Verb Argument Structure Alternations in
Word and Sentence Embeddings

Katharina Kann®, Alex Warstadt*, Adina Williams* and Samuel R. Bowman
New York University, USA
{kann, warstadt, adinawilliams, bowman}@nyu.edu

Abstract

Verbs occur in different syntactic environ-
ments, or frames. We investigate whether arti-
ficial neural networks encode grammatical dis-
tinctions necessary for inferring the idiosyn-
cratic frame-selectional properties of verbs.
We introduce five datasets, collectively called
FAVA, containing in aggregate nearly 10k sen-
tences labeled for grammatical acceptability,
illustrating different verbal argument structure
alternations. We then test whether models
can distinguish acceptable English verb—frame
combinations from unacceptable ones using a
sentence embedding alone. For converging ev-
idence, we further construct LaVA, a corre-
sponding word-level dataset, and investigate
whether the same syntactic features can be ex-
tracted from word embeddings. Our models
perform reliable classifications for some ver-
bal alternations but not others, suggesting that
while these representations do encode fine-
grained lexical information, it is incomplete
or can be hard to extract. Further, differences
between the word- and sentence-level models
show that some information present in word
embeddings is not passed on to the down-
stream sentence embeddings.

1 Introduction

Artificial neural networks (ANNs) are powerful
computational models that are able to implicitly
learn syntactic and semantic features necessary for
a variety of natural language tasks. These empir-
ical results raise a deeper scientific question: to
what extent do the features learned by ANNs re-
semble the linguistic competence of humans?
Studying the linguistic competence of ANNSs, in
addition to its intrinsic value for model evaluation,
can help resolve outstanding scientific questions in
linguistics about the role of prior grammatical bias

*The first three authors contributed equally and are listed
in alphabetical order.
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in human language acquisition. Chomsky (1965)
suggests that the acquisition of rich grammatical
distinctions is facilitated by an innate universal
grammar (UG), which imparts specific grammat-
ical knowledge to the learner. This proposal cru-
cially depends on the poverty of the stimulus argu-
ment, which holds that the acquisition of certain
linguistic features by purely domain-general data-
driven learning should not be possible (Clark and
Lappin, 2011). Studying the ability of low-bias
learners like ANNs to acquire specific grammat-
ical knowledge can provide evidence relevant to
this argument.

In this work, we evaluate ANNSs’ treatment of
verbs; verbs contribute to the overall meaning of
sentences by encoding information about how en-
tities are related to, and participate in, events.
Concretely, we investigate if ANNs acquire the
specific grammatical distinctions necessary for in-
ferring the frame-selectional properties of verbs.
Cross-linguistically, the lexical entry of a verb is
associated with a set of syntactic contexts or syn-
tactic frames in which it can appear. This informa-
tion is lexically idiosyncratic, i.e., even verbs that
are intuitively very similar in meaning may vary
as to which syntactic frames they can appear in:

(1) a. Sharon sprayed water on the plants.
Sharon sprayed the plants with water.
Carla poured lemonade into the pitcher.
*Carla poured the pitcher with lemon-

ade.!

a0 o

Certain verbs, e.g., spray, select multiple related
frames and are therefore known as alternating
verbs. In contrast, other semantically similar
verbs, e.g., pour, select only a single frame and are
thus not alternating. Information about whether a
given verb alternates (as well as which frames it

'In this paper, stars mark ungrammatical sentences.
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Verb Frame Example Sentences

Caus. Jessica dropped the vase. Jessica blew the bubble.

Inch. The vase dropped. *The bubble blew.
Dative-Prep. Liz gave a gift to the boy. Liz administered a test to the kid. ~ *Liz charged $50 to Jon.
Dative-2-Obj. Liz gave the boy a gift. *Liz administered the kid a test. ~ Liz charged Jon $50.

Spr.-Lo.-with Sue loaded the truck with wood.  Sue coated the deck with paint. *Sue swept the bin with sand.
Spr.-Lo.-Loc. Sue loaded wood onto the truck.  *Sue coated paint on the deck. Sue swept sand into the bin.
no-there Fear remained in my mind. A girl focused on the quiz.
there There remained fear in my mind. *There focused on the quiz a girl.
U.-Obj.-Refl. Ada clapped her hands. Ada permed her hair. *Ada exercised herself.
U.-Obj.-No-Refl. Ada clapped. *Ada permed. Ada exercised.

Table 1: Examples from each verb frame in the dataset. Bolded verbs evoke both verb frames; other verbs evoke
only one. Transitive verb frames include: Causative, SPRAY—LOAD with, SPRAY-LOAD locative, UNDERSTOOD-
OBIJECT reflexive. Intransitive verb frames include: Inchoative, no-there (with locative adjunct), there (with loca-
tive adjunct), and UNDERSTOOD-OBJECT no-reflexive. 2-obj. class includes a ditransitive frame and a preposi-

tional dative frame.

can appear in) has been described and classified in
several verb lexica (Grishman et al., 1994; Baker
et al., 1998; Fillmore et al., 2003; Kipper-Schuler,
2005; Kipper-Schuler et al., 2006). Knowledge
about verb frames and their alternations is part of
a human speaker’s linguistic competence, and as
such, should potentially be learned by ANNs.

We present two datasets and two experiments
that compare ANNs’ knowledge of verb frame al-
ternations at the word level and the sentence level,
respectively. First, we ask if a verb’s word em-
bedding can be used to predict which frames that
verb can licitly appear in. We construct a dataset
of verbs, the Lexical Verb—frame Alternations
dataset (LaVA), based on Levin (1993), and train a
multi-class classifier to identify the licit syntactic
frames associated with a verb from its word em-
bedding alone (if successful, the classifier should
be able to determine, e.g., that sprayed alternates
and can appear in sentences with with-alternants
like (1-b), but that poured cannot (1-d)).

Second, we ask whether sentence embeddings
encode the frame-selectional properties of their
main verb. The main verb’s frame-selectional
properties have consequences for grammaticality
at the sentence level; to give an example, (1-d)
is not grammatical, because poured cannot par-
ticipate in this frame alternation. To exploit this,
we semi-automatically generate sentences in such
a way to ensure that the main verb’s frame alterna-
tion information is the only information determin-
ing the (un)grammaticality of the sentence. For a
portion of the sentences, the main verb can par-
ticipate in a given verb frame alternation, and for
another portion it cannot; if the main verb cannot
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participate in the alternation, then one of the sen-
tences in the pair will be ungrammatical. Using
this dataset, the Frames and Alternations of Verbs
Acceptability dataset (FAVA), we train a binary
classifier to judge the acceptability of sentences
containing verbs in various syntactic contexts us-
ing the sentence embeddings alone.

We find that verb frame information is ex-
tractable from both word embeddings and sen-
tence embeddings, but that these two complemen-
tary methods differ in performance. The LaVA
and FAVA datasets are available under https:
//nyu-mll.github.io/CoLA for future re-
search and model evaluation.

2 Verb Frame Alternations

The lexical meaning of each verb includes a de-
scription of an event and how entities participate
in it (Fillmore, 1966; Fillmore et al., 2003), and
this information is present for the various syntac-
tic frames associated with each verb. To deter-
mine whether our ANNs encode this information,
we select five verb frame alternations from Levin
(1993); the verb frames which comprise each al-
ternation vary either in the number of arguments
they can take, in the order in which the arguments
appear, or in both. Examples are given in Table 1,
and statistics are provided in Tables 2 and 3.

To give an example, in (1-a), there is an event of
spraying in which Sharon is the main actor (often
referred to as agent), the plants is the entity af-
fected by the event (i.e., the patient), and water is
the entity used in the event (i.e., the instrument or
theme). In (1-a), the verb frame of spray has three



Levin class  CAUS.—INCH. DATIVE SPRAY-LOAD  there-INSERTION  UNDERSTOOD-OBJECT
Inch. Caus. Prep. 2-Obj. with Loc. no-there  there  Refl. No-Refl.

Positive 70 120 63 72 90 81 50 145 11 81

Negative 140 0) 356 405 220 229 185 0) 466 396

Total 210 120 419 477 310 310 235 145 477 477

Table 2: Overview of the lexical dataset. “Positive” refers to the number of verbs that evoke each frame (i.e., will
yield a grammatical sentence) and “negative” refers to the number of verbs which do not evoke those frames (i.e.,
will yield an ungrammatical sentence). Causative and there sentence frames have no negative examples (i.e., every
verb participating in the alternation can instantiate these frames).

roles, and they come in a specific order: the agent
is the subject, the instrument is the object, and the
patient or location is part of a prepositional phrase
adjoined to the verb. Participants (e.g., Sharon and
water) that are provided by the verb are called ar-
guments of the verb; the other argument the plants
is within a prepositional phrase and is therefore
not provided by the verb.

Whether a verb can introduce a given number
of arguments can affect its sentence-level gram-
maticality and is therefore of interest here. Verbs
can be intransitive, taking only one argument (e.g.,
dropped in the vase dropped.), transitive, taking
two arguments (e.g., dropped in Jessica dropped
the vase), or ditransitive, taking three arguments
(e.g., gave, in Liz gave the boy a gift).

Two different verb frames may be related by
the addition or deletion of an argument (e.g.,
CAUSATIVE-INCHOATIVE), or by realizing the
same arguments in a different syntactic configu-
ration (e.g., SPRAY-LOAD; (1-a) and (1-b)). When
several verbs with similar argument structures can
productively appear in such related verb frames,
this is called an argument structure alternation.
Examples are listed in Table 2.

For some alternations, there are examples of
verbs that participate in both frames (e.g., are pos-
itive examples for both dative and double object
frames), only the first frame (e.g., are positive ex-
amples for the dative frame, but negative exam-
ples for the double object one), or only the sec-
ond frame (e.g., are positive examples for the dou-
ble object frame and negative ones for the da-
tive frame). However, full empirical coverage is
not always possible for every alternation. In our
corpora, two of our alternations (CAUSATIVE-—
INCHOATIVE and there-INSERTION) are sparse;
some of their frames cannot be provided with neg-
ative examples. We discuss this issue in more de-
tail in Section 3.1).
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3 Datasets

In this section, we describe in detail our word-
level dataset, which we call the Lexical Verb—
frame Alternations dataset (LaVA); and the corre-
sponding sentence-level dataset, which we call the
Frames and Alternations of Verbs Acceptability
dataset (FAVA). Five argument structure alterna-
tions are chosen and verbs that evoke at least one
frame of the alternation are included in our lexi-
cal corpus. These verbs are subsequently used to
semi-automatically create a sentence acceptability
corpus for our second experiment. We describe
our selected argument structure alternations in the
remainder of this section and introduce our cor-
pora.

3.1 LaVA—The Lexical Corpus

We construct LaVA from 515 verbs manually
mined from five of the largest syntactic verb
frame alternations provided by Levin (1993):
CAUSATIVE-INCHOATIVE, DATIVE, SPRAY-
LOAD, there-INSERTION, and UNDERSTOOD-
OBJECT. Each alternation consists of two differ-
ent syntactic frames. Our dataset lists whether
each verb participates in each frame (wherever
available, see the subsection on sparsity below);
the alternations and their verb frames are de-
scribed in the following.

CAUSATIVE-INCHOATIVE Alternation The
CAUSATIVE-INCHOATIVE (Sundén, 1916; Fill-
more, 1966; Hale and Keyser, 1986, 2002) dataset
is an expanded version of the CAUSATIVE-
INCHOATIVE dataset from Warstadt et al. (2018),
and it contrasts verbs which can evoke both
causative and inchoative frames, like drop in Ta-
ble 1, with verbs that can evoke only the causative
frame, like blow. Importantly, the causative frame
is transitive—taking two syntactic arguments—
and the inchoative frame is intransitive—taking
only one. In the causative frame, the subject



(e.g., Jessica) causes the object (e.g., the vase) to
undergo a change of state (e.g., to be dropped),
but, in the inchoative frame, the argument which
undergoes a change of state is the subject.

DATIVE Alternation The DATIVE (Bresnan,
1980; Marantz, 1984; Larson, 1988) dataset con-
sists of verbs that indicate transfer of possession;
both frames evoked by these verbs take three ar-
guments, but the two frames differ in the order of
arguments. In the prepositional dative frame, the
theme is the syntactic object of the verb, and the
recipient is within a prepositional phrase; in the
dative double object frame, there is no preposi-
tional phrase, and both the theme and the recip-
ient appear after the verb. Table 1 provides ex-
amples from the three sets of verbs: one set of
verbs evokes both the prepositional dative frame
and the double object frame (e.g., give), another
set only evokes the prepositional dative frame and
not the double object frame (e.g., administered),
and the last set of verbs only evokes the double ob-
ject frame, but not the prepositional dative frame
(e.g., charged).

SPRAY-LOAD Alternation The SPRAY-LOAD
(Tenny, 1987; Levin and Hovav, 1995; Arad,
2006) dataset includes transitive verb frames that
relate to putting objects in places or covering
things with other objects as described in Section
2.

There-INSERTION  Alternation The there-
INSERTION (Poutsma, 1904; Milsark, 1974,
Szabolcsi, 1986) dataset contains intransitive
verbs that can evoke a frame in which the subject
of the sentence (e.g., fear) follows the verb (as in
There remained fear in my mind., despite the fact
that it would usually appear before the verb in
other frames; for these sentences the subject posi-
tion is filled with a dummy word, there. The there
frame requires a prepositional phrase adjunct—
e.g., There remained fear *(in my mind)—but the
no-there frame does not—e.g., Fear remained (in
my mind). Verbs that evoke both frames are verbs
of existence, spatial configuration, meandering
movement, manner of motion, appearance, and
inherently directed motion.

UNDERSTOOD-OBJECT Alternation The
UNDERSTOOD-OBJECT (Rice, 1988; Levin,
1993) dataset contains verb frames that vary
in transitivity and describe conventionalized
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movements of body parts. In the transitive
UNDERSTOOD-OBJECT reflexive frame, the body
part is the object of the verb (e.g., Ada clapped
her hands.). In the intransitive UNDERSTOOD-
OBIJECT no-reflexive frame, the affected theme
participant (e.g., the body part, or hands) is
recoverable from the verb (e.g., clapped) even
though the frame does not require the theme (i.e.,
we know that Ada is clapping her hands and not
something else when we interpret the object-less
sentence Ada clapped).

Sparsity Due to the nature of verb argument
structure alternations, in some cases no negative
examples can be obtained. For instance, there are
no English verbs that can appear in the inchoative,
but not the causative (see the first two columns of
Table 2). This means that, for the CAUSATIVE—
INCHOATIVE alternation, verbs can either evoke
both causative and inchoative frames (i.e., be posi-
tive examples for both frames) or just the causative
frame (i.e., be a positive example for causative
and a negative example for inchoative). Similarly,
there are verbs that can appear in only no-there,
but no verbs that can only appear in the there
frame. This leads to sparsity of annotations. As a
result, word-level classifications for these frames
are trivial.

Another factor that contributes to data sparsity
is that our lexical corpus relies on verbs that Levin
(1993) provides as positive (i.e., grammatical) or
negative (i.e., ungrammatical) examples; it does
not provide grammaticality judgments for each
verb in every frame. In some cases, this is for a
linguistic reason: CAUSATIVE-INCHOATIVE al-
ternation verbs can take at most two arguments,
and thus do not appear in frames requiring 3 argu-
ments like the prepositional dative or double ob-
ject frames. In other cases, there is no obvious rea-
son for a particular verb to not appear in another
frame, but the annotations in Levin (1993) do not
provide that verb—frame combination. In many of
these cases, we augment Levin’s judgments with
our own, also semi-automatically, in attempts to
alleviate this issue. However, despite these efforts,
the resulting dataset is still sparse, i.e., it does not
list whether every verb is a positive or negative ex-
ample for every frame.

3.2 FAVA—Acceptability Judgments Corpus

FAVA is a set of nearly 10k sentences with ac-
ceptability judgments. It is constructed semi-



Levin Class Sentences % Positive
CAUSATIVE-INCHOATIVE 1168 78.9
DATIVE 644 70.2
SPRAY-LOAD 5127 58.6
there-INSERTION 718 77.0
UNDERSTOOD-OBJECT 705 54.2

Table 3: Sentence counts for our acceptability corpus.
“% Positive” is the percentage of sentences that count
as acceptable, i.e., as positive examples.

automatically from the verbs in the lexical corpus;
Table 3 provides a brief overview.

Two of the authors, both trained as linguists,
manually construct lexical sets consisting of verbs
with similar frame-selectional properties that are
paired with semantically plausible nouns (and
prepositions, where needed). These lexical sets
are used to automatically generate sentences with
different syntactic frames. For example, the lexi-
cal set in (2) is used to generate 18 minimal pairs
of sentences as in (3) (one pair for each combina-
tion of verb, patient, location, and preposition).

(2) verbs = {hung, draped}
patients = {the blanket, the towel, the cloth}
locations = {the bed, the armchair, the couch}
prepositions = {over}

(3) a. Betty draped the blanket over the couch.
b. *Betty draped the couch with the blanket.

A similar, semi-automatic sentence creation
method focusing only on the passive alternation
(and non-argument structure syntactic reorderings
using negation and relative clauses) was employed
by Ettinger et al. (2016) and Warstadt et al. (2018).

Using this method, we construct five
sentence-level datasets highlighting different
verb alternations (CAUSATIVE—INCHOATIVE,2
DATIVE, SPRAY-LOAD, there-INSERTION,
UNDERSTOOD-OBJECT) that are chosen so that
sentences could be generated with the maximum
of variability in the choice of verbs. We split
our data into training, development, and test
sets by binning lexical sets into training and
evaluation bins randomly, in equal proportions.
The evaluation set is then split 80/20 into test and
development set. Splitting by lexical bin rather
than by sentence prevents models from finding
a trivial solution to classification by learning to

>The CAUSATIVE—INCHOATIVE dataset presented here is
an expanded version of an analysis dataset in Warstadt et al.
(2018).
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recognize specific verbs and verbal arguments
from the training set in the evaluation or test set.

4 Pre-Trained Representations

Embeddings, i.e., vector representations of lin-
guistic objects like characters, words, or sen-
tences, encode helpful information for down-
stream applications (Mikolov et al., 2013). In par-
ticular, they can be used to leverage knowledge
from one task for another and have been shown
to improve performance on a diverse set of tasks.
Embeddings are usually low-dimensional; com-
mon sizes differ between 100 and 300. Our exper-
iments make use of three types of word and sen-
tence embeddings, which we will describe in the
following.

Word Embeddings For our word-level experi-
ments, we use two different embeddings which
differ in the way of their creation. First, we use
300-dimensional GloVe embeddings trained on 6B
tokens (Pennington et al., 2014).3 GloVe embed-
dings are used frequently in natural language pro-
cessing (NLP), so evaluating them for knowledge
of verb frames will be relevant for their appli-
cation to and future research on tasks requiring
rich syntactic features. Second, we use embed-
dings trained on the smaller 100M token British
National Corpus* (BNC), optimizing a language
modeling objective. The language model (LM) is
a (single-directional) LSTM trained by Warstadt
et al. (2018) using PyTorch and optimized using
Adam (Kingma and Ba, 2015). The BNC data is
tokenized using NLTK (Bird and Loper, 2004) and
words outside the 100k most frequent words in the
BNC are replaced with <unk>.

Our peripheral interest in how humans learn
lexical frame-selectional properties motivates us
to investigate these LM-trained word embeddings.
We reduce the potential differences between hu-
man learners and our models by considering em-
beddings that are trained on an amount of data
similar to what humans are exposed to during lan-
guage acquisition. For this reason, most publicly
available, pre-trained word vectors are a rather
unnatural fit, since these embeddings are usually
trained on several orders of magnitude more data
than humans see in a lifetime.

*http://nlp.stanford.edu/data/glove.
6B.zip

4http://www.natcorp.ox.ac.uk
SIf we extrapolate from data gathered by Hart and Risley



Sentence Embeddings We further produce sen-
tence embeddings with the help of an existing sen-
tence encoder. Namely, we employ the sentence
encoder trained by Warstadt et al. (2018) which
performs best in their downstream acceptability
classification task. The encoder is trained on a
real/fake discrimination task. This is a binary clas-
sification task in which a model learns to distin-
guish naturally occurring sentences in the BNC
from fake sentences. Fake sentences themselves
are either generated by a LM or by permuting nat-
urally occurring sentences. The real/fake dataset
consists of about 12M sentences, including about
6M sentences from the BNC, about 3M million
LM-generated sentences, and 3M permuted sen-
tences. The data is tokenized and unknown words
replaced in the same way as in the LM training
data. A development set is used for early stopping.
20 real/fake encoders are trained for 7 days or un-
til the completion of 4 training epochs without im-
provement in Matthews correlation coefficient on
the development set.

The architecture of the real/fake encoder is
shown in Figure 1. A bidirectional long-short term
memory network (LSTM, Hochreiter and Schmid-
huber, 1997) reads the words of a sentence. A
fixed-length sentence embedding is then produced
by a max-pooling operation over the concatena-
tions of the forward and backward hidden states at
each time-step. This encoding serves as input to a
sigmoid output layer, which outputs a binary pre-
diction. The input to the encoder are ELMo-style
(Peters et al., 2018) contextualized word embed-
dings from a trained LM. As in ELMo, the repre-
sentation for a word wj is a linear combination of
the hidden states /! for each layer j in an LSTM
LM, though we depart from that paper by using
only a forward LM.

As argued in Warstadt et al. (2018), this sen-
tence encoder is a reasonable model for a human
learner because it is not exposed to any knowledge
of language that could not plausibly be part of the
input to a human learner. Its training data consists
of the same 100 million tokens used to train the
word embeddings, augmented with another 100
million generated tokens in the fake data.

(1992), we can estimate that children are exposed to about
100 million tokens, on average, by age 5.
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Figure 1: Real/fake model. w; = word embeddings, f;
= forward LSTM hidden state, b; = backward LSTM
hidden state. Figure from Warstadt et al. (2018).

5 Experiment 1: From Word
Embeddings to Argument Structures

In our first experiment, we aim at classifying ac-
ceptable syntactic frames, given embeddings for
each of the verbs.

5.1 Model

Architecture We cast the identification of syn-
tactic frames in which a verb can appear as a multi-
label classification problem. We train one classi-
fier per alternation, and the classes to be predicted
correspond to the participating frames (cf. Table
1), i.e., each classifier predicts values for 2 differ-
ent classes.

Employing a multi-layer perceptron (MLP)
with a single hidden layer, the probability of a syn-
tactic frame s being acceptable for a given verb is
modeled as:

p(s) = o(Wa(f(Wix)) (D

Here, z is the input, i.e., a word embedding repre-
senting a given verb, W} and W5 are weight matri-
ces, o denotes the sigmoid function, and the acti-
vation function f is a rectified linear unit (ReLU).

Hyperparameters and Training Regime We
employ the same hyperparameters for all word-
level classifiers. In particular, we use 30-
dimensional hidden states; note that the size of the
embedding vectors is defined by the type of em-
beddings we use. During the final classification,
we use a threshold of 0.7 to map the model’s pre-
dictions to binary outputs.



For training, we use the Adam (Kingma and
Ba, 2015) optimizer. All ANNs are trained for 15
epochs, but we apply the best performing model
on the test set. Further, we use 4-fold cross-
validation: the set of verbs is split into 4 equally
sized parts out of which 2 are chosen to be the
training set, 1 functions as the development set and
1 as the test set.

5.2 Metrics

We report both accuracy and Matthews correla-
tion coefficient (MCC, Matthews, 1975) for this
and the following experiment (cf. Section 6), but
primarily rely on MCC for evaluation following
Warstadt et al. (2018). MCC is a special case of
Pearson’s r for binary classification. It measures
correlation between two binary distributions in the
range from -1 to 1, with any two unrelated dis-
tributions having a score of 0, regardless of class
imbalance. As such, this metric is more robust to
unbalanced classification than traditional metrics
like F1 or accuracy, both of which favor classifiers
with a majority class bias.

5.3 Results

Table 4 shows our results. Our first observation
is that, overall, accuracies for GloVe and CoLA-
style embeddings are comparable for all classes.
This suggests that they both contain similar infor-
mation about verbs and syntactic frames, and is in
line with the fact that both embeddings are based
on co-occurrences of words.

Second, we find that, for GloVe embeddings,
the MLP performs on par with the majority base-
line for some verb frames, namely causative and
there, as well as DATIVE prep. and DATIVE 2-
Obj.; a look at the model predictions reveals that it
indeed predicts the majority class for all examples.
In this case, MCC will be zero, which is indicative
of situations where the model predictions are no
better than random. We will not further analyze
these cases, since the results likely indicate that
our lexical dataset does not contain enough exam-
ples for the model to learn from, and, thus, do not
tell us anything meaningful about the embeddings.
We would like to note that methods which explic-
itly account for skewed datasets might help for
DATIVE prep. and DATIVE 2-Obj., but we leave
an investigation of such methods for future work.

Finally, we obtain a weak (0.1-0.5) to moderate
(0.5-0.7) MCC for both embedding methods and
all other classes (with the MLP’s accuracy also of-
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ten being higher than that of the majority base-
line). This indicates that information about the
evoked syntactic frames can indeed be extracted
from verb embeddings. Relatively good perfor-
mance (>0.45) is found for the inchoative frame
(both embeddings), the DATIVE 2-Obj. frame
(CoLA), the with frame (both embeddings), and
no-there frame (both embeddings). Since our clas-
sification method (an MLP) is rather simple, our
results can be considered a lower-bound on perfor-
mance, thus showing that verb-frame information
is rather obvious in our investigated embeddings.

6 Experiment 2: From Acceptability to
Acceptable Argument Structures

Linguists are able to arrive at a classification of
a verb according to its syntactic frames by in-
terrogating whether sentences with a given verb
and frame are acceptable. Analogously, we can
observe whether a verb’s frame-selectional prop-
erties can be extracted from a sentence embed-
ding by training an acceptability classifier to dis-
tinguish sentences with acceptable from sentences
with unacceptable verb-frame combinations. If
a classifier is able to reliably classify all mini-
mal pairs of several verbs with different frame-
selectional properties from a sentence embedding
alone, we can infer that the sentence embedding
contains enough information to distinguish both
the frame-selectional properties of the verbs and
the relevant syntactic frames.

Model Our acceptability classifier is again an
MLP with a single hidden layer. We model the
probability that a that sentence .S is acceptable as:

p(S) = o(Wa(tanh(Wix)) (2)

Here z is the input, a sentence embedding ob-
tained from the real/fake sentence encoder de-
scribed in Section 4, W; and W5 are weight matri-
ces, o denotes the sigmoid function, and tanh is
the hyperbolic tangent activation function. We use
a threshold of 0.5 to map the model’s predictions
to binary outputs.

Training Details To select hyperparameters, we
train 20 acceptability classifiers on each of the
five datasets, and an additional 20 classifiers
on a dataset produced by aggregating all the
datasets. We repeat all experiments augmenting
each dataset with the more than 10k sentences



CAUSATIVE-INCHOATIVE DATIVE SPRAY-LOAD there-INSERTION UNDERSTOOD-OBJECT

Inch. (Caus.) Prep. 2-Obj. with Loc. no-there (there) Refl. Non-Refl.
ColLA: Majority BL Acc. 66.7 (100.0) 85.0 849 71.0 739 78.7 (100.0) 97.7 83.0
CoLA: MLP MCC 0.555 0.0 0.32 0.482 0.645 0.253 0.459 0.0 00 0.219
ORA Acc. 81.0 (100.0) 86.6 88.3 858 729 84.3  (100.0) 97.7 79.0
GloVe: Majority BL Acc. 66.8 (100.0) 85.0 853 71.0 74.6 79.1 (100.0) 97.6 81.5
GloVe: MLP MCC 0.672 0.0 0.0 0.0 0.585 0.145 0.536 0.0 0.0 0.3
’ Acc. 855 (100.0) 85.0 853 839 734 85.8  (100.0) 97.6 73.2

Table 4: Results from Experiment 1 for CoLA-style embeddings (top) and GloVe embeddings (bottom); “Majority
BL” denotes the majority baseline. Bolded MCC values represent reasonably strong correlations (above 0.45).
Results for the majority baselines differ due to different words not having a vector representation within the re-
spective embeddings. The corpus does not contain negative examples for caus. and there frames (parenthetical);
these results cannot be interpreted and are only included for completeness.

from the corpus of linguistic acceptability (CoLA)
built by Warstadt et al. (2018). Hyperparameters
are chosen by random search within the follow-
ing ranges: hidden size € [20, 100], learning rate
€ [102,10°], and dropout rate € {0.2,0.5}. All
models are trained using early stopping with a pa-
tience of 20 epochs.

6.1 Results

Table 5 shows results for acceptability classifica-
tion on the verb—frame datasets. These results lead
us to conclude that the sentence encoder we test
does reliably encode some fine-grained lexical in-
formation, but fails to do so in all cases. Our mod-
els are able to perform reliable acceptability clas-
sifications on several of the alternations featured in
FAVA, achieving a moderate correlation (0.5-0.7)
in 5 out of 12 experiments, and a strong correlation
(>0.7) in one experiment. Most classifiers achieve
a correlation above 0.3.

Across all verb classes, augmenting the train-
ing data with CoL A examples lowers MCC. How-
ever, when evaluating on the aggregate dataset
augmenting the training data with CoLA improves
MCC. One explanation for this might be that
the distribution from which the test set is drawn
does not resemble the training distribution: for
instance, in the CAUSATIVE-INCHOATIVE with
CoLA set, training examples illustrating the rel-
evant alternation are outnumbered about 20:1 by
CoLA examples that illustrate mostly unrelated
syntactically or semantically complicated phe-
nomena.

On the other hand, augmenting the combined
dataset with sentences from CoLA helps. Per-
forming well on the combined dataset requires
an acceptability classifier with knowledge of sev-
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eral unrelated phenomena, so it is not surpris-
ing that augmenting the verb-alternation sentences
with domain-general CoLA data improves perfor-
mance.

The easiest phenomenon by a wide margin for
acceptability classifiers was the UNDERSTOOD-
OBJECT alternation. One explanation for this fact
might be that the semantic relatedness of verbs like
blink and objects like her eyes makes it easier to
recognize from the sentence embedding whether
their co-occurrence is expected or anomalous; for
example, eye is the most common collocate for
blink, hand is the most common one for clap, and
tooth is in the top five most common collocates for
chip (Davies, 2008, 2009).°

The next easiest alternations for our models
to learn are CAUSATIVE-INCHOATIVE and there-
INSERTION, both of which have at least one in-
transitive verb frame (both frames are intransitive
in the case of there-INSERTION, but in one frame
there is a locative adjunct). One common denomi-
nator among these three easiest alternations for the
acceptability model is that they all involve verbs
appearing in an intransitive frame (in the case of
there-INSERTION a locative adjunct is present as
well). By contrast, the DATIVE and SPRAY-LOAD
alternations both involve verbs that take multiple
arguments, appearing with up to three arguments
(or possibly two arguments and a locative adjunct)
in all frames. Intransitive verb frames are the sim-
plest syntactic frames possible, and it might be ex-
pected that they are easiest to recognize.

Qualitatively, we do not find that the amount
of training examples in the dataset was correlated
with performance. By way of illustration, the
SPRAY-LOAD alternation accounts for over half

*https://corpus.byu.edu/coca/



Comb. CAUSATIVE—-INCHOATIVE DATIVE SPRAY-LOAD there-INSERTION UNDERSTOOD-OBJECT

o CoLa MCC 0290 0.603 0413 0323 0.528 0.753
Acc. 646 85.4 76.0 66.2 72.9 87.4

CoLa  MCC 0361 0.464 0329 0261 0.523 0.638
w Acc. 68.7 81.2 59.0 634 72.5 81.8
____MCC 00 0.0 0.0 0.0 0.0 0.0
Majority BL ) .~ 66.6 77.6 82.1 60.3 77.5 537

Table 5: Results from Experiment 2. “w/o CoLA” are models trained on datasets not augmented with CoLA; “w/
CoLA” are models trained on augmented datasets; “Comb.” refers to an aggregate dataset. Bolded MCC values

represent moderate correlations (above 0.45).

of all the generated data, yet it was by far the hard-
est individual alternation for our models to learn.

7 Related Work

This investigation is part of a growing body of
work which seeks to investigate the linguistic
competence of ANNs. For instance, a study by
Linzen et al. (2016) tested the ability of ANNs
to identify mismatches in subject-verb agree-
ment, even in the presence of intervening “distrac-
tor” nouns. Similarly, Ettinger et al. (2016) in-
vestigated whether sentence embeddings contain
grammatical information, e.g., about the syntactic
scope of negation.

Further previous studies on which types of
information are contained in embeddings in-
clude Bjerva and Augenstein (2018), which asked
whether certain phonological, morphological and
syntactic information can be extracted from lan-
guage embeddings. Malaviya et al. (2017) pre-
dicted features from language embeddings which
were trained as part of an ANN for machine trans-
lation. Finally, Ostling and Tiedemann (2017)
learned language embeddings via multilingual lan-
guage modeling and used them to reconstruct ge-
nealogical trees. However, we are interested in
word or sentence embeddings. Extracting infor-
mation from word embeddings is a common task
in natural language processing. While most NLP
research is application-oriented and directly or in-
directly focuses on obtaining embeddings which
contain as much knowledge about the task at hand
as possible (e.g., by varying the training corpus or
embedding method), we are interested in the ques-
tion how much information is trivially contained in
selected popular embeddings.

Also worth mentioning here is a lexical resource
named VerbNet (Kipper-Schuler, 2005; Kipper-
Schuler et al., 2006). This database contains verbs
which were classified according to their seman-
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tic and syntactic properties, including their Levin
classes.” VerbNet has been used in various NLP
applications, e.g., semantic role labeling (Giuglea
and Moschitti, 2006), word sense disambigua-
tion (Brown et al., 2011), information extraction
(Mausam et al., 2012), or investigation of human
language acquisition (Korhonen, 2010). While
this resource is very extensive, it only provides a
few example sentences (generally only one or two
per frame) for each verb. Since we want to inves-
tigate if argument structure information is present
in sentence embeddings, we create a larger corpus.

8 Conclusions

We present complementary word-level and
sentence-level datasets, LaVA and FAVA, cover-
ing five verb-alternations. We train classifiers on
verb embeddings to distinguish which syntactic
frames a verb can evoke and which it cannot. We
further train acceptability classifiers with sentence
embeddings as input for sentences which do or
do not contain acceptable verb—frame combi-
nations. We conclude that information about
verb-argument structure alternations is present in
both word-level and sentence-level embeddings.
However, some frames seem to be easier to
judge than others, and for only few frames a
strong correlation can be obtained between model
predictions and our gold annotations. There is
considerable opportunity for future work which
generalizes these experiments to other sentence
encoders, verb alternations, and lexical properties.
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