof och ordférteckning: (Foredr.
d. 15 Oktober 1855). s.n, [Helsingfors.

Paul Ariste. 1968. A grammar of the Votic language. Number vol. 68 in Indiana Uni-
versity publications. Uralic and Altaic series. Indiana University ; Mouton, Bloom-
ington : The Hague.

Markus Forsberg. 2016. What can we learn from inflection tables? In BAULT 2016.
Helsinki. http://blogs.helsinki.fi/language-technology/news/bault-2016/.

Markus Forsberg and Mans Hulden. 2016. Deriving Morphological
Analyzers from Example Inflections. In LREC. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/1134 Paper.pdf.

Gil Francopoulo. 2013. LMF lexical markup framework. ISTE Ltd ; John Wiley & Sons,
London; Hoboken, NJ.

Silja Griinberg, Ada Ambus, Georg Griinberg, Roman Kallas, Tatjana Murnikova, Tat-
jana Nikitina, Agnia-Agnes Reitsak, Savvati Smirnov, Indrek Hein, Esta Prangel,
and Esta Prangel, editors. 2013. Vadja keele sonaraamat =: Vaddaa tSeelee sona-tsirja
= Crnosapv 6oockoeo sizvika. Eesti Keele Sihtasutus, Tallinn, 2., tdiend. ja parand. tr
edition.

Mans Hulden. 2014. Generalizing inflection tables into paradigms with finite state
operations. In Proceedings of the 2014 Joint Meeting of SIGMORPHON and SIGFSM.
pages 29-36. http://aclweb.org/anthology/W/W14/W14-2804.pdf.

Lauri Karttunen. 2003. Computing with realizational morphology. In Computational
linguistics and intelligent text processing, Springer, pages 203-214.

Kimmo Koskenniemi. 1983. Two-Level Model for Morphological Analysis. In Ij-
CAI volume 83, pages 683-685. http://ijcai.org/Past%20Proceedings/IJCAI-83-
VOL-2/PDF/020.pdf.

Sjur N. Moshagen, Tommi A. Pirinen, and Trond Trosterud. 2013. Building an open-
source development infrastructure for language technology projects. In: Proceed-
ings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013).
Volume 16 of NEALT Proceedings Series. (May 22—24 2013) pages 343-352.

Aarne Ranta. 2008. Grammars as software libraries.

Aarne Ranta. 2011. Grammatical framework : programming with multilingual gram-
mars. Studies in computational linguistics. CSLI Publications.

Dmitri Tsvetkov. 1995. Vatjan kielen Joenperdn murteen sanasto. Suomalais-ugrilainen
seura ;Kotimaisten kielten tutkimuskeskus, Helsinki.

Dmitri Tsvetkov. 2008. Vadja Keele Grammatika. Eesti Keele Sihtasutus, Tallinn.

Enena Bopucosua Mapkyc and ®emop MBanosnu Posxamckuit. 2011. CospemeHHuiii
600CKUTi A3bIK: MeKcmbl U epammamuseckull ouepk. Tom 2, [pammamuueckuii ouepxk
u bubnuoepagus: [6 2-x momax]. Hecrop-Ucropus, Cankr IlerepOypr.

201

http://blogs.helsinki.fi/language-technology/news/bault-2016/
http://blogs.helsinki.fi/language-technology/news/bault-2016/
http://www.lrec-conf.org/proceedings/lrec2016/pdf/1134_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/1134_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/1134_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/1134_Paper.pdf
http://aclweb.org/anthology/W/W14/W14-2804.pdf
http://aclweb.org/anthology/W/W14/W14-2804.pdf
http://aclweb.org/anthology/W/W14/W14-2804.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-83-VOL-2/PDF/020.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-83-VOL-2/PDF/020.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-83-VOL-2/PDF/020.pdf

<LexicalEntry morphologicalPatterns="asTSiutto">
<feat att="partOfSpeech" val="nn"/>
<feat att="karp-lemgram" val="t&iutto..nn.1"/>
<Lemma>
<feat att="writtenForm" val="tZiutto"/>
</Lemma>
<WordForm>
<feat att="writtenForm" val="tSiutto"/>
<feat att="grammaticalNumber" val="singular"/>
<feat att="grammaticalCase" val="nominative"/>
</WordForm>
<WordForm>
<feat att="writtenForm" val="tSiutod"/>
<feat att="grammaticalNumber" val="plural"/>
<feat att="grammaticalCase" val="nominative"/>
</WordForm>
</LexicalEntry>

Figure 1: LMF representation of the (toy example) lexical entry for tSiutto.

202

<MorphologicalPattern>
<feat att="id" val="asTSiutto"/>
<feat att="part0fSpeech" val="nn"/>
<AttestedParadigmVariableSets>
<AttestedParadigmVariableSet>
<feat att="first-attest" val="tS8iutto..nn.1"/>
<feat att="1" val="tZiut"/>
<feat att="2" val="o"/>
</AttestedParadigmVariableSet>
</AttestedParadigmVariableSets>
<TransformSet>
<GrammaticalFeatures>
<feat att="grammaticalNumber" val="singular"/>
<feat att="grammaticalCase" val="nominative"/>
</GrammaticalFeatures>
<Process>
<feat att="operator" val="addAfter"/>
<feat att="processType" val="pextractAddVariable"/>
<feat att="variableNum" val="1"/>
</Process>
<Process>
<feat att="operator" val="addAfter"/>
<feat att="processType" val="pextractAddConstant"/>
<feat att="stringValue" val="t"/>
</Process>
<Process>
<feat att="operator" val="addAfter"/>
<feat att="processType" val="pextractAddVariable"/>
<feat att="variableNum" val="2"/>
</Process>
</TransformSet>
<TransformSet>
<GrammaticalFeatures>
<feat att="grammaticalNumber" val="plural"/>
<feat att="grammaticalCase" val="nominative"/>
</GrammaticalFeatures>
<Process>
<feat att="operator" val="addAfter"/>
<feat att="processType" val="pextractAddVariable"/>
<feat att="variableNum" val="1"/>
</Process>
<Process>
<feat att="operator" val="addAfter"/>
<feat att="processType" val="pextractAddVariable"/>
<feat att="variableNum" val="2"/>
</Process>
<Process>
<feat att="operator" val="addAfter"/>
<feat att="processType" val="pextractAddConstant"/>
<feat att="stringValue" val="d"/>
</Process>
</TransformSet>
<MorphologicalPattern>

Figure 2: LMF representation of the (toy example) paradigm common for both #Siutto
and katto (the concatenation patterns 1 ® t @ z2 and 1 & z2 & d).

203

fun
lin tSiutto_N = mkTSiutto "tsSiutto" ;
lin katto_N = mkTSiutto "katto"

Figure 3: Generated source code for the Votic GF lexicon.

resource MorphoVot = {

param
Number = singular | plural ;
Case = nominative ;
NForm = NF Number Case ;

oper
Noun : Type = {s : NForm => Str} ;

mkT§iutto : Str -> Noun = \tSiutto ->
case tS8iutto of {
tdiut + "t" + o@(-(_+"t"+_)) => mkTSiuttoConcrete tdiut o ;
_ => Predef.error "Unsuitable lemma for mkTSiutto"

}

mkT8iuttoConcrete : Str -> Str -> Noun = \tdiut,o ->
{s=
table {
NF singular nominative => tS8iut + "t" + o ;
NF plural nominative => tSiut + o + "d"
}
T

Figure 4: Generated source code for the Votic GF morphology module.

204

	Introduction
	Workflow: Morphology Lab and Extract Morphology
	Source code generation
	Lexical Markup Framework
	Representing the lexical entries
	Representing the paradigms

	Generating Source Code for the Grammatical Framework
	Generating the lexicon
	Generating the paradigm functions

	Giellatekno infrastructure source code integration
	Generating the lexicon
	Generating the paradigm functions
	Generating tests
	The Makefile

	Discussion

