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Abstract

We present a new method for unsupervised
learning of multilingual symbol (e.g. char-
acter) embeddings, without any parallel data
or prior knowledge about correspondences be-
tween languages. It is able to exploit similari-
ties across languages between the distributions
over symbols’ contexts of use within their lan-
guage, even in the absence of any symbols in
common to the two languages. In experiments
with an artificially corrupted text corpus, we
show that the method can retrieve character
correspondences obscured by noise. We then
present encouraging results of applying the
method to real linguistic data, including for
low-resourced languages. The learned repre-
sentations open the possibility of fully unsu-
pervised comparative studies of text or speech
corpora in low-resourced languages with no
prior knowledge regarding their symbol sets.

1 Introduction

Linguistic typology aims to map connections and
similarities between different languages or di-
alects along multiple dimensions of comparison.
A large proportion of languages spoken today have
few speakers and little data annotated with lin-
guistic analyses such as syntactic parses or part-
of-speech tags. This makes mapping their typol-
ogy difficult, but doing so could help in develop-
ing just such resources, for example by language
transfer. There may exist digital text in these lan-
guages (e.g. forum posts or newspapers), or field
recordings of speech. We attempt to learn about a
language’s typology purely from its surface form.

We focus on languages known to be fairly
closely related (e.g. in the same language fam-
ily), but where knowing more about the precise na-
ture of the typology (e.g. regular sound correspon-
dences in cognate words or differences in mor-
phology) could help with resource development.

One example is the Uralic family, which contains
many low-resourced languages and dialects.

To compare languages’ surface forms, we must
first address how to compare their basic units,
characters in the case of text (List, 2014). Even
closely related languages may use different writ-
ing systems, conventions, or transcription prac-
tices, as well as having systematic linguistic dif-
ferences. These considerations mean that, with-
out prior knowledge of a correspondence between
two languages, it may not make sense to assume
that, say, the letter a in one is directly comparable
to a in the other. For example, Swedish å typi-
cally corresponds Finnish o, and loanwords from
Swedish to Finnish replace the former with the
latter. Whilst such direct and well known corre-
spondences can easily be written down by some-
one familiar with the language pair, capturing less
clear-cut or systematic correspondences, and do-
ing so for a large number of low-resourced lan-
guage pairs, is labour intensive.

In an extreme case, two corpora may use com-
pletely distinct symbol sets, e.g. different scripts.
There may be systematic linguistic differences that
create a close correspondence between different
symbols across languages (List, 2014), such as
the phonological correspondence between Frisian
f and Danish v (Fenna et al., 2014). It may also
be desirable to find correspondences between se-
quences of symbols, e.g. Spanish ñ and Por-
tuguese nh.

We tackle this problem using unsupervised
learning of vector representations (embeddings) of
symbols, learning purely from unannotated, un-
aligned linguistic corpora. Here, we apply our
method to text, learning representations of charac-
ters, but it is equally applicable to other sequences,
such as phonetic sequences from speech. To be ap-
plicable to extreme cases of very little overlap be-
tween symbol vocabularies (e.g. different scripts,
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or types of phonological transcription), it does not
assume a correspondence even between common
symbols. E.g., if both use a, it treats a in the
two languages as distinct symbols (1:a and 2:a).
This means that, where such correspondences are
found, we know that they are motivated by statisti-
cal regularities in their usages, rather than any ini-
tial bias. It may learn that 1:a corresponds to 2:a,
or to 2:ä, or that it has a weak correspondence to
multiple characters. This makes for a challenging
learning task, since it becomes impossible to ex-
ploit the idea behind typical distributional meth-
ods – that similar symbols can be recognized by
similarities between their contexts of occurrences
– since the contexts across languages consist of
symbols from distinct sets.

We present a method that is able to discover
similarities between inter-lingual symbol pairs by
exploiting similarities between their respective in-
tra-lingual distributions over contexts of occur-
rence. It must recognize that 1:a plays a role in
relation to other symbols in language 1 that is sim-
ilar to, say, 2:ä’s role in relation to other symbols
in language 2. It does not rely on parallel or com-
parable corpora, so is robust to use on whatever
corpora are available for the languages of interest.

In this paper, we describe our learning method,
XSYM (§3). Then we present two sets of exper-
iments. In the first (§4), we use artificially cor-
rupted linguistic data, allowing us to observe how
well the technique recovers known mappings be-
tween character pairs obscured by the corruption.
In the second (§5), we demonstrate encouraging
initial results of applying the method to real lin-
guistic data, including several low-resourced pairs,
which show that it is able to build a coherent space
of characters, for example placing the majority of
identical characters in two related languages close
to each other. This demonstrates its potential to
recover correspondences between symbol pairs on
the basis of distributional statistics without any
other connection between the observed corpora.

Code for data preprocessing and model train-
ing, as well as trained embeddings, are available
online1.

2 Related work

Like us, Tsvetkov et al. (2016) employ a language
modeling objective with neural networks to learn

1https://mark.granroth-wilding.co.uk/
papers/unsup_symbol/

multilingual embeddings for symbols (phones).
They supply typological information to improve
the representations. We believe that the present
method is better suited to direct cross-lingual com-
parison of symbols and, since we aim to discover
typological information, do not incorporate this
in the input. Östling and Tiedemann (2016) use
a character-level, multilingual language model to
learn vectors to represent languages. Whilst their
model shares information between languages, we
focus on modeling commonalities at the level of
symbol embeddings. We expect the cross-lingual
information our method captures to be comple-
mentary to that in the language vectors.

A particular area where symbol alignment is re-
quired is cognate discovery – finding words with a
common linguistic origin. List (2014) describes
uses of string alignment methods, the predomi-
nant approach in the literature. He distinguishes
paradigmatic aspects (correspondences between
basic units, like phones) and syntagmatic aspects
(comparisons in terms of sequence structure). Ap-
proaches to paradigmatic modeling include: as-
suming a simple set of correspondences between
symbols, e.g. aligning identical symbols (Brew
et al., 1996; Kondrak, 2000; Prokić et al., 2009);
abstracting or normalizing symbols to comparable
classes (Kondrak and Hirst, 2002; Diana Inkpen,
2005; List, 2012); and learning scoring functions
or mappings to align symbols, often initializing
using one of the previous assumptions (Pirkola
et al., 2003; Mulloni and Pekar, 2006; Mulloni,
2007; Kondrak, 2009; Delmestri and Cristian-
ini, 2010; Gomes and Lopes, 2011; Ciobanu and
Dinu, 2014). Our approach in these terms is to
learn paradigmatic correspondences from purely
syntagmatic information. Some methods handle
sound (e.g. phone) sequences, others text: ours,
like Tsvetkov et al. (2016), can be applied to ei-
ther. In contrast to alignment approaches, Hall and
Klein (2010) use a Bayesian model of language
change to account for differences in phonetic sur-
face forms. McCoy and Frank (2018) use context-
based character embeddings for cognate discov-
ery and propose a method to discover cognates in
a low-resourced language via a better-resourced
pivot language. Our embeddings could be used
with the same cognate alignment technique and
evaluation scheme in future work. Our method
provides an alternative, potentially more flexible,
way to align with a low-resourced language.
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Most methods depend to some degree on lin-
guistic resources. Many require a list of known
cognate pairs (Mulloni and Pekar, 2006; Mulloni,
2007; Delmestri and Cristianini, 2010; Gomes and
Lopes, 2011; Ciobanu and Dinu, 2014), or a man-
ually aligned corpus (Navlea and Todirascu, 2011;
List, 2012), others language-specific knowledge
about symbols (Kondrak, 2000) or NLP tools,
such as part-of-speech taggers (Brew et al., 1996;
Navlea and Todirascu, 2011). Hall and Klein
(2010) require a phylogeny of the input languages.
We avoid reliance on any language-specific re-
sources.

The issue of cross-lingual symbol alignment
also arises in other tasks and similar approaches
are used. For example, methods for computing
language similarity from the surface form fall into
the same categories described above for cognate
identification (Batagelj et al., 1992; Kita, 1999;
Petroni and Serva, 2008; Gamallo et al., 2017).

Unsupervised or semi-supervised learning of
multilingual representations has been addressed at
other levels of analysis (e.g. Kuhn, 2004; Sny-
der et al., 2009; Christodoulopoulos et al., 2012).
Many could be applied to unsupervised typology,
since linguistic typology concerns all levels of
analysis, so are complementary to that we present.
Conneau et al. (2017) present unsupervised learn-
ing of multilingual word embeddings. This could
be applied to low-resourced languages and com-
bined with our method to identify words that are
related in both etymology and meaning (the Spe-
cific Homologue Detection Problem, List, 2014).

Conneau et al.’s learning problem is similar to
ours, applied to word meaning rather than sym-
bol correspondence. Whilst a similar technique
could perhaps be applied to the present task, our
method focuses specifically on similarities in lo-
cal contexts of symbol use, rather than similarities
in the structure of embedding spaces, which are
less informative in the case of small vocabularies
of characters or phonemes.

3 Method

We describe a model that assigns language model-
type scores to short sequences of symbols. We
train the model and use the learned embeddings
and n-gram composition function. We are not ulti-
mately interested in the predictive model, only the
derived representations. The learning technique
follows other representation learning algorithms

p o h j a n

L-ngram R-ngram

L-vec
R-vec

tanh
Pos/neg? P

sig

Predictor

Figure 1: Structure of the neural network used to learn
cross-lingual embeddings. The embeddings are used in
the bottom layer. The output is a value between 0 and
1 that is used in the BPR objective function, with either
positive or negative examples provided at the inputs.

(such as Mikolov et al., 2013) in using negative
sampling. However, these methods cannot be ap-
plied directly, since the fact that the vocabularies
of observed contexts are distinct for the two lan-
guages means they are unable to discover similar-
ities between characters across languages.

In each sample seen at training time (pohjan in
Fig. 1), all characters are from the same language,
so the vectors for a Finnish character are affected
only by other Finnish characters surrounding it. It
is therefore possible that the resulting embeddings
are grouped by language, effectively learning an
independent predictor for each language. Training
a high-capacity model (like an RNN) on multilin-
gual data tends to result in this outcome. However,
limiting the capacity of the network can force the
model to share information between the languages
at the level of embeddings. It then benefits the
model to learn embeddings that exploit similarities
across languages in the relationships between ad-
jacent character sequences within a language. For
example, if a is often followed by b in both lan-
guages, and there are also similarities between us-
age of 1:b and 2:b, the model can exploit this by
learning similar vectors for 1:a and 2:a, and si-
multaneously 1:b and 2:b.

3.1 Model
Our unsupervised representation learning method,
XSYM, consists of a feedforward neural network
(Fig. 1) that takes as input a short sequence of
characters and predicts whether or not it is a real
sample from one of the languages in the training
data. The character vocabularies are distinguished
in the input: e.g. fi:a is distinct from et:a. The
required limitation of capacity mentioned above is
achieved by limiting the size of the layers and us-
ing only a small number of layers for the predictor.
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The length of the input sequence is variable.
Each side (L-ngram and R-ngram) may be a single
symbol, represented by the symbol’s embedding
(which becomes L-vec/R-vec), or a bi- or tri-gram,
whose embeddings are concatenated and projected
by a linear transformation to get a vector for the n-
gram, L-vec or R-vec. Separate transformations
are learned for bi-grams and tri-grams. The same
embeddings are used in each input position and the
same composition function on both sides. L-vec
and R-vec have the same size as the embeddings
learned for individual characters.

The outputs of the two compositions are passed
to a predictor function: a tanh layer and a sigmoid
activation for the final output node, P . Varying
the size of the two ngrams (L- and R-ngram) inde-
pendently, so that a bigram is sometimes observed
beside a unigram, sometimes a bigram, etc, causes
the composed representations to reside in the same
vector space, since they are inputs to the same pre-
dictor function.

In the experiments, we use an embedding (and
composed n-gram representation) size of 30. The
hidden layer in the predictor also has 30 nodes.

3.2 Learning

Positive samples are taken by passing a sliding
window over the text, alternating corpora. Each
positive sample is accompanied by a randomly
generated negative. The positive and negative out-
put values are used with a Bayesian Personalized
Rank (BPR) objective function for training. BPR
has been successfully used for similar represen-
tation learning tasks, where negative data is not
directly available: it encourages negative samples
to be ranked lower than corresponding positives
(Riedel et al., 2013).

The sizes of the L- and R-ngrams are drawn in-
dependently at random. Each negative sample re-
places either the L- or R-ngram of its correspond-
ing positive (randomly, either poh or jan in Fig. 1)
with characters drawn independently from the un-
igram distribution of the language of the sample.

All parameters, including embeddings, are ini-
tialized randomly. Dropout is applied to the em-
beddings and composed n-grams and a unit norm
constraint is placed on the embeddings. We
train using stochastic gradient descent with Adam
learning rate adaptation, batch size 1000.

3.3 Validation criterion
The learned embeddings are affected by random
initialization. As is typical in unsupervised learn-
ing, there is no simple way to select the best
model, since we cannot evaluate the learned rep-
resentations on a validation set. Conneau et al.
(2017) define an unsupervised validation criterion
to handle this problem in unsupervised alignment
of word embeddings, which they use for model se-
lection, as a proxy for word translation accuracy.

Eqn. 1 defines a validation criterion for a trained
set of embeddings, nn-sim. To the extent that it
correlates with the accuracy of correspondences
found in the embeddings, it is suitable for model
selection. To the extent that this holds throughout
training, it can also be used for early stopping. We
test these correlations in the next section. Given
embeddings for languages A and B, we compute
for each character in A the cosine similarity to its
nearest neighbour from B, and take the mean over
A’s characters.

nn-sim =
1

|A|
X

a2A

min
b2B

cos(a, b) (1)

Eqn. 2 defines an evaluation metric pair-rank
that can be computed where the desired pair cor-
respondences (a, b) 2 C are known. It mea-
sures how well the correspondences are retrieved
by the embeddings. For each (a, b), we compute
the rank, by cosine distance from a, of b among
all characters in B, normalized by the size of B.
We compute the same in the opposite direction and
take the average of all values. A lower value re-
flects a better retrieval of correspondences.

pair-rank =
1

2|C|
X

(a,b)2C

rankb(cos(a, B))

|B|

+
ranka(cos(b, A))

|A| (2)

4 Experiments with artificial data

4.1 Motivation
For any pair of related languages, we expect to
find a spectrum of correspondences between their
characters, ranging from some very close pairs,
through weaker correspondences, to no correspon-
dence at all. There exists no gold-standard list of
correspondences that a good model should find,
making it difficult to evaluate representations.
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(a) Kaiken tämän lisäksi saan hellyyttä ja lämpöä sekä saan antaa sitä .
(b) Kêikei ëämän o?tänsi nêên hssGööëëä êê HämÞ?ä sÆiä sêën onë?ê siëä a

Figure 2: Example sentence from the YLILAUTA corpus in its original form (a) and with the highest level of all
three types of corruption (b). The model is trained on an uncorrupted portion of the corpus as one language and a
distinct subset to which this corruption has been applied.

We begin by testing XSYM on artificial datasets.
We apply several types of corruption to real lin-
guistic data, replacing some characters at random
and combining or splitting others, then treat the
corrupted data as a new language, with a distinct
character set. The result is in some respects super-
ficially similar to the relationship between related
languages and presents similar challenges to the
learning method. Crucially, having corrupted the
data by known processes, we know which corre-
spondences a successful method should recover.

First, we use corrupted data to measure how
well the validation criterion nn-sim correlates with
retrieval of known correspondences, measured by
pair-rank. Then we analyze how robust the
method is to the different types of corruption to
get some insight into how it behaves.

4.2 Corruptions

We apply three different types of corruption. The
input data has a character vocabulary Vi, the cor-
rupted data Vo which may be different, since some
corruptions add or remove characters. Corruptions
are applied in the order presented. An example of
the resulting text is given in Fig. 2.

Random noise: Randomly sample a given pro-
portion pnoise of character tokens and, for each,
sample a character at random to replace it with
from the unigram distribution over Vi.

Systematic mapping: Systematically substitute
a character a (randomly chosen from Vi) with b
(randomly chosen from Vo). The resulting bs are
indistinguishable from those that were bs in the in-
put. a is now not in Vo, since it never occurs in the
corrupted data. Characters are chosen for mapping
until the expected proportion of tokens affected is
>pmap. Since characters are sampled greedily to
preserve randomness, the actual proportion, p̂map,
may be greater than pmap.

Systematic splitting: Randomly choose a char-
acter a from Vo after the previous step, add new
character b and randomly map half of as to b.
Choose a number of characters in the same way

Metric PCC Slope
pnoise 0.35 0.22
p̂map 0.67 0.36
p̂split -0.12 -0.06
sum 0.52 0.11

Table 1: Pearson correlation coefficient and regression
slope between the level of each type of corruption and
the pair-rank evaluation metric.

as for mapping, until the expected proportion af-
fected is >psplit. The actual proportion is p̂split.

We train embeddings using XSYM with two cor-
pora, as if they represented different languages.
The first is a randomly chosen subset of 95k doc-
uments from the YLILAUTA corpus of Finnish fo-
rum posts2. The second is a distinct subset of the
same size, to which the corruptions have been ap-
plied. We run the training under different levels
of each type of corruption, applying all 27 com-
binations of p = 0, 0.15, 0.3 for pnoise, pmap and
psplit.

In the first experiment, we measure the correla-
tion between nn-sim and pair-rank. We train each
model once for exactly 10 corpus iterations, out-
putting both metrics every 500k samples, result-
ing in 70 measures per model. In the second, we
train all models again, using nn-sim as an unsuper-
vised criterion for early stopping and model selec-
tion over 5 random intializations.

4.3 Results

Testing validation criterion nn-sim. We find
a Pearson correlation coefficient (PCC) of r =
0.79 between nn-sim and pair-rank from the 1,890
measurements taken during training. The high
correlation suggests that nn-sim is a good criterion
to use for early stopping. Furthermore, measur-
ing only at the end of training, we get r = 0.83,
supporting the use of nn-sim to choose between
embeddings from alternative initializations. We
can expect that embeddings that maximize nn-sim

2http://urn.fi/urn:nbn:fi:
lb-2015031802
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would also have maximized (or close) pair-rank,
had we been able to measure it using known cor-
respondences.

Testing effect of corruptions. Training all mod-
els with early stopping and model selection, we
measured the correlation between the level of each
corruption (and the sum of the three) and the pair-
rank of the final embeddings (Table 1). We also
report the slope of the regression between the cor-
ruption levels and pair-rank. Values of pair-rank
range from 6%, for a low level of corruption, to
37% for a high level, with a mean of 16% over all
27 tests.

There is a high correlation for character map-
ping: the more characters are conflated with oth-
ers in the vocabulary, the harder it is to identify the
correspondences. This is unsurprising: to main-
tain the same level of accuracy after a mapping
a ) b, the method must recognize the similarity
in the contexts of 2:b in the corrupted data to those
of both 1:a and 1:b in the uncorrupted data. The
contextual distribution of 2:b’s usage is in effect
the average of those of 1:a and 1:b, so becomes
hard to identify with either.

There is a relatively low correlation for random
noise. The method is robust to this corruption,
which obscures the regularities in the data, but has
no systematic effect on the contextual distributions
of any of the symbols.

There is no correlation for character splitting.
When 1:a is split at random so that it appears as
either 2:a or the newly added 2:b, both 2:a and 2:b
can be expected to have similar contextual distri-
butions to 1:a. The splitting reduces the amount of
data from which to infer the distributions, but does
not prevent the model from discovering the simi-
larity, even under high levels of other corruptions.

These results suggest promisingly that XSYM is
effective at recovering correspondences between
symbols in two datasets where there are similar-
ities in the symbols’ contexts of use. It is impos-
sible to know how these different types and lev-
els of corruption correspond to the difficulties the
method faces dealing with real data. However, this
experiment confirms that the model is discovering
and exploiting the sort of distributional similari-
ties that we would hope, even where the contextual
distributions are not directly comparable.

5 Experiments with linguistic corpora

We now apply XSYM to real linguistic data. To
ensure that the method is not exploiting similari-
ties between two corpora due to a shared domain
(e.g., prevalence of particular cognate words pe-
culiar to that domain), we apply it to corpora from
unrelated domains, as well as in-domain pairs.

We first compare Finnish and Estonian. Whilst
not low-resourced languages, it is easier to inter-
pret results from these well-studied, closely re-
lated languages, and they are a good starting point
for studying low-resourced Uralic languages. For
Finnish, we use the YLILAUTA corpus again. For
Estonian, we use the newspaper portion of the
Estonian Reference Corpus, balanced subcorpus
(Kaalep et al., 2010, henceforth EST-REF-NEWS).
We use only the first 190k documents in Ylilauta,
to match the size of EST-REF-NEWS (⇠5.8M to-
kens). We lower-case the text to simplify analysis
and treat very rare characters (< 500 occurrences)
as a single out-of-vocabulary token. We also run
on a single-domain corpus pair, to see how the
outcome is affected by comparable versus non-
comparable corpora. We train on YLILAUTA to-
gether with the forum portion of the Estonian Ref-
erence Corpus (⇠6.4M tokens, henceforth EST-
REF-FORUM). Training parameters are identical
to the previous section and nn-sim is used for early
stopping and model selection.

We also apply the method to several combina-
tions of low-resourced Uralic (North Finnic) lan-
guages: two dialects of Karelian (Olonets and
North Karelian) and the severely endangered In-
grian language (⇠130 speakers). All corpora are
Bible translations from the University of Helsinki
Corpus Server3, with ⇠150k, 200k and 30k to-
kens respectively. We report metrics for some
pairs within low-resourced languages and also for
Ingrian–Finnish, since many applications will in-
volve comparing a low-resourced language to a
better-resourced one.

5.1 Results

Since this is an unsupervised learning task and
there is no gold-standard set of correspondences,
we cannot directly evaluate the embeddings quan-
titatively. Ultimately, their value will be tested by
their usefulness in a downstream task, such as cog-
nate discovery, but we leave this to future work.

3http://urn.fi/urn:nbn:fi:lb-201403269
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Figure 3: MDS reductions of mixed-domain embed-
dings for Finnish (blue) and Estonian (green). Plot of
individual characters (top) and most frequent character
bigrams and trigrams (bottom). ‘7!’ represents space.

Fig. 3 shows reductions to 2D using multi-
dimensional scaling (MDS) of the embeddings
trained on Finnish and Estonian with mixed do-
mains. We show a plot of the embeddings for
all individual characters and another including the
most frequent character bigrams and trigrams in
each language. Fig. 4 shows single-character em-
beddings for single-domain corpora.

The plots give a broad notion of the layout of
the space, but poorly reflect proximity between in-
dividual pairs. We also present statistics about the
proximity of common characters with frequency
� 0.5% in both corpora (e.g. fi:t–et:t) in Table 2.
We measure where et:t appears in a ranking of all
Estonian characters by proximity to fi:t, and av-
erage over all pairs, in both directions. We also
report the percentage of cases where the identical
character is the nearest (R@1) and within the near-
est 3 characters (R@3) in the other language.

Importantly, this is not an evaluation metric, but

Figure 4: MDS reduction of single-domain, forum post
embeddings for Finnish (b) and Estonian (g).

rather a sanity check: a lower value does not nec-
essarily reflect better embeddings, since there may
be good reasons to map non-identical characters
close to each other. (Indeed, this is one of the
motivations for our approach.) However, the fact
that the ranking is typically low is an encourag-
ing sign that the method is succeeding in discover-
ing meaningful correspondences between the lan-
guages. Moreover, we see no clear difference in
this respect between cross-domain and in-domain
learning. The results for Uralic languages demon-
strate the applicability of the method to small
datasets for low-resourced languages.

To give further insight into what is being cap-
tured, in Table 3 we present, for two language
pairs, nearest neighbours across languages for all
cases where the nearest was not the identical char-
acter. Of particular interest here are the discovered
close correspondences š–s and y–ü between North
Karelian and Olonets. Table 4 shows, for one pair
in one direction, other near neighbours where the
nearest is the same character.

6 Future work

We plan to perform extrinsic evaluation of learned
embeddings, like Tsvetkov et al. (2016), testing
the embeddings on downstream tasks. One ex-
ample is cognate discovery, where the learned
similarities may bring advantages over the as-
sumed or initial correspondences used in related
work, for example where distinct symbol sets are
used. Learned similarities can be incorporated into
many existing cognate discovery methods (e.g.
Kondrak, 2009), with McCoy and Frank (2018)
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Corpus 1 Corpus 2 Chars 1 Chars 2 Common MPR R@1 R@3
YLILAUTA EST-REF-NEWS 23 26 22 2.32 55% 82%
YLILAUTA EST-REF-FORUM 23 25 25 2.11 57% 84%

NORTH KARELIAN OLONETS KARELIAN 24 26 22 1.20 89% 95%
INGRIAN OLONETS KARELIAN 22 26 21 1.74 64% 90%
INGRIAN YLILAUTA 22 23 22 1.73 80% 89%

Table 2: Correspondence between common characters for cross-domain and in-domain models, as a sanity check.
Chars 1 and 2 are the number of characters in each language’s vocabulary after the frequency filter. Mean pair
rank (MPR): mean rank of a character by cosine similarity to its identical character in the other language. R@1
is the proportion that are nearest neighbours, R@3 the proportion that are within the three closest.

Ing Fi
h v h
r h v m r
, n ,
. n , s i ä .

Fi Ing
d k j v ...
t k t
. , o s .

NK Olonets
š k s p ...
s l z g s
y ü ä e ...
, . ,

Olonets NK
d j t l ...
ä e ä
g l j s ...
s š k p s
z l j r ...
ü y ä e ...
, . ,

Table 3: Nearest neighbours across Finnish (Ylilauta)–
Ingrian and North Karelian–Olonets, where the closest
is not the same. Bold are not in the other language.

NK Olonets
a a o u ü e
v v j p m r k t
ä ä ö e ü a
e e ä o a ü
i i ü
h h n
k k s p m v j t
j j v m p d k r z

m m v r p j
l l z g n r
o o a u e
n n h l
p p v m r j k
r r v m p h j
u u o a
t t j d k
ö ö ä

Table 4: Nearest Olonets neighbours to North Kare-
lian, where the nearest is identical, down to a cosine
similarity of 0.5.

providing perhaps a particularly suitable way to
use them. It remains an open question how n-gram
similarities can be used here. Another possible ap-
plication is spelling translation, for example ap-
plying the method of Pirkola et al. (2003) without
requiring translation dictionaries.

A potential benefit of this method is its ability to
capture correspondences between different lengths
of n-grams, not just individual symbols. In our
analysis (Fig. 3) we have used this by including a
language’s most common n-grams in projections,
but other ways to select pertinent correspondences
are possible, for example taking into account sim-
ilarities or the structure of the vector space as well
as frequency.

XSYM is similar to Polyglot language models
(Tsvetkov et al., 2016). We have suggested, but
not demonstrated here, that it is better suited to di-
rect comparison of symbols. Investigation of the
properties of representations learned by the two
methods is required and we will test XSYM on the
tasks reported by Tsvetkov et al. (2016).

We plan to apply XSYM to other symbol se-
quences, in particular, to sequences of phonetic
symbols from speech (like List, 2014). It may be
possible to use automatic transcriptions that do not
require language-specific transcribers, since the
symbols need not correspond to linguistically mo-
tivated systems, such as IPA. Although designed
for learning about linguistic sequences, XSYM

could potentially also be applied also to non-
linguistic data to discover links between sequences
that use distinct vocabularies. We will investigate
what characteristics of sequences are essential in
finding useful abstractions (e.g. vocabulary size).

7 Conclusion

We have presented an unsupervised method that
uses a neural network to learn vector representa-
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tions of symbols and short n-grams on the basis of
their contexts observed in sequences. It is able to
learn comparable representations of symbols from
multiple languages that use distinct symbol sets,
learning to exploit similarities in the context dis-
tributions of the symbols across languages, even
though the symbols in the contexts are also drawn
from distinct vocabularies.

We have demonstrated the method’s ability
to recover mappings between vocabularies, even
when they are obscured by ambiguity in the map-
pings and noise, provided that the noise does not
obscure the distributions over the symbols’ con-
texts too much. We then showed some results of
applying the method to real linguistic data, focus-
ing here on characters in text and several Uralic
language pairs. We found that it was able to rec-
ognize many characters that are common to the
corpus pairs as being closely related by their con-
texts of use. An even closer correspondence was
found between closely related, low-resourced di-
alects, despite a much smaller training set.

The learned similarities between symbols pro-
vide a way to bootstrap discovery of other lin-
guistic similarities, such as morphology or cog-
nate words. We leave testing on these applica-
tions to future work and have presented here some
analysis of the learned representations, which ap-
pear highly promising. We suggest that the results
have great potential as a first step in fully unsuper-
vised linguistic typology. Discovered correspon-
dences may also be able to tell us about typol-
ogy in themselves. For example, some measures
of orthographic difference and sound correspon-
dences correlate with geographic factors in lan-
guage development (Heeringa et al., 2013; Prokić
and Cysouw, 2013). Discovered strong symbol
correspondences (especially if the method is ap-
plied to phonetic sequences) could also be of ty-
pological interest in themselves.

The method presented is a generic representa-
tion learning technique for symbol sequences. As
well as text, it could also be applied to other lin-
guistic sequences, such a phonetic transcriptions,
and potentially even to non-linguistic sequences.
On the basis of the encouraging initial results pre-
sented here, we suggest that it warrants further in-
vestigation, including linguistic applications, such
as unsupervised cognate discovery, and other as-
pects of linguistic typology.
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Jelena Prokić, Martijn Wieling, and John Nerbonne.
2009. Multiple sequence alignments in linguistics.
In Proceedings of the EACL 2009 Workshop on Lan-
guage Technology and Resources for Cultural Her-
itage, Social Sciences, Humanities, and Education,
LaTeCH-SHELT&R ’09, pages 18–25.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of NAACL HLT 2013, pages 74–84.

Benjamin Snyder, Tahira Naseem, and Regina Barzi-
lay. 2009. Unsupervised multilingual grammar in-
duction. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 73–81.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David R.
Mortensen, Alan W. Black, Lori S. Levin, and Chris
Dyer. 2016. Polyglot neural language models: A
case study in cross-lingual phonetic representation
learning. CoRR, abs/1605.03832.

28


