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Abstract

Learning vocabulary is essential to success-
ful communication. Complicating this task is
the underappreciated fact that most common
words are associated with multiple senses (are
polysemous) (e.g., baseball cap vs. cap of a
bottle), while other words are homonymous,
evoking meanings that are unrelated to one an-
other (e.g., baseball bat vs. flying bat). Mod-
els of human word learning have thus far failed
to represent this level of naturalistic complex-
ity. We extend a feature-based computational
model to allow for multiple meanings, while
capturing the gradient distinction between pol-
ysemy and homonymy by using structured sets
of features. Results confirm that the present
model correlates better with human data on
novel word learning tasks than the existing
feature-based model.

1 Introduction

Children acquire language at a remarkable rate
despite many layers of complexity in their learn-
ing environment. Previous computational models
of human vocabulary learning have been primar-
ily aimed at the mapping problem or the prob-
lem of “referential indeterminacy” (Quine, 1969),
namely, determining which word maps onto which
object within a noisy context (Siskind, 1996;
Trueswell et al., 2013; Stevens et al., 2017; Smith
et al., 2014; Fazly et al., 2010; Frank et al., 2009).
These models explicitly make the simplifying but
counter-factual assumption that each word can
map to only one meaning in order to address how
it is that learners determine which meaning a word
refers to from among multiple potential referents
in a scene. The models further assume that each
possible meaning competes with every other pos-
sible meaning. For example, in a scene depicting
“A cat drinking milk”, the meaning of the word
cat competes with the meaning of milk, bowl and
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every other potential meaning evoked in the scene.
This perspective emphasizes the richness of visual
scenes, but it overlooks the complexity associated
with word meanings which very commonly refer
to multiple distinct senses or meanings (Piantadosi
et al., 2012). For example, a bowl can refer to a
“dish used for feeding” in the cat scene, but to a
“toilet bowl” within a different context. That is,
the meaning of a word cannot be a winner-takes-
all affair in which meanings compete with one an-
other across contexts, because people learn to as-
sign multiple meanings to many words in their vo-
cabularies.

Multiple meanings of one word can typically
not be subsumed under a general definition or rule.
This is clearly true in the case of homonyms,
which have multiple, unrelated meanings (e.g.,
baseball bat vs. flying bat). It is also true of many
polysemes, which evoke conventional senses that
are related to one another yet distinct. Natural lan-
guage polysemy often involves extensions along
multiple dimensions that are not completely pre-
dictable on the basis of a general definition or
rule. For example, while baseball caps and bottle
caps both cover something tightly, English speak-
ers must learn that corks and lids, which also cover
things tightly, are not called caps, while mush-
room caps are, even though the latter do not cover
anything tightly (for discussion of rule-based pol-
ysemy see e.g., (Srinivasan and Rabagliati, 2015;
Srinivasan et al., 2017)). Notably, polysemes are
much more frequent than homonyms, insofar as
40% of frequent English words are polysemous
(Durkin and Manning, 1989), while closer to 4%
of words are homonyms (Dautriche, 2015).

Even though homonyms are relatively rare, chil-
dren as young as 3 years old have been found to
know a number of them (Backscheider and Gel-
man, 1995). At least for these words, preschoolers
have managed to overcome their reluctance to as-
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sign a second meaning to a familiar word (Casen-
hiser, 2005). We also know that children readily
generalize the meaning of a word to include new
referents that share a single dimension, such as
shape (Smith et al., 2002) or function (Gentner,
1978), and Srinivasan et al. (2017) has found that
4-5 year-old children can be taught that a word ex-
tends to other referents that share the same mate-
rial (Srinivasan et al., 2017).

While previous psycholinguistic work has pri-
marily focused on learning words with a single
meaning or words that can be generalized along
a single dimension (rule-based polysemy), a re-
cent study that we simulate below has investi-
gated words with multiple distinct, conventional
meanings (non-rule-based). This work has demon-
strated that it is easier to learn conventional poly-
semy when compared with homonymy, even when
the polysemy follows complex, multidimensional
extension patterns as in natural language. !

We propose a computational model that al-
lows words to be assigned multiple meanings that
cannot be generated by a one-dimensional rule,
but must instead be learned through exposure
(Brocher et al., 2017). We use the results from
the behavioral experiment in order to inform and
test the proposed model. As reported, the model
not only captures the finding that people find it
easier to learn polysemous words than ambiguous
words, but it also closely approximates human er-
rors. This represents a first step toward addressing
the complexity involved in learning more than a
single meaning of a given word.

2 Related Work

Only two recent models of human vocabulary
learning allow words to evoke multiple senses.
The model of Kachergis et al. (2017) implements a
bias to prefer a single referent, but allows a second
(unrelated) candidate meaning to be represented.
Another model, Pursuit, maps each word onto a
single candidate meaning per trial, and selects a
new candidate meaning (at random) only when the
primary meaning is disconfirmed (Stevens et al.,
2017). This model retains a stipulation that only
a single meaning wins. Importantly, neither of
these models is evaluated on their ability to ac-
curately represent multiple meanings. In fact,
these and most other models make the simpli-
fying assumption that each sense is represented

"Experimental results are under submission.
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atomically, without any internal structure or fea-
tures. This precludes them from even attempting
to distinguish polysemy from homonymy, since
each meaning is equally (un)related to every other
meaning.

It is necessary to allow word meanings to have
internal structure if we are to capture relation-
ships among meanings of a single word. The one
model of human vocabulary learning that assigns
such internal structure is the feature-based asso-
ciative model of (Fazly et al., 2010), which has
been extended in multiple studies to account for
patterns of learning complex naturalistic meaning
(Nematzadeh et al., 2012, 2014). This model rep-
resents a cross-situational learner, acquiring the
meaning of each word incrementally by aligning
each feature in the context with a probabilistic as-
sociation to each word. The model learns by ulti-
mately representing each word’s meaning as an as-
sociated “bag-of-features”. We choose this model
as a basis for our approach, given its successful ap-
plication in many word learning tasks and its abil-
ity to represent fine-grained properties (features)
of meanings.

But critically, we extend the NFS12 model in
order to represent the learning of words with mul-
tiple distinct meanings that may share overlapping
features to varying degrees. The key innovation
we add to the bag-of-features model of NFS12
is the following: we assign each distinguishable
object a distinct, albeit overlapping, set of fea-
tures. In our version, the model learns words
as associations to distinct structured collections of
feature-sets rather than learning independent asso-
ciations of each word to each feature. We replicate
the input and tasks of recent experimental multi-
meaning word learning work, and compare the
performance of the extended model with NFS12
and with the performance of human learners. In
the following sections, we describe the original
model and our modification of it.

3 Computational Models

3.1 Cross-situational Word Learning Model

We use the implementation of the cross-situational
word learner as implemented by Nematzadeh et al.
(2012) (NFS12) as the best fitting basis for our
model. While later versions of the model are
also available, these versions encode assump-
tions regarding hierarchical-categorical learning
that are irrelevant to this research and require



hand-coded data of the categories in the input.
NFS12 learns from <utterance, scene> input
pairs that simulate what a language learner hears
in the linguistic input: i.e., the utterance, and
the features corresponding to the non-linguistic
context (the scene). For example, the learner
might first encounter the word cap accompanied
by features that represent the scene of a parent
asking a child to put a cap on a summer day, e.g.,

Utterance = “put your cap on”
Features = {sun, light, clothing, fabric,
cover, animate,... }

The features for each utterance correspond to all
relevant aspects of the understood message and the
witnessed scene. This is represented as a bag-of-
features in the sense that there are no boundaries
to indicate which features represent each object in
the visual world. The model learns the probabilis-
tic association between each feature, f, and each
word, w, through a bootstrapping process. The
model initializes all P,_;(f|w) to a uniform dis-
tribution over all words and features. At time ¢,
the model learns the current association of w and
f as proportional to their prior learned probability:

P 1 (flw)
Swev Pe—1(flw')

where P, (f|w) is the probability of f being part
of the meaning of w at the previous learning step.
If the association of f with some other word in the
utterance is particularly high, the association of f
with w will be correspondingly lower. The new
evidence is then used to update the probability of
all observed features in a smoothed version of:

)]

assoct(w, f) =

assocy(w, f)
> per assoct(w, f)
where F' is the set of all features observed thus
far. The associations are thus summed over their

occurrences in the input in proportion to the time
passed since last occurrence.

Py(flw) = @)

ap (w| f)

assoct(f,w) = IH(Z (t— t’)d)

t'=1

3)

The associations are updated with every learn-
ing step to account for past experience. The de-
nominator represents the decay of the association
over time as memories of the input are assumed to
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fade in memory. d is proportional to the strength
of association such that stronger associations will
fade less, even when significant time has passed
since a previous encounter of w, i.e., t — t’. The
learning iterations result in an association score
between each feature and each word based on the
observed input. The acquisition of word meaning
is defined as success on a prediction task over the
learned associations as described in Section 4.

3.2 Exemplar-based Learning as Sets of
Features

The NFS12 model creates a bank of associations
of varying strengths between features and words.
It is based on the idea that over many observations
of a word, the features that are actually relevant
to that word will gain in probability over features
that only coincidently co-occurred with the word
in some subset of contexts. To date, no version of
NFS12 has been evaluated on words with multi-
ple senses. Note that if applied to multiple mean-
ings in its current formulation, all of the features
from all of the word’s meanings will become as-
sociated with the word, without regard to whether
certain features tend to occur with one meaning
while other features tend to occur with a differ-
ent meaning. That is, a word with multiple mean-
ings will come to be associated with a merged
bag-of-features. For instance, separate occur-
rences of the word cap would be associated with
either {plastic, cover,bottle} or { fabric, head}
but the model would predict that a combination of
features such as {cover, fabric, bottle} would be
a reasonable interpretation of cap.

We predict that this vague representation will
not be sufficient to approach human-like perfor-
mance in recognizing distinct senses. Based on
evidence that people are able to remember partic-
ular instances of objects they observe (Allen and
Brooks, 1991; Brooks, 1987; Thibaut and Gelaes,
2006; Nosofsky et al., 2018), we modify the input
representations to include sets of features for each
word in the utterance as follows.

We propose a Structured Multi-Feature (SMF)
model that extends NSF12, by associating each
word with sets of features that have been learned
on the basis of witnessing potential referents (as
opposed to features) across scenes.> For example,
if a scene involved two potential referents (the

2Like other models of human word learning, we focus our

evaluation on for now the learning of words that correspond
to referents in scenes.



sun and a baseball cap), the following feature
sets would be candidates for association with the
words in the utterance:

Utterance = “put your cap on”
Feature sets = {sun, light},
{clothing, fabric, cover}

We modify the learning process to estimate the
association of a word, w, and a set of features, s,
following the formulation of the original model.

Bi(s|w)

_ 4
Soeo Pilsloy P

assoc(w, s) =

Thus a set of features, s, essentially represents
an hypothesized sense of a referential word. The
probability P;(s|w) is estimated from the previous
occurrences of the word, where the probability of
each set is proportional to the degree of overlap in
features rather than a direct observation of the spe-
cific set. The degree of overlap between two sets,
spand s; is calculated using the Jaccard similar-
ity coefficient, which is the proportion of shared
features across the two sets over all features in the
two sets.

, , |sf 0 s,
_ N — 125 egl 5
jacc — sim(sy, sj) 15,05, 5)

The modification — making use of coherent sets
of features rather than independent features — cap-
tures a key claim about how people learn referen-
tial words. Rather than learning the degree of as-
sociation between words and individual features,
e.g., learning cap and fabric, independently of the
association between cap and clothing, the model
assumes that people learn from coherent exem-
plars. The learner eventually learns a collection
of sets of features with various degrees of associ-
ation strength among the feature sets. The asso-
ciation between fabric and cap can only be deter-
mined once other features are taken into account
as well. In this case, fabric will be more strongly
associated with cap in the presence of the feature,
clothing, and less associated with cap if the fea-
ture, bottle, is included and clothing is missing. 3
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(a) Polysemy

(b) Homonymy

Figure 1: A sample of the objects used in the
novel-word learning experiment. Polysemy (up-
per panel) - pairs share properties as marked by
arrows, with no single core feature shared by all
three exemplars. Homonymy (lower panel) - a
scrambled selection of three objects with fewer re-
lationships among exemplars.

4 Learning Polysemy vs. Homonymy

We evaluate the NFS12 model and the present
SMF model by simulating a novel word learn-
ing task in which human participants learned sev-
eral polysemous or homonymous words as de-
scribed below. The experiment compared how
three populations learn words with multiple mean-
ings: adults, typically developed children, and
children with autism spectrum disorder. Since no
previous computational models have attempted to
capture how humans learn multi-meaning words,
we focus on the adult group as a first step since
it allows us to minimize assumptions regarding
learners’ development of cognitive abilities. We
follow the experimental design to investigate, for
the first time, how words with distinct but related
senses (conventional polysemy) are learned, par-
ticularly when the range of senses do not follow
from any language-wide rule.

4.1 Novel Word Learning Experiment

The experimental work explicitly compared the
distinction between homonymy and conventional
polysemy. In particular, participants learned 4
novel words, and each novel word was associated
with 3 clearly distinct novel objects. Randomly
interspersed among the 12 labeled objects were 20

3 A very recent publication by the authors of NFS12 exper-
iments with the use of sets but remains limited to single-sense
word representations and still learns association of word over
features rather than sets (Nematzadeh et al., 2017).
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Figure 2: An example of the stimuli presented to
participants in the label ID task. The target ob-
ject was presented along with 3 distractors, which
were targets for other novel words.

unlabeled filler (non-target) objects accompanied
by tones. Novel objects were used to avoid in-
terference from familiar words. Half of the par-
ticipants were randomly assigned to a Polysemy
condition in which the objects were related to one
another with the 3 objects sharing distinct features
with one another. The other half was assigned to
a Homonymy condition, in which the 3 objects
assigned to each word did now share any distin-
guishing features that could distinguish them from
the filler objects in terms of a stronger feature-
relation. (See Figure 1 for an example). The “pol-
ysemous” meanings of words were confirmed to
be more similar than the “homonymous” mean-
ings, as intended, using a separate norming study
with a new group of participants.

After brief exposure, participants completed
the following two tasks designed to determine
whether polysemous words were easier to learn
than homonymous words.

1. Label ID task - Participants were asked to se-
lect, from 4 available options, the one ob-
ject that corresponded to a given label. The
3 foil objects had been labeled by each of
the 3 other labels (see Figure 2). Results
showed significantly higher accuracy for the
polysemy condition over the homonymy con-
dition.

2. Sense Selection task - Participants were pre-
sented with the label of one of the 4 words,
and shown 8 objects (see Figure 3). Three
of the objects corresponded to the 3 senses
of the word and the 5 additional objects were
fillers that had been witnessed during expo-
sure. Accuracy was lower on this task, show-
ing only slight polysemy advantage due to
task difficulty.
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Figure 3: An example of the stimuli presented to
participants in the Sense Selection task. All 3 tar-
get objects associated with one of the novel words
were presented along with 5 filler objects, which
had also been witnessed during the exposure but
had not been labeled.

The Label ID task allows a comparison of the
two conditions, polysemy and homonymy, but par-
ticipants may have used the memory of one or two
words to perform well by a process of elimination
by recognizing an object as related to a different
label. The Sense Selection task allows for a more
thorough error analysis; importantly, the particular
objects selected by humans was made available to
the computational analysis. We perform an error
analysis on the selection rate of each filler object.
The results of this task provide a crucial test of the
bag-of-features meanings learned by the NFS12
model.

4.2 Experimental Simulation

We trained the model on input that reflected the
exposure in the novel word study. In particular,
two annotators hand-coded each object with 4 to
5 features to compose a joint a list of 40 fea-
tures that jointly described all 12 labeled and 20
unlabeled (filler) objects. The features included
properties related to shape, size, color, texture,
material, symmetry, etc. We trained the NSF12
and SMF models independently: the features were
used as a bag-of-features for the NFS12 model,
and as structured sets of features for SMF. Recall
that although each input item consisted of a sin-
gle word associated with observable features, the
models differ in the way they learn. NFS12 learns
the association of a word with each feature, while
SMF learns the association of a word to a subset
of features.

At the end of training, we tested the models by
simulating each of the two tasks described above.
We first estimate the association of each word to
each of the items, using the cosine distance be-
tween the learned associations and the feature rep-



\ [ Polysemy | Homonymy |

NFS12 0.88 0.37
SMF 0.92 0.51

Table 1: Pearson correlation between results from
participants on the task with NSF12 and proposed
SMF models.

resentation of the word. For the NFS12 model,
we calculated the cosine similarity between all the
associated features. For the SMF model, we cal-
culated the maximum cosine similarity score over
all the sets of features associated with the word
and the feature representation of the item (i.e., we
considered the sense of the word most similar to
the object in question).

The likelihood of choosing an object as a target
is measured by the proportional similarity of each
object compared with the other objects presented
in the task. For each stimuli set of 4 items used in
the Label ID task (see Figure 2) and 8 items used
for the Sense Selection task (see Figure 3) , we
calculate

cos(o,w)
Yoo cos(o’,w)
where, w is the word presented as visual stimuli at
test. o ranges over all the objects presented at test

(4 or 8 items), and O is the full set of objects for
this test set.

P(object|w) = (6)

5 Results

The experimental settings kept the alignment of
sets of objects constant across participants while
randomizing the word labels and the order of ob-
ject presentation. For example, the same set of 4
objects in Figure 2 was used to test all 4 words. We
replicated the combinations of objects to test each
label in order to compare the computational mod-
els to people’s choices. We used the default pa-
rameter settings included in the configuration files
for NFS12.

5.1 Label ID Task

We first evaluate each model on its ability to repli-
cate the polysemy advantage observed in human
data. We obtain the item selection probability us-
ing Equation 6 for the target items only. Following
the results from human experiments, we average
the item probability over all targets to get the re-
sults from each model (see Figure 4).
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Human Results NFS12 SMF
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Figure 4: The likelihood of choosing an object cor-
responding to a target sense for Homonymy vs.
Polysemy conditions in the Label ID task for (1)
the human results, (2) the model of NFS12, (3)
our extension of that model, SMF.

As can be seen in the middle panel of Fig-
ure 4, NFS12 replicates the human polysemy ad-
vantage in identifying the target meanings in the
polysemy condition more accurately than targets
in the homonymy condition. However, the accu-
racy of NFS12 in choosing the target object for
the given label is considerably lower compared
with the human results in the left most panel.
The low accuracy of NFS12 compared with hu-
man performance suggests that NFS12 is prone to
selecting non-target objects which do not resem-
ble a specific sense of the learned word. Recall
that because NSF12 does not maintain each exem-
plar’s associated set of features, the model creates
a superset of weighted features without respect-
ing the co-variance among features that are asso-
ciated with a particular sense. Thus, NSF12 as-
signs high probability to objects which share fea-
tures from distinct target meanings, whereas hu-
mans are much less likely to do this.

To illustrate, Figure 1 provides example stim-
uli representing three senses of a polysemous vs.
homonymous word. The middle object in the up-
per panel of Figure 1 shares some features with the
left-most object (e.g., handle and overall shape),
and other features with the right-most object (e.g.,
color, texture, and rectangular shape). However,
the homonymous senses of the word share fewer
features with one another (lower panel of Fig-
ure 1). Since almost no features overlap between
pairs of homonymous objects, the number of fea-
tures included in the superset for this word is



higher than for the polysemous word.

As a result, NFS12 under-performs in accuracy
for all targets presented in the upper panel of Fig-
ure 1 in both the homonymy and polysemy con-
ditions. In homonymy (lower panel of Figure 1),
the bag-of-features consists of more features com-
pared with the polysemous condition. Probabilis-
tically, this bag-of-features will generate a higher
number of subsets that happen to coincide with
the features associated with fillers, which results in
lower the accuracy of NFS12 for homonymy. For
instance, NFS12 accuracy is significantly lower
for the translucent yellow item in the middle of
the panel because it simply aggregates the highly
frequent features, learning a strong association be-
tween the word label and the feature orange. On
the other hand, SMF preserves the co-occurrence
statistics of features, preventing the orange feature
from being incremented in isolation from the other
features of that object.

The SMF model also captures the polysemy
over homonymy advantage with higher accuracy
than NFS12. Overall then, accuracy more closely
matches human performance more closely when
compared with NFS12 (see right panel on Fig-
ure 4). To quantify the correlation of each model
with the particular selections made by human par-
ticipants, we calculate the Pearson correlation over
all objects (targets and fillers), using the results
from Equation 6. (We use the Pearson correlation
as the results from both human and models have
normal distributions with kurtosis values close to
3).

The correlations with human errors for both
models are given in Table 1. SMF offers signifi-
cant improvement over NFS12 in the homonymy
condition, and mirrors human errors in the poly-
semy condition slightly better as well. The weaker
absolute correlation in the homonymy condition
of the SMF model when compared with polysemy
(.51 vs. 92) stems from the model over-performing
on some items while under-performing on oth-
ers, when compared with humans. We hypoth-
esize that people differ from the model in the
weights they give particular features, e.g., color
vs. size. For example, SMF has higher accu-
racy than humans in selecting the leftmost item
in the homonymy condition in Figure 1, possibly
by forming a bias towards large-size items, while
people may not attend to size to the same degree.

The models increase probability with every
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Human Results NFS12 SMF
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Figure 5: Sense Selection Task: The likelihood of
choosing an object corresponding to a target sense
for Homonymy vs. Polysemy conditions in (1) the
human results, (2) the model of NFS12, (3) our
extension of the model, SMF.

\ [ Polysemy | Homonymy |
NFS12 0.82 0.67
SMF 0.91 0.90

Table 2: Pearson correlation between errors pro-
duced by human participants with NSF12 and
SMF models on the Sense Identification task.

overlapping feature regardless of what the feature
denotes (shape, color, size, etc.). It is well known
that children learn to attend to shape in learning
referential novel nouns by two years of age (Smith
et al., 2002). Moreover, people learn to attend to
certain dimensions of meaning more closely given
certain categories, e.g., using color to distinguish
fruits and vegetables but not dogs and cats (Slout-
sky et al., 2016). The SMF model overcomes this
difficulty to some degree by having distinct mem-
ories of individual items. In order to capture these
sorts of biases toward certain features for certain
types of words, future models need to learn such
biases over time, as we discuss further in Sec-
tion 6.

5.2 The Sense Selection task

Following the results in subsection 5.1, we aim to
further our analysis of the learning pattern of each
model using a second task which challenges par-
ticipants to recognize all senses of a word simul-
taneously, and includes more distractors (filler ob-
jects). The accuracy of choosing all three target
items is presented in Figure 5.

Human’s polysemy advantage was less pro-



nounced in the Sense Selection task compared
with the Label ID task. As shown in Figure 5,
both models also show less difference between
polysemy and homonymy than they did on the
Label ID task. While the polysemy advantage is
higher in NFS12, SMF actually shows closer per-
formance to the human data, due to more compa-
rable levels of accuracy.

We again evaluate the probability of choosing
each of the objects over both targets and fillers.
That is, we compare the probability of each model
selecting each object with human performance. In
particular, we calculate the Pearson correlation be-
tween each of the two models and human results;
see Table 2. The correlations of SMF with hu-
man results are much better than NFS12 in both
the Polysemy and Homonymy conditions. These
results align with our findings in the previous sim-
ulation, especially in mirroring NFS12’s difficulty
in learning unrelated senses (homonymy). The
SMF model, on the other hand, approaches a 0.9
correlation in both conditions. Thus, although
the SMF model has a lower overall probability
of choosing targets compared to people, it closely
mirrors human error patterns. These results sup-
port the role of distinct memories of exemplars,
while taking into account the overlap among sets
of features during selection. Note that the high
correlations can be attributed to similarity in the
relative ranking across items for the human re-
sults and SMF. At the same time, SMF still under-
estimate the overall probability of predicting cer-
tain items, which results in a lower accuracy com-
pared with the human results.

6 Discussion and Future Directions

We have presented a computational analysis of the
acquisition of word meaning for words with multi-
ple senses. Despite the growing interest in compu-
tational models for analyzing human word learn-
ing, this aspect has remained under-studied due to
the complexity of the problem. Our analysis is the
first, to our knowledge, to directly model differ-
ences in the acquisition of multi-sense words with
varying degree of overlap across senses. The com-
putational design enables a closer analysis of the
strengths and weaknesses involved in the human
learning of multi-sense words, though the analy-
ses of human errors.

The model of Nematzadeh et al. (2012) learned
the association between independent features and
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words. It was chosen as the benchmark for
our analysis because it represents the rare model
which goes beyond atomic meanings by offer-
ing feature-based representations. Results demon-
strate, however, that its bag-of-features represen-
tation is not sufficient to account for human-like
learning of multi-meaning words, particularly in
the case of homonymy, where combining the fea-
tures of unrelated senses results in a particularly
noisy representation. Our modified version which
is a Structured Multi-Feature model, changes both
the input representation and how the model learns
to associate words with meanings. In particular,
SMF preserves the co-occurrence statistics of the
features associated with particular objects (exem-
plars), as motivated by evidence in human mem-
ory research (Allen and Brooks, 1991; Brooks,
1987; Thibaut and Gelaes, 2006; Nosofsky et al.,
2018).

This study offers only the first step toward a
computational model that fully captures the way
that human learn realistic words, which commonly
evoke a range of senses that importantly include
function and metaphorical extensions that are not
part of the interpretation of our novel stimuli. We
recognize that our hand-coding of features makes
both NFS12 and SMF impractical, but insofar as
words meaningfully differ on a number of dis-
tinct dimensions, the reliance on features—however
they are to be determined-is reasonable. Given
the quite short exposure phase in the experimental
work, the current analysis has not explored the role
of memory or attention mechanisms included in
the original model of NFS12 (Nematzadeh et al.,
2014).

We believe that correlations with human perfor-
mance could potentially be improved with suprisal
or novelty affecting the weights of features. We
also know that people pay more attention to some
features over others in a way that depends on lin-
guistic cues, the domain involved, and their prior
knowledge. For example, people attend to colors
to distinguish fruits, while color is less important
when identifying dogs vs. cats.

The addition of structured sets of features offers
an improvement over a general bag-of-features ap-
proach and has demonstrated strong correlations
with human performance. Learning words with
multi-meanings is a common occurrence in natu-
ral languages so it behooves models that aim to
capture this basic fact.



Future extensions of SMF should incorporate
a mechanism to simulate attention, including pri-
macy and recency effects, in order to investigate
how people weight different features or dimen-
sions of meaning in various contexts. Although,
NFS12 included a mechanism in the model to en-
code higher attention to novel words, this only
captures item-based novelty, i.e., how frequently
an item is observed, which does not play a signif-
icant role within the context of our experiment.*
The multi-meaning words, however, introduce the
challenge of attending to new meanings of familiar
words over a short span of time. To more fully un-
derstand the relevant mechanisms and their roles
in word learning, we plan to simulate the tasks
discussed here using real-world polysemes with
much richer sets of features. The conclusions of
this study will be further used to guide extensions
of the experimental designs in order to consider
the role of attention in human word learning as
well.
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