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Abstract

Reduplication is a theoretically and typolog-
ically well-studied phenomenon, but there is
no database of reduplication patterns which
include explicit computational models. This
paper introduces RedTyp, an SQL database
which provides a computational resource that
can be used by both theoretical and computa-
tional linguists who work on reduplication. It
catalogs 138 reduplicative morphemes across
91 languages, which are modeled with 57 dis-
tinct finite-state machines. The finite-state ma-
chines are 2-way transducers, which provide
an explicit, compact, and convenient represen-
tation for reduplication patterns, and which ar-
guably capture the linguistic generalizations
more directly than the more commonly used 1-
way transducers for modeling natural language
morphophonology.

1 Introduction

Reduplication is a cross-linguistically well-
attested and ubiquitous morphological operation
(Rubino, 2005). The World Atlas of Language
Structure (WALS) database documents that 313
out of 368 languages (85%) productively use
some form of reduplication to mark one or more
semantic functions (Rubino, 2013).1

The typology of reduplication can be roughly
divided into total reduplication and partial redu-
plication. Total reduplication copies unboundedly
many segments which form some morphological
constituent (e.g. a word, stem, root, etc.) as shown
in (1a). Partial reduplication copies a bounded
number of segments. In partial reduplication, the
shape of the reduplicant is most commonly CV
(2a), CVC (2b), or CVCV (2c).

1Here, the term ‘reduplication’ is used loosely to mean
any morphosyntactic process or morpheme which systemati-
cally copies some segmental material from the stem (Hurch,
2005 ff.).

1. Indonesian (Cohn, 1989, 185)
(a) wanita ! wanita⇠wanita

‘woman’ ! ‘women’
2. Pangasinan (Rubino, 2005, 11)

(a) too ! to⇠too
‘man’ ! ‘people’

(b) baley ! bal⇠baley
‘town’ ! ‘towns’

(c) manok ! mano⇠manok
‘chicken’! ‘chickens’

There is a much more diverse typology than
these relatively simple patterns. Typologists
have documented various patterns of reduplication
which are both common and uncommon (Moravc-
sik, 1978; Rubino, 2005; Inkelas and Zoll, 2005;
Hurch, 2005). Interested readers are referred to
Raimy (2011), Urbanczyk (2007), and Inkelas and
Downing (2015) for overviews.

Reduplication is difficult to model with existing
finite-state tools for two reasons. First, copying an
unbounded number of segments (total reduplica-
tion) cannot be done by 1-way Finite-State Trans-
ducers (1-way FSTs) (Roark and Sproat, 2007),
which are overwhelmingly used in computational
linguistics (Mohri, 1997; Beesley and Karttunen,
2003). Instead, existing finite-state tools approx-
imate total reduplication by essentially treating
it as memorizing a list of existing words in the
language (Hulden, 2009a; Hulden and Bischoff,
2009; Cohen-Sygal and Wintner, 2006; Roark and
Sproat, 2007). If total reduplication were rare, per-
haps this difficulty could be overlooked. However,
total reduplication is the most common reduplica-
tive process and it occurs in an estimated 75% of
the world’s languages (Rubino, 2013).

Second, while 1-way finite-state transducers
can copy boundedly many segments (partial redu-
plication), the number of states needed can be
quite large (Roark and Sproat, 2007; Hulden,
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2009a; Chandlee and Heinz, 2012; Chandlee,
2017). This can can make them difficult to design
and debug. Consequently, there are few (if any)
computational resources which model reduplica-
tion in a way that is simple, small, easy to design,
and linguistically motivated.

Against this background, this paper makes two
contributions. First, it introduces a SQL database,
which we call RedTyp, of 138 reduplicative pro-
cesses from 91 languages.2 These were gathered
from various typological surveys of reduplication.
We mainly used Moravcsik (1978), a classic sur-
vey on reduplication, and supplemented it with
other published linguistic surveys (Rubino, 2005;
Inkelas and Downing, 2015), with case studies
gleaned from other smaller surveys that were nar-
rower in scope e.g. McCarthy and Prince (1995),
among others.

A copy of RedTyp exists online at our GitHub
page: github.com/jhdeov/RedTyp and is
available to the public under a Creative Commons
non-commercial license (CC BY-NC 4.0).

Second, RedTyp models reduplicative pro-
cesses with an understudied and under-used type
of finite-state technology: 2-way deterministic
finite-state transducers (2-way FSTs) (Engelfriet
and Hoogeboom, 2001; Filiot and Reynier, 2016).
As we explain in Subsection 2.2, and in detail
in Dolatian and Heinz (2018b), 2-way FSTs can
reread parts of the input string, unlike 1-way FSTs.
In addition to allowing 2-way FSTs to model total
reduplication exactly, this additional capacity sig-
nificantly reduces the number of states needed to
model partial reduplication. Consequently, 2-way
FSTs for reduplication are easy to design, debug,
and manage. Besides their state efficiency and
practical utility, 2-way FSTs likewise capture the
intensional description of reduplication. For more
discussion of the role of 2-way FSTs as compu-
tational models of reduplication, see Dolatian and
Heinz (2018b).

For each reduplicative process in RedTyp, we
manually wrote a 2-way FST representing it. In
total, we modeled 138 reduplicative processes in
RedTyp with 57 2-way FSTs. The average number
of states in these machines is 8.82.3 These FSTs

2The name RedTyp is in homage to the “Typ” databases
including the StressTyp databases (Goedemans et al., 1996;
Heinz et al., 2016) and others described in Everaert et al.
(2009).

3The largest 2-way FST in this sample, from verbal redu-
plication in Kinande (Downing, 2000), has 29 states. This
pattern depends on the size of the root and the number and

are included in RedTyp, along with a Python script
for using them.

The remainder of this paper is organized as fol-
lows. Although 2-way FSTs have been studied
since the 1960s (Aho et al., 1969), they are a rel-
atively unknown finite-state device in computa-
tional linguistics; outside of linguistics, there has
been recently been more industrial applications for
computational models equivalent to 2-way FSTs
(Alur and Černý, 2011; Alur et al., 2014). In or-
der to explain the resource RedTyp, which uses
2-way FSTs, we briefly4 introduce and define 2-
way FSTs in Section 2. Section 3 details the SQL
structure of RedTyp, the software implementation
of the 2-way FSTs, and the accompanying Python
script. Section 4 discusses various aspects of Red-
Typ including a a high-level comparison of 2-way
FSTs to other formal devices, a comparison of
RedTyp to the only other reduplication database
that exists to our knowledge (the Graz Database on
Reduplication (Hurch, 2005)), the utility of Red-
Typ, and future research directions. Conclusions
are in Section 5.

2 Reduplication with two-way finite-state
transducers

Informally, both 1-way FSTs and 2-way FSTs can
be thought of as machines which read their input
from an input tape and write their output onto an
output tape (Filiot and Reynier, 2016). In the case
of 1-way FSTs, the machine only moves across the
input tape from left-to-right and likewise writes
the output from left-to-right. Like 1-way FSTs, 2-
way FSTs also only write the output from left-to-
right. However, unlike 1-way FSTs, 2-way FSTs
can move back and forth along the input tape.
Because of this difference, they are more expres-
sive than 1-way FSTs. In particular, 2-way FSTs
can model total reduplication exactly while 1-way
FSTs cannot. In this section, we introduce them
informally with an example and then provide a for-
malization.

2.1 Illustrating 2-way FSTs

The back and forth movement along the input tape
is controlled by the transitions with a directional

type of suffixes and prefixes around it. In contrast, we es-
timate a deterministic 1-way FST would require over 1,000
states for this pattern of partial reduplication.

4A fuller technical illustration can be found in Dolatian
and Heinz (2018b), and a more informal one in Dolatian and
Heinz (In press.).
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parameter d which specifies whether the machine
advances left-to-right (a value of +1), stays put (a
value of 0), or moves right-to-left (a value of -1).
For a 1-way FST, the value of d is always +1. We
further assume that input strings are flanked with
the left and right boundary symbols, o and n, re-
spectively.

To illustrate how a 2-way FST works, consider
the case of total reduplication in Indonesian. In
Indonesian, plurality is marked by reduplicating
the entire word or input (3). Data are from Cohn
(1989, 185).

3. (a) buku ! buku⇠buku
‘book’ ! ‘books’

(b) wanita ! wanita⇠wanita
‘woman’ ! ‘women’

(c) maSarakat ! maSarakat⇠maSarakat
‘society’ ! ‘societies’

(d) k@kuraNan ! k@kuraNan⇠k@kuraNan
‘lack’ ! ‘lacks’

This total reduplicative process cannot be mod-
eled with a 1-way FST (Roark and Sproat, 2007),
but can be easily modeled with a deterministic 2-
way FST as in Figure 1. In Figure 1, transitions
between states are labeled (i, o, d) where i is the
input symbol, o is the output string, and d is the
directional parameter. ⌃ represents any segment
in the input which is not the left-edge or right-
edge boundary. The empty string is represented
by �. The boundary symbol ⇠ in the output plays
no crucial function; it visualizes the boundary be-
tween the two copies.

To illustrate, Table 1 shows the derivation of
/buku/![buku⇠buku] using the 2-way FST in
Figure 1. Each row in the table consists of four
parts: input string, output string, current state,
transition. In the input string, we underline the
input symbol which the 2-way FST will read next.
The output string is what the 2-way FST has out-
putted up to that point. The symbol � marks the
empty string. The current state is what state the 2-
way FST is currently in. The transition represents
the used transition arc from input to output along
with a direction value. In the first tuple, there is no
transition arc used (N/A). But for other tuples, the
form of the arc is:

input state
input symbol:output string��������������!

direction
output state

2.2 Defining 2-way FSTs
Here, we give a formal definition of deterministic
2-way FSTs, synthesizing definitions from Filiot
and Reynier (2016) and Shallit (2008). Inputs to a
2-way FST are flanked with the start (o) and end
boundaries (n). This larger alphabet is denoted by
⌃n.

4. Definition: A 2-way, deterministic FST is a
six-tuple (Q,⌃n,�, q0, F, �) such that:

• Q is a finite set of states,
• ⌃n = ⌃[ {o,n} is the input alphabet,
• � is the output alphabet,
• q0 2 Q is the initial state,
• F ✓ Q is the set of final states,
• � : Q ⇥ ⌃ ! Q ⇥ �⇤ ⇥ D is the

transition function where the direction
D = {�1, 0, +1}.

A configuration of a 2-way FST T is an element
of ⌃⇤

nQ⌃⇤
n ⇥ �⇤. The meaning of the configura-

tion (wqx, u) is that the input to T is wx and the
machine is currently in state q with the read head
on the first symbol of x (or has fallen off the right
edge of the input tape if x = �) and that u is cur-
rently written on the output tape.

If the current configuration is (wqax, u) and
�(q, a) = (r, v, 0) then the next configuration is
(wrax, uv), in which case we write (wqax, u) !
(wrax, uv). If the current configuration is
(wqax, u) and �(q, a) = (r, v,+1) then the next
configuration is (warx, uv). In this case, we write
(wqax, u) ! (warx, uv). If the current configu-
ration is (waqx, u) and �(q, a) = (r, v,�1) then
the next configuration is (wrax, uv). We write
(waqx, u) ! (wrax, uv).

The transitive closure of ! is denoted with !+.
So if c !+ c0 then there exists a finite sequence
of configurations c1, c2 . . . cn with n > 1 such that
c = c1 ! c2 ! . . . ! cn = c0.

Next we define the string-to-string function that
a 2-way FST T = (Q,⌃n,�, q0, F, �) computes.
For each string w 2 ⌃⇤, fT (w) = u 2 �⇤

provided there exists qf 2 F such that (q0 o
wn,�) !+ (ownqf , u). Note that since T is de-
terministic it follows that if fT (w) is defined then
u is unique.

There are situations where a 2-way FST T
crashes on some input w and hence fT (w) is
undefined. If the configuration is (qax, u) and
�(q, a) = (r,�1, v) then the derivation crashes
and the transduction fT (ax) is undefined. Like-
wise, if the the configuration is (wq, u) and q 62 F
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q0start q1 q2 q3 qf
(o,�,+1)

(⌃,⌃,+1)

(n,�,-1)

(⌃,�,-1)

(o,⇠,+1)

(⌃,⌃,+1)

(n,�,+1)

Figure 1: 2-way FST for total reduplication in Indonesian.

Outputting the first copy Going back to the start of the tape

1. ( obukun, �, q0 , N/A ) 7. ( obukun, buku, q2, q1
n:���!
-1

q2 )

2. (obukun, � , q1, q0
o:���!
+1

q1 ) 8. ( obukun, buku, q2, q2
u:���!
-1

q2 )

3. ( obukun, b, q1, q1
b:b�!
+1

q1 ) 9. ( obukun, buku, q2, q2
k:���!
-1

q2 )

4. ( obukun, bu, q1, q1
u:u�!
+1

q1 ) 10. ( obukun, buku, q2, q2
u:���!
-1

q2 )

5. ( obukun, buk, q1, q1
k:k�!
+1

q1 ) 11. ( obukun, buku, q2, q2
b:���!
-1

q2 )

6. ( obukun, buku, q1, q1
u:u�!
+1

q1 )

Outputting the second copy

12. ( obukun, buku⇠, q3, q2
o:⇠��!
+1

q3 ) 15. ( obukun, buku⇠buk, q3, q3
k:k�!
+1

q3 )

13. ( obukun, buku⇠b, q3, q3
b:b�!
+1

q3 ) 16. ( obukun, buku⇠buku, q3, q3
u:u�!
+1

q3 )

14. ( obukun, buku⇠bu, q3, q3
u:u�!
+1

q3 ) 17. ( obukun, buku⇠buku, qf , q3
n:���!
+1

qf )

Table 1: Derivation of /buku/![buku⇠buku].

then the transducer crashes and the transduction
fT is undefined on input w.

There is one more way in which fT may be
undefined for some input. The input may cause
the transducer to go into an infinite loop.5 This
occurs for input wx 2 ⌃⇤

n whenever there exist
q 2 Q and u, v 2 �⇤ such that (q0wx,�) !+

(wqx, u) !+ (wqx, uv).
Further information on the computational prop-

erties of 2-way FSTs can be found in Filiot and
Reynier (2016). Compared to 1-way FSTs, there’s
relatively little work on complexity metrics for 2-
way FSTs, but see Baschenis et al. (2016). See
Dolatian and Heinz (2018a,b) for complexity re-
sults when using 2-way FSTs for reduplication.

3 The RedTyp Database and Python
implementation of 2-way FSTs

This section details the features and organization
of the RedTyp database. We likewise discuss our
Python implementation of 2-way FSTs which acts
as a supplement to the database.

The GitHub page for RedTyp includes the SQL
5In RedTyp, all 2-way FSTs were checked to make sure

they do not cause infinite loops.

file for the database, a single Python file that
can read and implement the 2-way FSTs in the
database, and a README textfile for instructions.

Figure 2 shows a simple Entity-Relation dia-
gram (Elmasri and Navathe, 2010) for RedTyp.
It consists of two entities: 2-way FST for rep-
resenting 2-way FSTs, and Morpheme for repre-
senting individual reduplicative processes in a lan-
guage. They engage in a many-to-one Match rela-
tionship such that every morpheme is modeled by
one 2-way FST but a single 2-way FST can model
many reduplicative morphemes or reduplicative
processes found within and across languages.

For example in Sundanese (Moravcsik, 1978),
total reduplication expresses the meaning “not
even one X” (ibid., p.301) in addition to intensity
(ibid., p.321) as shown in (5)6 and (6). Thus, in
Sundanese there are two distinct morphemes, both
of which are modeled with a single 2-way FST for
total reduplication.

5. kali ! sakali⇠kali
‘time’ ! ‘not even once’

6Moravcsik (1978, 301) calls the string ‘sa’ a prefix. It is
not reduplicated.
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Morpheme Match 2 � way FST
1M

Figure 2: The Entity-Relation diagram for RedTyp.

6. hayaN ! hayaN⇠hayaN
‘want’ ! ‘want very much’

We list and describe the attributes of each table
in RedTyp below.

The 2-way FST table:

• ID: string or varchar 200
A small descriptive name for the type of func-
tion modeled by the 2-way FST. This acts as
the primary key for a 2-way FST entry.

• Example data: string or text
A table with example inputs and outputs,
written in Markdown.

• Description: string or text
Description of 2-way FST in terms of prose.
This is written in Markdown.

• FST diagram: text
LATEX code for the 2-way FST diagram. It
uses the following LATEX packages/settings.

\usepackage{tipa}
\usepackage{tikz}
\usetikzlibrary{arrows,automata,
shapes,positioning}

• FST Recipe: text
A text file that describes the alphabet and
transitions for the FST in a shorthand that is
human-readable and that can be read by our
Python implementation.

• FST Code: text
A text file that lists the transitions for the 2-
way FST based on the shorthand description
in the FST recipe. This code was created with
our Python implementation of 2-way FSTs.

• Language specific: Boolean
This field specifies if the 2-way FST entry
models a reduplicative process that is unique
to a specific morpheme in one language (1)
or if it is general enough to model many mor-
phemes in possibly different languages (0).

The Morpheme table:

• Morpheme ID: string or varchar 200
The general format for a morpheme ID is

ISO-FUNC-FORM where ISO is the ISO
code for the morpheme’s language (or the full
language name if no ISO exists), FUNC is the
semantic function of the morpheme based on
the Leipzig glossing system7 (otherwise the
full name if the glossing abbreviation can-
not be found), and the general form of the
reduplicative process that is part of this mor-
pheme. This is the primary key for the Mor-
pheme entry.

• Language: string or varchar 200
Name of the language that has this mor-
pheme.

• Function: string or varchar 200
The semantic function of the reduplicative
morpheme.

• Default form name: string or varchar 200
Assuming that the reduplicative morpheme
has a default shape, this has the general la-
bel for it, e.g. total reduplication, initial CV,
etc.

• Sources text
Bibliographic sources used.

• Description: text
Prosaic description of the data, patterns, and
surface shapes of the morpheme, written in
Markdown.

• Data: text
A table with example inputs and outputs,
written in Markdown.

• Ambiguity: text
Description of any ambiguities present in the
description of this morpheme in the biblio-
graphic references which we used.

• Shows allomorphy: Boolean
Specifies if the morpheme has multiple, di-
verse surface patterns or shapes (1) or if it has
one basic shape (0).8

• Has segmentalism: Boolean
Specifies if the morpheme includes any seg-
mentalism or fixed segments (1), including

7The glossing rules can be found on: www.eva.mpg.
de/lingua/resources/glossing-rules.php.

8It is difficult to give a consistent treatment for how to
give a definite value to this attribute in some cases.
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both phonological fixed segments (epenthetic
vowels) or morphological fixed segments (af-
fixes like shm-), or none at all (0).

• Deeply searched: Boolean
There are some patterns that we only ana-
lyzed with secondary sources such as surveys
(not deeply, thus 0); while others we analyzed
using primary sources such as in-depth the-
oretical treatments or descriptive grammars
(deeply analyzed, thus 1).

• Possible vowel modifications: string or var-
char 200
Some reduplicative process have the redu-
plicant vowel undergo various modifications:
lengthening, shortening, diphthong reduc-
tion. This lists any vowel changes seen.

• Morpho-phonological subconstituent
involved: string or varchar 200
Some reduplicative process may target
specific morphological/prosodic subcon-
stituents, usually roots. This lists any such
subconstituents involved, if any.

• Involves affixes?: Boolean
Some reduplicative processes are either
caused by or accompanied by affixes (1),
while some do not involve any affixes (0).

• Affix incorporation?: Boolean
Sometimes an affix not only triggers redupli-
cation but it also undergoes it with the stem it
attached to (1); otherwise (0).

• Involves phonological processes?: Boolean
Sometimes a reduplicative process will in-
volve a phonological process or opacity (1);
some cases do not involve any interactions
with phonology (0).

• Data too ambiguous?: Boolean
Sometimes the source was too vague to spec-
ify the reduplicative process so no 2-way FST
is provided (1). Fortunately, most cases were
sufficiently described (0).

• Miscellaneous: string or varchar 200
Miscellaneous information about this redu-
plicative process.

The Match table:

• 2-way FST ID: string or varchar 200
Foreign key that references the 2-way FST
ID.

• Morpheme ID: string or varchar 200
Foreign key that references the morpheme
ID.

In addition to the database itself, we provide
a Python script implementing 2-way FSTs. The
Python program takes as input an FST recipe (that
can be retrieved from the database) and a user-
made text file input strings that contains a list of
strings for the 2-way FST to process. It creates two
textfiles: output transitions which contains a list
of transition arcs that make up the 2-way FST, and
output strings which provides the output of every
entry in the input strings using the 2-way FST.

The Python implementation can likewise take
as input two textfiles: one is a list of states
and transition arcs not written in shorthand (in-
put transitions), and the other is a list of input
strings (input strings). It will run the 2-way FST
described in input transitions and create a textfile
output strings that provides the output of each in-
put in input strings.

Because the 2-way FSTs generally had a small
number of states, we validated their correctness
through manual inspection and by testing them
with key examples. Our online repository con-
tains detailed instructions and examples on how to
design 2-way FSTs, extract 2-way FSTs from the
database, and run them with user-made input.

Lastly, it should be noted that many of the 2-
way FSTs in RedTyp define partial functions. As
such, they are undefined for some logically pos-
sible inputs. For example, a 2-way FST for an
initial-C reduplication is only defined for C-initial
inputs. As such, it returns an error when the input
is V-initial such as ‘apa’.

4 Discussion

4.1 Comparison with other computational
tools

Within computational morphology, many formal
devices have been proposed to handle reduplica-
tion. Some of the computational models moti-
vated by reduplication include Multiple Context-
Free Grammars (MCFGs) (Seki et al., 1991, 1993;
Albro, 2005) and pushdown acceptors augmented
with queues (Savitch, 1989). Our reasons for us-
ing 2-way FSTs instead of MCFGs and pushdown
acceptors are as follows.9

9The only other existing alternative to 2-way FSTs to
our knowledge are pushdown transducers, which augment 1-
way transducers with a stack (Allauzen and Riley, 2012). A
full comparison between pushdown transducers and 2-way
FSTs for modeling processes like reduplication in natural lan-
guages is an important exercise for future research.
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First, unlike 2-way FSTs, MCFGs and push-
down automata do not transform an input string
to an output string; rather, they recognize sets
of strings that may include a copying component
such as the formal language {ww | w 2 ⌃⇤}. Al-
though Albro (2005) extended finite-state OT with
MCFGs to model reduplicative processes in Mala-
gasy, Albro’s method does not provide a general
machine model. We thought it judicious to pro-
vide, as resources, well-studied machine models
in computer science as opposed to extending an
existing formalism ourselves.

This brings us to our second reason: the class
of transductions definable with 2-way FSTs are
exactly the class of transductions definable with
Monadic Second Order (MSO) Logic (Engelfriet
and Hoogeboom, 2001). Logic, automata, and
the relationship between them are foundational
subjects in formal language theory (Büchi, 1960;
McNaughton and Papert, 1971; Thomas, 1997),
though the importance of studying string-to-string
translations against this backdrop has only re-
cently been realized (Filiot and Reynier, 2016).
Our third reason is practical. As mentioned, 2-way
FSTs are easy to write, debug, and implement.

4.2 Comparison with the Graz Database on
Reduplication

RedTyp is not the first database for reduplication.
That distinction belongs to the Graz Database on
Reduplication (GDR), a SQL-database which doc-
uments and describes reduplicative processes in 82
languages (Hurch, 2005 ff.).10

It is the only other existing database for redu-
plication to our knowledge. The GDR’s language
sample is based on the WALS 100-language sam-
ple (Dryer and Haspelmath, 2013), but includes
other languages “when these contain interesting
reduplication types or when the researchers have
a particular interest in any language or when there
happens to be a considerable amount of informa-
tion available to the researchers on the reduplica-
tion system of any language.”

There are three primary distinctions between
RedTyp and GDR. First, the information in the
databases were collected in different ways. GDR
is based on the WALS 100 language sample, and

10The reason why we created our own database instead of
using GDR was because the GDR was offline during the time
we spent collecting data for RedTyp. GDR came back online
in 2017, after a hiatus of at least two years. At that time, most
of the data collection for RedTyp had been completed.

RedTyp is based on linguistic surveys. In terms
of coverage and overlap, there are 69 languages in
RedTyp that are not in GDR; 60 languages in GDR
that are not in RedTyp; and 22 languages common
to both. They thus differ in coverage considerably.
We speculate this difference is due to the goals and
sources of the two databases. The GDR aims to
collect examples of reduplicative processes from
major and minor world languages in WALS and
organize them according to form and function.
There is not a specific drive to collect theoretically
diverse examples of reduplication. On the other
hand, the linguistic surveys and case studies used
to develop RedTyp aim to document both common
reduplicative processes and theoretically interest-
ing and uncommon reduplicative processes from a
morphological and phonological perspective.

Second, users can query GDR online accord-
ing to pre-made and custom-made linguistically-
informed searches, whereas RedTyp has no cur-
rent presence online. Third, GDR does not con-
tain any computational models of reduplication,
whereas RedTyp does. Thus, RedTyp and GDR
have different complementary utilities and func-
tionalities. It is likewise an open question if Red-
Typ misses certain theoretically interesting pat-
terns which are found in GDR.

4.3 Utility of RedTyp

RedTyp provides a set of 2-way FSTs representing
copying processes that occur in natural language.
This potentially has many uses.

For computational morphologists and phonol-
ogists working on computationally modeling or
computationally implementing productive redu-
plicative processes in any language, RedTyp’s 2-
way FST examples can help them design 2-way
FSTs for their own needs. To this end, RedTyp
includes instructions to users on how to adapt ex-
isting 2-way FSTs by using “recipes”.

For formal language theorists and theoretical
linguists working on copying, the examples in
RedTyp can be studied to identify additional prop-
erties, which can lead to new hypotheses about the
nature of reduplicative morphology in the world’s
languages (cf. Heinz (2009)). For researchers
interested in learning natural language patterns,
RedTyp provides a computationally explicit set of
learning targets. In fact, We have used RedTyp
ourselves to get typological generalizations and
learnability results (Dolatian and Heinz, 2018a).
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Finally, our use of 2-way FSTs to model copy-
ing in natural languages opens doors on how copy-
ing, mimicry, or doubling in other domains may be
modeled, including animal communication, bio-
informatics and robotics.

4.4 Future Research

RedTyp also provides a focal point for different
streams of future research in four general direc-
tions: improving RedTyp itself, translating lin-
guistic theories of reduplication into 2-way FSTs,
identifying subclasses of 2-way FSTs especially
relevant for reduplication, and developing theory
and tools to deploy 2-way FSTs in Natural Lan-
guage Processing (NLP) tasks. We discuss re-
search in both of these areas in turn.

First, although the reduplicative processes in
RedTyp are fairly representative, of course more
reduplicative morphemes from additional lan-
guages ought to be incorporated. We plan to
grow RedTyp by exhaustively including more data
from surveys such as McCarthy and Prince (1995),
Inkelas and Zoll (2005), and Hurch (2005). Sec-
ond, we plan to consult primary sources to ver-
ify the accuracy of the linguistic information in
RedTyp. Additionally, we would like to integrate
RedTyp with the Graz database (Hurch, 2005 ff.)
in some fashion so that researchers interested in
reduplication can take full advantage of what both
databases offer, both in utility and coverage. Fur-
thermore, an online interface should be developed.

Second, 2-way FSTs appear well-suited to cap-
ture the intuition that reduplication consists of ac-
tively copying segments from the input into mul-
tiple positions of the output. Various theoretical
principles on reduplication such templatic asso-
ciation (Marantz, 1982), sensitivity to prominent
positions in the input (Raimy, 2000), and multi-
ple access to the same input (Steriade, 1988; Inke-
las and Zoll, 2005) can be fruitfully encoded in
2-way FSTs. For results on how 2-way FSTs cap-
ture the theory behind reduplication, see Dolatian
and Heinz (2018b, In press.).

Third, RedTyp contains 2-way FSTs because
they were expressive enough to model both total
and partial reduplication exactly and succinctly.
However, reduplication does not need the full
power of 2-way FSTs. Just as aspects of seg-
mental phonology appear to be circumscribed by
subclasses of 1-way FSAs/FSTs (Heinz, 2009,
2010; Chandlee, 2014; Chandlee et al., 2014,

2015; Jardine, 2016; Luo, 2017; Payne, 2017), it
is likely that reduplication has stronger computa-
tional properties. We are currently investigating
some promising subclasses of 2-way FSTs. One
subclass in particular is the C-OSL subclass which
covers the bulk of reduplicative typology and for
which there are learnability results (Dolatian and
Heinz, 2018a).

Finally, with respect to developing theory and
tools for deploying 2-way FSTs for NLP tasks,
we are optimistic. We expect that 2-way FSTs
can be incorporated into existing finite-state plat-
forms. First of all, they are straightforward exten-
sions of 1-way FSTs, which facilitates integration.
Secondly, they also have a clear logical interpre-
tation (Engelfriet and Hoogeboom, 2001), which
bolsters their status as a mathematically and com-
putationally natural formalism. Third is the fact
that computationally equivalent formalisms such
as Streaming String Transducers (Alur, 2010) have
industrial utility and applications (Alur and Černý,
2011; Alur et al., 2014).

Concretely, the next step for this should focus
on recognition. The Python program we provided
for 2-way FSTs includes code for generation, but
not recognition. One route towards recognition
may be non-deterministic FSTs (Alur and Desh-
mukh, 2011; Filiot and Reynier, 2016). Another
is to see to what extent pushdown transducers (Al-
lauzen and Riley, 2012) simulate deterministic and
non-deterministic 2-way FSTs and vice versa.

To sum up, once the properties of 2-way FSTs
are more more fully understood it should be pos-
sible to expand existing finite-state processing
platforms for morphology, such as xfst (Beesley
and Karttunen, 2003), openFST, (Allauzen et al.,
2007), foma (Hulden, 2009b), and Pynini (Gor-
man, 2016), to include them.

5 Conclusion

RedTyp provides a publicly available record of
138 reduplicative processes and morphemes, each
of which is implemented precisely with a deter-
ministic 2-way FST. It is striking that so many
reduplicative processes can be described com-
pactly with this understudied type of finite-state
machine. We hope RedTyp spurs additional re-
search activity into computational and theoretical
treatments of reduplication as well as theoretical
and applied research on 2-way FSTs as models of
morphophonological copying processes.
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