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Abstract

RNN language models have achieved state-of-
the-art results on various tasks, but what ex-
actly they are representing about syntax is as
yet unclear. Here we investigate whether RNN
language models learn humanlike word order
preferences in syntactic alternations. We col-
lect language model surprisal scores for con-
trolled sentence stimuli exhibiting major syn-
tactic alternations in English: heavy NP shift,
particle shift, the dative alternation, and the
genitive alternation. We show that RNN lan-
guage models reproduce human preferences
in these alternations based on NP length, an-
imacy, and definiteness. We collect human
acceptability ratings for our stimuli, in the
first acceptability judgment experiment di-
rectly manipulating the predictors of syntac-
tic alternations. We show that the RNNs’ per-
formance is similar to the human acceptability
ratings and is not matched by an n-gram base-
line model. Our results show that RNNs learn
the abstract features of weight, animacy, and
definiteness which underlie soft constraints on
syntactic alternations.

The best-performing models for many natural
language processing tasks in recent years have
been recurrent neural networks (RNNs) (Elman,
1990; Sutskever et al., 2014; Goldberg, 2017), but
the black-box nature of these models makes it hard
to know exactly what generalizations they have
learned about their linguistic input: Have they
learned generalizations stated over hierarchical
structures, or only dependencies among relatively
local groups of words (Linzen et al., 2016; Gu-
lordava et al., 2018; Futrell et al., 2018)? Do they
represent structures analogous to syntactic depen-
dency trees (Williams et al., 2018), and can they
represent complex relationships such as filler–gap
dependencies (Chowdhury and Zamparelli, 2018;
Wilcox et al., 2018)? In order to make progress

with RNNs, it is crucial to determine what RNNs
actually learn given currently standard practices;
then we can design network architectures, objec-
tive functions, and training practices to build on
strengths and alleviate weaknesses (Linzen, 2018).

In this work, we investigate whether RNNs
trained on a language modeling objective learn
certain syntactic preferences exhibited by humans,
especially those involving word order. We draw
on a rich literature from quantitative linguistics
that has investigated these preferences in corpora
and experiments (e.g., McDonald et al., 1993;
Stallings et al., 1998; Bresnan et al., 2007; Rosen-
bach, 2008).

Word order preferences are a key aspect of hu-
man linguistic knowledge. In many cases, they
can be captured using local co-occurrence statis-
tics: for example, the preference for subject–verb–
object word order in English can often be captured
directly in short word strings, as in the dramatic
preference for I ate apples over I apples ate. How-
ever, some word order preferences are more ab-
stract and can only be stated in terms of higher-
order linguistic units and abstract features. For ex-
ample, humans exhibit a general preference for
word orders in which words linked in syntactic de-
pendencies are close to each other: such sentences
are produced more frequently and comprehended
more easily (Hawkins, 1994; Futrell et al., 2015;
Temperley and Gildea, 2018).

We are interested in whether RNNs learn ab-
stract word order preferences as a way of probing
their syntactic knowledge. If RNNs exhibit these
preferences for appropriately controlled stimuli,
then on some level they have learned the abstrac-
tions required to state them.

Knowing whether RNNs show human-like
word order preferences also bears on their suit-
ability as language generation systems. White and
Rajkumar (2012) have shown that language gener-
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ation systems produce better output when human-
like word order preferecences are built in; it may
turn out that RNN language models reproduce
such preferences such that they do not need to be
built in explicitly.

As part of this work, we validate and quan-
tify these word order preferences for humans by
collecting acceptability ratings for English sen-
tences with different word orders. To our knowl-
edge, this is the first experimental acceptability-
judgment study of these word order preferences
using fully controlled stimuli; previous experi-
mental work has used naturalistic stimuli derived
from corpora, in which the predictors of word
order are not directly manipulated (Rosenbach,
2003; Bresnan, 2007).

Alternations studied
We study four syntactic alternations in English:
particle shift, in which a verbal particle can ap-
pear directly after the verb or later (e.g., give up
the habit vs. give the habit up); heavy NP shift,
in which a verb is followed by an NP and a PP
with order NP–PP or PP–NP; the dative alterna-
tion (e.g. give a book to Tom vs. give Tom a book);
and the genitive alternation (e.g. the movie’s title
vs. the title of the movie).

In all these alternations, three common factors
influencing word order preferences are evident:
short constituents go before long constituents;
words which are definite go earlier; and words re-
ferring to animate entities go earlier. In fact these
preferences are very general patterns across lan-
guages, and in some languages constitute hard
constraints (Bresnan et al., 2001).

1 Methods

We investigate the learned word order preferences
of RNNs by studying the total probability they as-
sign to sentences with various word order prop-
erties. Specifically, we create sentences by hand
which can appear in a number of configurations,
and study how these manipulations affect the SUR-
PRISAL value assigned by an RNN to a sentence.
Surprisal is the negative log probability:

S(xn
i=1) = � log2 p(xn

i=1)

= �
n

Â
i=1

log2 p(xi|xi�1
j=1),

where xn
i=1 is a sequence of n words forming a sen-

tence and the conditional probability p(xi|xi�1
j=1) is

calculated as the RNN’s normalized softmax acti-
vation for xi given its hidden state after consuming
xi�1

j=1.
Surprisal has a number of interpretations that

make it convenient as a dependent variable for ex-
amining language model behavior. First, surprisal
is equivalent to the contribution of a sentence to a
language model’s cross-entropy loss: effectively,
our RNN language models are trained with the
sole objective of minimizing the average surprisal
of training sentences, so surprisal is directly re-
lated to the model’s performance. Second, word-
by-word surprisal has been found to be an ef-
fective predictor of human comprehension diffi-
culty (Hale, 2001; Levy, 2008; Smith and Levy,
2013); interpreting surprisal as metric of “diffi-
culty” allows us to analyze RNN behavior analo-
gously to human processing behavior (van Schijn-
del and Linzen, 2018; Futrell et al., 2018). Third,
surprisal more generally reflects the dispreference
or markedness of a sequence according to a lan-
guage model. High surprisal for a sentence cor-
responds to a relative dispreference for that sen-
tence. When the logarithm is taken to base 2, sur-
prisal is equivalent to the bits of information re-
quired to encode a sentence under a model.

In the studies below, we test hypotheses statis-
tically using maximal linear mixed-effects models
(Baayen et al., 2008; Barr et al., 2013) fit to predict
surprisals given experimental conditions.

1.1 Models tested

We study the behavior of two LSTMs trained
on a language modeling objective over English
text: the one presented in Jozefowicz et al. (2016)
as “BIG LSTM+CNN Inputs”, which we call
“JRNN”, which was trained on the One Billion
Word Benchmark (Chelba et al., 2013) with two
hidden layers of 8196 units and CNN character
embeddings as input; and the one presented in Gu-
lordava et al. (2018), which we call “GRNN”, with
two hidden layers of 650 units, trained on 90 mil-
lion tokens of English Wikipedia.

As a control, we also study surprisals assigned
by an n-gram model trained on the One Billion
Word Benchmark (a 5-gram model with modi-
fied Kneser-Ney interpolation, fit by KenLM with
default parameters) (Heafield et al., 2013). The
n-gram surprisals tell us to what extent the pat-
terns under study can be learned purely from co-
occurrence statistics with a small context window
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without any generalization over words. To the ex-
tent that LSTMs yield more humanlike perfor-
mance than the n-gram model, this indicates one
of two things. Either they have learned generaliza-
tions that are formulated in terms of more abstract
linguistic features, or they have learned general-
izations that can span larger distances than the n-
gram window.

1.2 Human acceptability ratings
We also compare RNN surprisals against human
preferences on our experimental items. We col-
lected acceptability judgments on a scale of 1
(least acceptable) to 5 (most acceptable) over
Amazon Mechanical Turk.1 For the studies of
heavy NP shift, the dative alternation, and the gen-
itive alternation, we collected data from 64 partic-
ipants, filtering out participants who were not na-
tive English speakers or who could not correctly
answer 80% of simple comprehension questions
about the experimental items. After filtering, we
had data from 55 participants. For the study of par-
ticle shift, we used data from a previous (unpub-
lished) acceptability rating experiment with 196
subjects, and the same filtering criteria. After fil-
tering, we had data from 156 participants.

2 Heavy NP Shift

HEAVY NP SHIFT describes a scenario where con-
stituent weight preferences become so strong that
an order which would otherwise be unacceptable
becomes more acceptable, as shown in Exam-
ple (1).

(1) a. The publisher announced a book on
Thursday.

b. *The publisher announced on Thurs-
day a book.

c. The publisher announced a new book
from a famous author who always
produced bestsellers on Thursday.

d. The publisher announced on Thurs-
day a new book from a famous author
who always produced bestsellers.

In these examples, the verb announced is followed
by a noun phrase (a (new) book...) and a tempo-
ral PP adjunct (on Thursday). The usual order for
these elements is to put the NP before the PP, but
when the NP becomes very heavy, the PP might

1Preregistered at https://aspredicted.org/sh9zf.
pdf.
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Figure 1: Mean preference for standard word order by
NP length. In this and other figures, for computational
models, preference is measured as total sentence sur-
prisal for Verb–NP–PP order minus total sentence sur-
prisal for Verb–PP–NP order; error bars represent 95%
confidence intervals of the contrasts between condi-
tions, computed by subtracting out the by-item means
before calculating the intervals (Masson and Loftus,
2003). For the human data, preference is measured as
the difference in mean acceptability for Verb–PP–NP
minus Verb–NP–PP, and error bars represent 95% con-
fidence intervals of the contrasts between conditions af-
ter subtracting out by-item and by-subject means.

be placed closer to the verb, which case the word
order is called SHIFTED. Heavy NP shift is the
primary example of locality effects in word order
preferences, in that it creates shorter dependencies
from the verb to the NP and the PP.

We tested whether RNNs show length-based
preferences similar to Example (1).2 We adapted
40 items from Stallings et al. (1998) which con-
sist of a verb followed by an NP and a temporal
PP adjunct, where the order of the NP and the PP
and the length of the NP are manipulated. If the
networks show human-like word ordering prefer-
ences, there should be a penalty for PP–NP order
when the NP is short, but this penalty should be
smaller or nonexistent when the NP is long.

Figure 1 shows the models’ preference for
the standard word order (Verb–NP–PP) over the
shifted word order (Verb–PP–NP), calculated as
the surprisal of sentences in shifted word or-
der minus their surprisal in standard word order.
Also included are the human acceptability rat-
ings, where the preference for the order Verb–NP–
PP is calculated as the average acceptability dif-
ference between Verb–NP–PP and Verb–PP–NP

2The preregistration for this experiment can be viewed at
https://aspredicted.org/ea6m8.pdf.
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across items. In all cases, we see that the shifted
order becomes more preferred when the NP is
long, although it never becomes the most preferred
order.

Our experimental design allows us to control for
the effect of sentence length on RNN surprisals.
The sentences with long NPs are naturally ex-
pected to have higher RNN surprisal than the ones
with short noun phrases, since they have more
words and thus higher information content. How-
ever, the Verb–NP–PP preference is quantified as
the difference between surprisal of order Verb–
PP–NP and surprisal of the order Verb–NP–PP, for
both the long and short NP conditions. The long
NP conditions may have higher surprisal overall,
but this will be cancelled out in the difference. The
crucial question is then whether this preference is
larger in the long NP case than in the short NP
case—whether the red and blue values in Figure 1
are significantly different across items. The crucial
statistic for each item i is given by the interaction
Ii:

Ii =(Si(short,Verb–NP–PP)�Si(short,Verb–PP–NP))

� (Si(long,Verb–NP–PP)�Si(long,Verb–PP–NP)),

where Si is the surprisal for the ith item in the
given condition. If Ii is significantly positive across
items, then we have evidence that NP length
causes a preference for Verb–PP–NP order even
when controlling for the intrinsic effects of length
and of the particular words in each item. The same
logic is applied to the analysis of the acceptabil-
ity ratings data. All studies in this paper apply
this same design and analysis. Similar designs are
common in psycholinguistics, and are applied to
RNN surprisal data in Futrell et al. (2018) and
Wilcox et al. (2018).

To test the significance of the interaction, we
use mixed-effects modeling with random inter-
cepts and slopes by item. We find that the in-
teraction is statistically significant in JRNN (in-
teraction size 4.0 bits, p < 0.001) and GRNN
(2.0 bits, p = 0.02), but not in the n-gram base-
line (1.2 bits, p = 0.13). The interaction in JRNN
is significantly stronger than in the n-gram base-
line (p = 0.03), but the interaction in GRNN is
not significantly stronger than the n-gram baseline
(p = 0.48). None of the models show the effect as
strongly as the human acceptability judgments.

Thus we find that both JRNN and GRNN ex-
hibit human-like word order biases for Heavy NP

shift, but do not find evidence for such a bias in
the n-gram baseline. The result suggests that the
LSTM models have learned a higher-order gen-
eralization that is not trivially present in n-gram
statistics.

3 Phrasal verbs and particle shift

Another domain of word order variation similar to
Heavy NP shift is phrasal verbs, which consist of
a verb and a particle, such as give up. The object
NP of a transitive phrasal verb can appear in two
positions: it can be SHIFTED (after the particle) or
UNSHIFTED (before the particle). As in Heavy NP
shift, the shifted order is generally preferred when
the NP is long:

(2) a. Kim gave up the habit. [shifted]
b. Kim gave the habit up. [unshifted]
c. Kim gave up the habit that was pre-

venting success in the workplace.
[shifted]

d. Kim gave the habit that was prevent-
ing success in the workplace up. [un-
shifted]

The fact that both word orders are possible is
called PARTICLE SHIFT. Particle shift provides an-
other arena to test whether RNNs have learned the
basic short-before-long constituent ordering pref-
erence in English. Furthermore, particle shift is
also affected by the animacy of the object NP, in
that the unshifted order is preferred when the ob-
ject NP is animate (Gries, 2003), so we can use
this construction to test order preferences involv-
ing both length and animacy.

We designed 32 experimental items consisting
of sentences with phrasal verbs as in Example (2),
where each item could occur with either a long or a
short object NP. Long NPs were created by adding
adjectives and postmodifiers to short NPs. Half of
the items had inanimate objects; half had animate
objects. All NPs were definite. We tested the ef-
fects of NP length, NP animacy, and word order
on language model surprisal.3

Figure 2 shows the average preference for
shifted word order according to each model, cal-
culated as the surprisal of the shifted order mi-
nus the surprisal of the unshifted order. In gen-
eral, we see that when the object NP is long, the
shifted order is relatively preferred; the effect is

3The preregistration for this experiment can be viewed at
https://aspredicted.org/uu7am.pdf.
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Figure 2: Preference for shifted word order (total
sentence surprisal for Verb–Particle–NP order minus
Verb–NP–Particle order) by NP length, NP animacy,
and model.

strongest in JRNN. In regressions, we found that
the interaction of NP length and word order is sig-
nificant in JRNN (16.9 bits, p < 0.001), GRNN
(7.8 bits, p < 0.001), and the n-gram baseline (4.1
bits, p < 0.001). However, the interaction in the
n-gram baseline is significantly smaller than in
JRNN (p < 0.001) and GRNN (p < 0.01).

The effects of animacy are unexpectedly intri-
cate. Numerically, GRNN and the n-gram baseline
show the expected effect: an animate NP favors
unshifted order. However, in the human ratings we
find that the expected animacy effect for short NPs
actually reverses for long NPs, and this is reflected
numerically in JRNN. No effects of animacy are
significant in any model. In the human data, ani-
macy has a significant interaction favoring the un-
shifted word order for short NPs (p < 0.001) with
an interaction that reverses the effect for long NPs
(p < 0.001). This reversal is surprising given what
was previously known about word order in phrasal
verbs.

Our investigation of particle shift has shown
that LSTM models learn short-before-long length
preferences in regard to word order in phrasal verb
constructions; n-gram models show these prefer-
ences as well, though weaker. We do not find ev-
idence that the models learned human word order
preferences based on NP animacy in this case, but
the experimental results suggest that the effects of
animacy on this alternation might be more com-
plex than previously believed.

4 Dative alternation

The DATIVE ALTERNATION refers to the fact that
in many cases the following forms are substi-
tutable:

(3) a. The man gave the woman the book.
[Double-object (DO) construction]

b. The man gave the book to the woman.
[Prepositional-object (PO) construc-
tion]

The dative alternation is one of the most studied
topics in syntax. The two constructions have been
argued to convey subtly different meanings, with
the DO construction indicating caused possession
and the PO construction indicating caused motion
(Green, 1974; Oehrle, 1976; Gropen et al., 1989;
Levin, 1993). However, the semantic preference
of each construction appears to be only one factor
among many when it comes to determining which
form will be used in any given instance. Other fac-
tors include the animacy, definiteness, and length
of the THEME (the book in Example (3)) and the
RECIPIENT (the woman) (Bresnan et al., 2007).

The human preferences in the dative alternation
work out such that the NP which is more animate,
definite, and short goes earlier. An extreme case is
exemplified in (4): the sentences marked with ? are
relatively dispreferred by native English speakers.

(4) a. The man gave the woman a very old
book that was about historical topics.

b. ?The man gave a very old book that
was about historical topics to the
woman.

c. The man gave the book to a woman
who was waiting patiently in the hall-
way.

d. ?The man gave a woman who was
waiting patiently in the hallway a
book.

In order to examine whether LSTMs show human-
like preferences in the dative alternation, we de-
signed 16 items on the pattern of (3), with 8 verbs
of caused possession (such as give) and 8 verbs
of caused motion (such as throw).4 In all items,
the theme was inanimate and the recipient was
animate. We manipulated the definiteness of the

4The preregistration for this experiment can be viewed at
https://aspredicted.org/ky9ne.pdf.
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Figure 3: Average PO preference by length of theme
and recipient.

theme and the recipient using the articles the and
a, and the length of the theme and the recipient by
adding relative clauses to either or both.

Figure 3 shows the strength of the models’ pref-
erence for the PO construction as a function of
the length of the theme and recipient. The LSTMs
have an overall preference for the PO form, which
is mirrored in the human data. In addition, we see
that a long recipient is strongly associated with a
stronger preference for the PO form, and a long
theme is strongly associated with a relative prefer-
ence for the DO form, in line with human prefer-
ences. The n-gram baseline shows these effects but
with a smaller magnitude, and without the overall
PO preference shown by humans.

All interactions of length and word order are
significant at p < .001 in all models, with the ex-
ception of the effect of recipient length in the n-
gram model, where p = 0.01. The effects of recip-
ient and theme length are significantly weaker in
the n-gram baseline than in JRNN (p < 0.01); for
GRNN, the effect of recipient definiteness is sig-
nificantly stronger than the n-gram baseline (p =
0.02) but the effect of theme definiteness is not sig-
nificantly stronger than in the n-gram baseline. In
human data, the interaction of recipient length and
word order is significant at p < .001 and the inter-
action of theme length and word order is signifi-
cant at p = .01.

Now we turn to word order preferences based
on NP definiteness. Figure 4 shows the PO pref-
erence by the definiteness of the theme and recip-
ient. In line with the linguistic literature, the PO
preference is numerically smaller for definite re-
cipients in both LSTM models and in human data,
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Figure 4: Average PO preference by definiteness of
theme and recipient.

but not in the n-gram model. The interaction of re-
cipient definiteness and word order is significant
in the expected direction in JRNN at p < 0.001
and GRNN at p = 0.01. Theme definiteness has
a small positive interaction with word order (at
p < 0.01) for JRNN, favoring the PO construction.
These results are broadly in line with the linguistic
literature, but they are not reflected in the human
data for these experimental items: in the human
ratings data, there are no significant interactions
of definiteness and word order.

Overall, we find evidence for humanlike or-
dering preferences in the dative alternation with
respect to length and definiteness of theme and
recipient. The strongest effects which are most
in line with the linguistic literature come from
JRNN.

5 Genitive alternation

Similarly to the dative alternation, the GENITIVE

ALTERNATION involves two constructions with
opposite word orders expressing similar mean-
ings:

(5) a. The woman’s house [s-genitive, defi-
nite possessor]

b. The house of the woman [of -genitive,
definite possessor]

c. A woman’s house [s-genitive, indefi-
nite possessor]

d. The house of a woman [of -genitive,
indefinite possessor]

As in the dative alternation, whatever semantic dif-
ference exists between the two constructions is
only one factor conditioning which form is used
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Figure 5: Average of -genitive preference by length and
definiteness of possessor.

in each particular case. The other factors are the
usual suspects: animacy, definiteness, and length
of the POSSESSOR (the woman in (5)) and POS-
SESSUM (the house in (5)) (Kreyer, 2003; Rosen-
bach, 2003, 2008; Shih et al., 2015).

In order to study the genitive alternation in
RNNs, we designed 16 items on the pattern of (5).
We varied the definiteness and length of the pos-
sessor as in the dative alternation.5 We also varied
the animacy of the possessor and possessum, be-
tween items.6

Figure 5 shows the RNNs’ preferences for the
of -genitive form based on the definiteness and
length of the possessor. In all models and in hu-
man data, we see that the of -genitive is preferred
generally when the possessor is long, and the s-
genitive when it is short. The interaction of posses-
sor length with word order is significant in models
and human data (p < 0.001 in all cases). Turning
to possessor definiteness, we see that it relatively
favors the s-genitive in human data and in the n-
gram baseline, in line with the linguistic literature,
but no such effect is found in the RNN models.
However, the interaction of definiteness with word
order is not significant in our data (p = .09 in hu-
man data and higher for the language models).

Now we turn to effects of animacy. Figure 6
shows the of -genitive preference by the animacy
of the possessor and possessum. In all models, in
line with human preferences, we see that posses-
sor animacy favors the s-genitive. The interaction

5For both constructions to be legitimate syntactic options,
the possesssum must be definite and unmodified by relative
clauses.

6The preregistration for this experiment can be viewed at
https://aspredicted.org/f2sk8.pdf.
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Figure 6: Average of -genitive preference by animacy
of possessor and possessum.

of possessor animacy and word order is signifi-
cant in JRNN (p = 0.03) and GRNN (p < 0.001)
but not in the n-gram baseline (p = 0.09); the ef-
fect is significantly stronger in JRNN than in the
n-gram baseline (p = 0.02) but not significantly
stronger in GRNN. The effect of possessum an-
imacy is more complex: it seems to favor the s-
genitive in GRNN, but the of -genitive in the other
models and in human preferences; in any case, the
effect is small, and the interaction is not significant
in any of the data collected here.

Overall, it appears that the LSTMs tested show
humanlike order preferences in the genitive alter-
nation when it comes to possessor length and ani-
macy; they show more evidence for effects of pos-
sessor animacy than an n-gram baseline. They do
not appear to pick up on definiteness preferences,
but based on human experimental data these pref-
erences might be weak in the first place.

6 Discussion

We have explored RNN language models’ abil-
ity to represent soft word order preferences whose
formulation requires abstract features such as an-
imacy, definiteness, and length. We found that
RNN language models generally do so, and
outperform an n-gram baseline, indicating that
they learn generalizations which are not trivially
present in local co-occurrence statistics of words.
The extent to which RNNs learn such preferences
varies: effects of length are strongly and consis-
tently represented, with weaker evidence for ef-
fects of animacy and definiteness.

Much recent work has focused on whether
RNNs can learn to represent discrete syntactic
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structures such as long-distance number agree-
ment (Linzen et al., 2016), wh-dependencies (Mc-
Coy et al., 2018; Chowdhury and Zamparelli,
2018; Wilcox et al., 2018), anaphora, negative po-
larity item licensing, and garden path sentences
(van Schijndel and Linzen, 2018; Marvin and
Linzen, 2018; Futrell et al., 2018). The current
work focuses on soft preferences which have been
studied in quantitative syntax, and the abstract fea-
tures that have been discovered to underly these
preferences, finding that RNNs are able to repre-
sent many of the required features. The same fea-
tures underlying these soft preferences in English
often play a role in hard constraints in other lan-
guages (Bresnan et al., 2001): thus our findings in-
dicate that RNNs can learn crosslinguistically use-
ful abstractions.

Our results also demonstrate that some of the
key features underlying syntactic alternations can
be learned from text data alone, without any par-
ticular innate bias toward such features. Qualify-
ing this point, note that the language models we
studied here were exposed to many more tokens
of linguistic input than a typical child learner.

In addition to the results about RNNs, our work
provides human data from directly controlled ex-
perimental manipulations of animacy, definite-
ness, and length in particle shift, genitive, and da-
tive alternations. Our human acceptability ratings
experiments have revealed some unexpected pat-
terns, such as the sign reversal in the effect of an-
imacy for long NPs in particle shift (Section 3),
which should be investigated in more detail in fu-
ture work.

An interesting question which has been studied
in the functional linguistic literature is why these
particular word order preferences exist across lan-
guages. The preferences are often explained in
terms of cognitive pressures on language com-
prehension and production. The short-before-long
preference is most likely a manifestation of the
pressure for short dependencies (Wasow, 2002),
which is motivated by working memory limita-
tions in sentence processing (Gibson, 1998); this
word order preference is reversed in predom-
inantly head-final languages such as Japanese,
where there is a general preference for long con-
stituents to come before short ones (Yamashita and
Chang, 2001). The biases for animate and definite
nouns to come early are usually linked to biases in
the human language production process whereby

words and constituents which are easier to produce
come earlier (Bock, 1982).

It is possible that these same cognitively mo-
tivated biases might also be present in RNNs. For
example, Futrell and Levy (2017) have argued that
there should be a preference for short dependen-
cies in any system that predicts words incremen-
tally given lossy representations of the preceding
context: since RNNs represent context using fixed-
length vectors, their context representations must
be lossy in this way. Furthermore, Chang (2009)
has shown that the preference to place animate
words earlier can arise in simple recurrent net-
works without this bias being present in training
data, suggesting that RNNs may be subject to sim-
ilar pressures to produce certain kinds of words
earlier.

More generally, we have treated RNN language
models essentially as human subjects delivering
acceptability judgments, observing their behav-
ior on carefully controlled linguistic stimuli rather
than examining their internals. By using controlled
experimental designs, we are able to control for
factors such as sentence length and the particu-
lar lexical items in each sentence (cf. Lau et al.,
2017). We believe this approach will allow us to
derive initial insight into the limits of what RNNs
can do, and will guide work that explains the be-
havior we document here in terms of network in-
ternals.
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