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Abstract

In language (and content) instruction, free-text

questions are important instruments for gaug-

ing student ability. Grading is often done

manually, so that frequent testing means high

teacher workloads. We propose a new strat-

egy for supporting manual graders: We care-

fully analyse the performance of automated

graders individually and as a grader ensemble

and present a procedure to guide manual effort

and to estimate the size of the remaining grad-

ing error. We evaluate our approach on a range

of data sets to demonstrate its robustness.

1 Introduction

Using computers in teaching has opened up new

possibilities for learning independent of time

or location while receiving individual feedback

through frequent testing. For this, automated eval-

uation of student answers, supported most easily

by closed question formats like multiple choice, is

key. This means that tests usually do not contain

open question types like short answer questions,

although these are didactically valuable because

they provide insight into students’ reasoning.

There is a substantial body of research address-

ing automated short-answer grading (SAG, see

Burrows et al. (2015) for an overview). How-

ever, the resulting tools are not widely used to pro-

duce completely automated student feedback. In-

stead, automated methods to reduce manual grad-

ing workload have been proposed (which can also

be used to reduce annotation workload for train-

ing data in general). The use of clustering for

label propagation (Basu et al., 2013; Horbach

et al., 2014; Zesch et al., 2015; Horbach and

Pinkal, 2018) and of Active Learning (Horbach

and Palmer, 2016) has been investigated.

This work is licensed under a Creative Commons Attri-
bution 4.0 International Licence. Licence details: http:

//creativecommons.org/licenses/by/4.0/.

In this paper, we describe a new strategy to re-

duce human graders’ workloads. We pre-grade

student answers with automated methods that have

been carefully analysed to reveal their strengths

and weaknesses with regard to the target cate-

gories. Combining several automated graders into

an ensemble additionally yields insight into the

reliability of individual machine grades. Human

grading effort can now be focused on reviewing

those answers that were most likely not graded

correctly.

Effectively, we harness two basic insights

of machine learning: Learners perform best

on frequently-attested classes (and consequently,

under-represented classes require more human at-

tention), and ensembles of learners outperform

any given single model (and consequently, auto-

mated decisions with high agreement across learn-

ers are likely reliable).

Our strategy allows a sizeable reduction of hu-

man effort (by at least 40% and up to 93%), while

grading accuracy remains at or even improves be-

yond purely human grading.Since not every stu-

dent answer is reviewed by a teacher, our approach

does not support individual teacher comments on

each answer. It is useful in situations where over-

all performance is being determined by accumu-

lating the grades for individual answers, for exam-

ple placement tests or recurring text comprehen-

sion tests.

Our paper is structured as follows: We first give

an overview over related work in manual grader

support for SAG (Section 2). We then describe our

method and our seven data sets, the machine learn-

ing algorithms and features, as well as the evalua-

tion measures in Section 3. In Section 4, we anal-

yse human grading performance in terms of Pre-

cision, Recall and Inter-Annotator Agreement to

establish a point of comparison. We then investi-

gate the strengths and weaknesses of an automated
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grader compared to the human gold standard (Sec-

tion 5). In Section 6, we assess how much grading

effort can be saved and how much grading error

remains when we use reliability estimates that are

based on the Inter-Annotator Agreement of ma-

chine grades only. We summarise our conclusions

and point out future work in Section 8.

2 Related Work

Recent work in minimising human annotation ef-

fort for short-answer questions has followed two

strategies: Clustering similar answers so that each

set can be graded together (Basu et al., 2013;

Brooks et al., 2014; Horbach et al., 2014; Zesch

et al., 2015) or existing grades can be propa-

gated (Horbach and Pinkal, 2018), and selecting

the most informative answers for Active Learning

(Horbach and Palmer, 2016). Manual workload is

reduced either in order to directly benefit teachers

(Basu et al., 2013; Horbach et al., 2014; Horbach

and Pinkal, 2018) or in order to assist the creation

of training data for automatic grading (Zesch et al.,

2015; Horbach and Palmer, 2016).

Beyond faster grading, clustering similar an-

swers can also provide interesting insights into

common (mis-)perceptions of the subject matter

according to Basu et al. (2013), which underscores

the didactic usefulness of short-answer questions.

In follow-up work, Brooks et al. (2014) demon-

strate a speed increase for assigning an initial

grade of a factor of three when using clustering

support (which corresponds to 66% of time saved).

They work on native-speaker content-assessment

data, while Horbach et al. (2014) develop a simi-

lar approach for language learner data and report

a comparable speedup: Using their method could

save the correction of 60% of items at 85% grad-

ing accuracy. Horbach et al. (2014) acknowledge

that perfect scoring accuracy is not necessary in

many testing settings; we will investigate human

performance levels in Section 4 below. Zesch et al.

(2015) aim to reduce the amount of manual an-

notation required to create training data for au-

tomated graders and find that the clustering ap-

proach is most useful for very short answer texts.

Horbach and Palmer (2016) perform Active

Learning, where instances to be manually labelled

are selected to quickly optimise classifier perfor-

mance. They find that uncertainty-based sample

selection is more efficient in improving the classi-

fier than a random and a cluster-based baseline.

However, there is great performance variability

across the question corpus.

Zesch and Horbach (2018) introduce a cluster-

ing and classification workbench intended to fa-

cilitate both first practical applications of human

grader support and further research.

3 Experimental Setup

Our experiments target ad-hoc tests such as

weekly quizzes or end-of-term exams, where

question re-use is limited. This sets us apart

from approaches that use a corpus of sample an-

swers to prepare grading models for a standard-

ised question pool. Rather, it restricts us to an

unseen-question setting in which no training an-

swers are available for any of the questions in the

test set. We use various data sets (Section 3.1)

to train machine learners (Section 3.2) and eval-

uate their performance using Precision/Recall and

Inter-Annotator Agreement (IAA) (Section 3.3).

3.1 Data

We test the generality of our findings by using a

range of standard corpora that vary in size, lan-

guage and test setting (see Table 1). Our largest

corpus is ASAP, although only five out of ten ques-

tions have a reference answer and can be used in

the unseen question setting. Five corpora are in

English, two in German. Half of our corpora are

collections of questions generated for low-volume

testing (of tens of students at a time) that are

graded by the teachers. SEB, Beetle and ASAP

(Higgins et al., 2014) are from high-volume, stan-

dardised testing and grading situations. Both cor-

pora of language learner data (CREG and CREE)

fall into this category; the other corpora test con-

tent mastery. For four data sets (ASAP, CREE,

CSSAG and Mohler) we have more than one set

of human annotations.1

We also show the number of grade categories

present in each corpus.2 We generally observe a

strong skew towards the majority category in our

multi-class corpora. These characteristics of the

data will be relevant in Sections 4 and 5 below.

1CREG also has multiple annotations, but was con-
structed to contain only answers with agreeing human anno-
tation.

2We use the unseen question, two-way versions of the
SEB and Beetle training data.
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Corpus
#Questions/ # Classes Lan-

Task
Human Testing

#Answers (% max class) guage Annotation Volume

ASAP (www.kaggle.com/c/asap-sas) 5/8182 5 (46%)

EN
Content

Double
high
volume

SEB (Dzikovska et al., 2013) 135/4969 2 (60%)
Single

Beetle (Dzikovska et al., 2013) 47/3941 2 (58%)
Mohler (Mohler et al., 2011) 81/2273 11 (49%)

Double low
volume

CREE (Meurers et al., 2011a) 61/566 2 (72%)
Language

CREG (Meurers et al., 2011b) 85/543 2 (50%)
GER

CSSAG (Padó and Kiefer, 2015) 31/1926 9 (38%) Content Double (subset)

Table 1: Corpus sizes and characteristics

3.2 Automated Graders and Features

We follow the most common literature conceptu-

alisation and treat the prediction of human short-

answer grades as a classification task: The human

grades are ordinal in nature, which means the or-

der of the categories is defined, but the distance be-

tween individual categories is not. We normalise

the categories by using the percentages of the

maximum score (e.g., 0% and 100% for the two-

category corpora). This is useful because ques-

tions can have different maximum scores, which

means that the impact of absolute points differs

across the corpus (2 points could be partially cor-

rect for one question, but fully correct for another).

Of course this also means that some of the inter-

mediate percentage-based categories will be rare

(e.g., 33% will only occur for the subset of 3-point

questions if grading is in one-point steps).

As four out of seven corpora have little data,

which reduces the possibility to tune parameters,

we follow recommendations by Madnani et al.

(2016) and employ Random Forest (RF) and Sup-

port Vector Machines (SVM), adding Decision

Trees (DT) as a third algorithm for their ease of

interpretation (all from the Weka machine learn-

ing toolkit3).

Individual models are trained by leave-one-

question-out cross-validation to make the most of

our smaller data sets. We experimented with fur-

ther parameter tuning on the Beetle and SEB data

sets, which provide unseen-question dev and test

sets. Tuning did improve performance on the test

sets, but rarely affected performance in the leave-

one-question-out setting. By Occam’s razor, we

therefore do not further tune parameters. This

also applies to modifications of the training regime

such as cost-sensitive learning. As a result, our

learner performance underestimates the tuned, op-

timal case.

We use the feature set described by Padó (2016),

3https://www.cs.waikato.ac.nz/ml/weka

who selected representative features explored in

the literature: N-Gram features (token and lemma-

based), text similarity features (with/without stop

words), the overlap between student and reference

answer in terms of dependency parse and deep se-

mantic representations, and textual entailment (de-

cision and confidence).

3.3 Evaluation Measures

We report weighted Precision (P) and Recall (R)4

– on the whole corpus in Section 4, for comparison

to human performance; and per predicted category

(see Section 5), for a more detailed performance

analysis. P and R indicate how reliable a learner’s

category predictions are and how well they over-

lap with the actual incidence of that category. Note

that weighted overall Recall corresponds to overall

Accuracy. Overall weighted Recall Rec is com-

puted as in Equation 1.

Rec =

∑
c

TPc

TPc+FNc
∗Nc

Ntotal

(1)

Since TPc + FNc = Nc,

Rec = Acc =

∑
c TPc

Ntotal

. (2)

The advantage of Inter-annotator Agreement

(IAA) measures such as Fleiss’ κ ((1971), which

is more general than Cohen’s κ (1960)) is that

they take into account chance agreement by con-

sidering the study-specific distribution of annota-

tion categories. Fleiss’ κ allows us to compute

agreement for individual answers as well as on the

question level. κ estimates the annotation reliabil-

ity in cases where two or more annotators (human

or machine) are present. It is computed as

κ =
P̄ − P̄e

1− P̄e

(3)

4We do not report F1 scores, as they are most useful to
compactly compare overall classifier performance, while we
are most interested in individual, class-based performance.
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where 1 − P̄e denotes the agreement predicted

by chance and P̄ − P̄e denotes the agreement ac-

tually attained. P̄ and P̄e are calculated as:

P̄ =
N∑

i=1

Pi

N
(4)

P̄e =
k∑

j=1

p2j (5)

For each answer that receives a grade, we can

calculate the individual agreement Pi as

Pi =

k∑
j=1

n(nij − 1)

m(m− 1)
=

k∑
j=1

n
2

ij − nij

m2
−m

(6)

where m is the number of annotators, nij is the

number of annotators that chose a category j for

token i, k the number of categories and N the

number of tokens.

We follow Yannakoudakis and Cummins (2015)

and do not report correlation measures like Pear-

son’s r and Spearman’s ρ, as they are not appropri-

ate for data with many ties (such as grading data

sets with their fixed range of categories). Further-

more, r is sensitive to outliers, while ρ inherently

measures the ability of a system to rank answers

appropriately, as opposed to predicting the correct

category. As such, correlation measures do not

support our goal of determining how reliable item-

wise machine predictions are.

4 Experiment 1: Comparing Human and

Machine Performance

Our first experiment investigates human-human

performance and compares it to the reliability of

automated grading. We compute human P, R and κ

for the data sets where informative double manual

annotations are available (ASAP, CREE, CSSAG

and Mohler). For the human data, we report the

performance of the best single annotator against

the gold labels and show machine P and R for

comparison. We begin with the easiest setting: bi-

nary correct-incorrect classification for all corpora

(where correct means > 50% of the max score).

Results are shown in Table 2.

Human P/R results (H P and H R in Table 2)

are in the eighties (up to 94 for ASAP) through-

out. For the Mohler data, we show two perfor-

mance numbers: For this data set, the gold stan-

dard is created by averaging the two single an-

notations; therefore, every annotator’s grades are

highly correlated with the gold. This leads to arti-

ficially inflated P and R values (shown in brackets

in Table 2). For the other grades, the gold stan-

dard was created independently (CSSAG) or one

annotator’s grades are marked as the gold standard

(CREE and ASAP), so that the other’s grades are

independent of gold. Treating the Mohler data in

this way (using annotator “me” as gold annotation)

results in performance in the low eighties. We

refer to this evaluation method als Mohler strict

evaluation below.

Our results show that human annotation with

up to 16.5% of error (Mohler strict evaluation,

14.2% for CREE) has been accepted in the past

for low-volume testing. (Assuming error to be 1-

Accuracy, that is 1-R, since weighted R equals Ac-

curacy). For high-volume testing (ASAP), we see

much lower rates at 6% error.

Human κ values vary widely across corpora and

range from 0.41 (Mohler) to 0.82 (ASAP). The

higher κ, the better the human annotators agreed

on the grades, producing clearly defined categories

and clean training data.

We find low κs for corpora collected as a by-

product of low-volume, ad hoc testing with many

different questions and different grade categories

(CSSAG, CREE and Mohler). ASAP, collected

in a high-volume testing setting, is the opposite,

since the reliability of multi-annotator grading is a

priority when single-annotator grading is impossi-

ble due to testing volume. Consequently, there is a

small number of grade categories and clear scor-

ing rubrics exist for each question (and graders

were likely carefully trained to apply them con-

sistently).

We present machine P and R for the RF learner,

our best individual machine grader. It outperforms

literature results from Padó (2016) (who used the

same features). The SVM and DT learners show

similar result patterns as RF, but perform an av-

erage of 3 (SVM) and 4 (DT) percentage points

worse. Machine results are worse than human re-

sults except for the CREE corpus and also outper-

form the strict Mohler human-human P and R val-

ues (see above). Note that both these corpora are

strongly skewed towards one class (87% and 72%

of the items, respectively). In CSSAG (as well

as in SEB and Beetle), the class balance moves

to 60-40 and learner performance is noticeably

worse. In fact, human P/R results for CSSAG are

the strongest among the low-volume corpora, but
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Measure ASAP CREE CREG CSSAG Mohler Beetle SEB

H
P 93.7 86.0 n.a. 89.2 82.7 (95.4) n.a. n.a.
R 93.7 85.8 n.a. 89.9 83.5 n.a. n.a.

RF
P 86.0 85.4 84.6 71.0 87.5 (93.6) 78.4 70.6
R 86.2 86.0 84.5 70.4 89.0 78.0 70.7

H κ 0.82 0.64 n.a. 0.54 0.41 n.a n.a.

Table 2: Weighted Precision (P) and Recall (R): Human-gold (H) and machine-gold (Random Forest, RF) perfor-

mance for binary classification. Human-human Fleiss’ κ. n.a.: Single human annotation only.

the machine results are the lowest of all four cor-

pora. This may be caused by the low reliability

of the human annotations (evidenced by low κ).

The strong skew of the Mohler data (49% of data

points are annotated with the highest of 11 cat-

egories) probably masks a similar effect for that

corpus.

5 Experiment 2: Strengths and

Weaknesses of Single-Model Grading

Experiment 1 has presented human annotation

standards and the performance of a vanilla auto-

mated grading model. While the automated grader

clearly has room for improvement, our next analy-

ses show that even unreliable machine predictions

can considerably reduce human grading effort.

Our goal is to focus the human grading effort

on those answers where it is most needed. We

accept the consequence that not every student an-

swer will be reviewed by a human grader and that

some errors will remain in the final grades. There-

fore, the approach is most suitable for testing situ-

ations where the grades for individual answers are

combined into an overall grade. This accumulated

grade is more robust towards some remaining er-

ror.

Note that the notion of “most needed human at-

tention” depends on the testing context. In for-

mative feedback situations, it is more acceptable

to receive approximate grades than in high-stakes

testing, since no decisive consequences depend on

formative feedback. We will further discuss these

issues below, where we strive to present the trade-

off between grading accuracy and grading effort

in order to allow users to find the ideal balance for

their situation.

In this Section, we take a first step and dis-

cuss how to identify reliable machine grades based

only on the RF grader’s strengths and weaknesses.

In Section 6, we will move on to comparing au-

tomated predictions from several learners for im-

proved reliability estimates.

Correct Incorrect Majority
Corpus P R P R class
ASAP 69.8 66.3 90.6 91.9 I
CREE 89.8 93.1 68.0 57.9 C
CREG 83.3 85.2 85.8 84.1 –
CSSAG 54.3 58.3 79.1 76.3 I
Mohler 89.4 99.2 74.2 16.4 C
Beetle 70.8 76.5 83.4 78.9 I
SEB 70.0 52.7 70.9 83.7 I

Table 3: Weighted P and R per category (binary classi-

fication) and majority class (CREG is balanced by de-

sign). RF classifier.

5.1 Case 1: Binary classification

Table 3 shows category-wise P and R for binary

classification. As can be expected, the majority

class is predicted more reliably and with fewer er-

rors in all cases. As CREG is balanced by design,

there is no such frequency effect. For the highly

imbalanced data sets, R drops steeply in the mi-

nority category (between 25%-points for ASAP –

71% incorrect – and 83%-points for Mohler – 87%

correct) as the machine grader over-generalises to

the majority category.

These results indicate that in a binary setting,

manual effort should focus on reviewing the pre-

dicted minority class results, as the majority class

is fairly reliably marked. For a strongly skewed

corpus like ASAP, 1717 instances out of 8182

(21%) need to be reviewed, while for a less skewed

corpus such as Beetle, 1708 out of 3942 instances

(43%) need to be checked.

Since most corpora are imbalanced, checking

only the minority class predictions would save

60-80% of labor while eliminating the largest er-

ror source. However, when relying on automatic

graders, the information about which answers may

have wrongly received the majority class is not

available. Additionally, due to the binary setting,

no additional information is available to reduce the

error further.

In the case of low minority class recall in a

high stakes situation, the risk of wrongly-assigned

“pass” or “fail” grades is high. This means that
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all majority class predictions or at least a sam-

ple should additionally be checked to catch mis-

assigned minority class answers.

5.2 Case 2: Multi-class classification

We now move on to the more complex multi-class

case (where a spectrum of grades is assigned in-

stead of just pass/fail). We have three data sets

with more than two target categories: ASAP (five

categories), CSSAG (nine) and Mohler (11). We

again evaluate RF classification using P/R. We

also report category-wise human-human perfor-

mance for comparison.

Table 4 shows results for the CSSAG data.

Clearly, in the harder multi-class case, both human

and machine grader performance degrade com-

pared to the results in Table 2. Recall that the

human-human data is for a subset of CSSAG –

there are additional categories in the whole data

set that are not covered in the subset. Human per-

formance on all metrics is best for the categories 0
and 1, with similar κ for 0.5. For categories 0.25
and 0.75, human agreement becomes erratic, with

low P/R and κs, which indicates that these cate-

gories are not assigned consistently. This implies

that these intermediary categories are not well-

defined in the annotators’ minds, which in turn

causes data quality to suffer. Not surprisingly,

therefore, the RF P and R show patterns of fre-

quency (rare categories not attested in the human-

human subset are predicted badly) and of annota-

tion cleanness. Therefore, predictions of 0, 0.75
(high P) and 1 (which make up 74% of the train-

ing data) can be trusted, while the other 25% of

predictions should be checked. Additional spot

checks of 1 predictions are also advisable due to

the lower P in high-stakes settings, while in for-

mative settings, it may not be as important to dif-

ferentiate between the fine-grained grade steps and

over-generalisations to 1 may be acceptable.

Table 5 shows the results for ASAP. Again, both

human and machine overall performance drop for

the harder task, but with just five categories, the

drop is not as steep. Also, human and machine

performance is much more robust across all cate-

gories. The automated grader performs worst on

categories 0.33 and 0.66. Since human perfor-

mance is stable for these categories, this is prob-

ably a frequency issue as the categories are well-

defined and clear to the annotators, and the auto-

matic grader is generally reaping the benefits of

clean data for the majority class. The machine pre-

dictions for category 0, which makes up about half

of the gold annotations, can generally be trusted,

while predictions of 0.33 and 0.66 (23% of the

data) should always be checked.

For the Mohler data set with 11 categories, the

drop in performance from the binary classification

case is clearest (Table 6, “overall” column; we

present the stricter evaluation of one human anno-

tator against the other). Looking at the category-

wise results, the Mohler data set, like CSSAG,

suffers from both ill-defined and sparsely attested

categories. We see low human P/R except for 0
and 1 and low human κ except for 0.4, 0.6 and

1. Additionally, in case of human disagreement

the difference between the human grades is often

in the range of just one grade; this begs the ques-

tion whether the difference between the 11 cate-

gories can in fact be reliably annotated. The data

sparseness stems from the fact that the majority of

questions uses only six categories. This results in

no machine predictions or very low P/R except for

categories 0 and 1.

Together, these two categories make up 50% of

the training data. Any other category predictions

are likely to be incorrect and should be checked;

in a high stakes setting, even predictions for 1
could be additionally reviewed because the rela-

tively low P at high R indicates over-generalisation

towards this category.

In sum, when using a single, imperfect ma-

chine grader, we can already identify a relatively

large set of student answers that is likely graded

correctly and probably does not need further hu-

man attention. The more target categories there

are in the data, the more fine-grained the analy-

sis becomes, but also the reliability of both human

and machine grades suffers. Therefore, in a high

stakes situation, human graders can be most reli-

ably supported by automated grades for a binary

pass/fail decision if the machine grader shows

high recall for the minority class. If this is not

the case or if the distinction between more grade

steps matters, the setup presented here may still be

useful for formative feedback since repeated, for-

mative feedback is a large drain of human grader

resources and human time saved may outweigh the

approximate nature of the grades.

As we use various data sets from a range of sce-

narios, our conclusions should be generalizable.
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Overall 0 0.17 0.25 0.33 0.5 0.66 0.75 0.83 1

H
P 77.2 79.2 – 62.5 – 57.4 – 39.1 – 93.5
R 76.2 98.3 – 57.7 – 50.0 – 45.0 – 62.3

RF
P 49.1 63.7 0 18.2 0 40.7 15.8 75.0 0 38.4
R 67.4 73.6 0 2.0 0 10.0 10.3 2.6 0 71.6

H κ 0.54 0.65 – 0.27 – 0.59 – 0.36 – 0.68

Table 4: CSSAG: Human-gold (H) and machine-gold (RF) P and R, human-human κ values. – : No prediction

made.

Overall 0 0.33 0.5 0.66 1

H P 87.2 92.4 87.6 80.4 86.0 86.0
H R 87.2 92.4 86.6 81.3 86.0 85.1
RF P 64.7 81.8 39.3 61.8 34.2 47.6
RF R 67.4 89.0 23.9 64.4 22.8 64.5
H κ 0.82 0.88 0.86 0.74 0.85 0.82

Table 5: ASAP: Human-gold (H) and machine-gold

(RF) P and R. Human-human κ values.
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Figure 1: Proportion of items with no agreement (NA),

partial agreement on false prediction (PartAF), full

agreement on false prediction (FullAF), partial agree-

ment on true prediction (PartAT) and full agreement on

true prediction (FullAT), in brackets: # of classes.

6 Experiment 3: Item-wise Reliability of

Ensemble Grading

We now switch from using a single automated

grader to combining three automated graders (RF,

DT and SVM). This approach allows us to gen-

erate multiple machine annotations and use them

for reliability estimates. We use κ to analyse the

automated graders’ reliability down to the single-

item level and to generate fine-grained reviewing

recommendations for manual graders.

We assume that a machine grade is more reli-

able if more of the graders in our ensemble pre-

dict it (and therefore agree better, such that κ is

high). With three learners, the item-wise predic-

tions can be in full agreement (FullA, κ = 1), par-

tial agreement (PartA, κ = 0.83) or no agreement

(NA, κ = 0).

Figure 1 shows automated grader agreement

and disagreement for the binary (and, where ap-

plicable) multi-class case. The number of target

categories is given in brackets. This figure demon-

strates that our assumption of greater agreement

= greater reliability is generally justified: Com-

pare the proportion of true and false predictions

for full agreement and partial agreement. There

are vastly fewer cases of FullAF (full agreement,

false; yellow) than FullAT (full agreement, true;

dark green), while cases of PartAF (partial agree-

ment, false; orange) and PartAT (light green) are

closer to balance.

Cases of FullAF (full agreement, false predic-

tion; yellow) are generally around 10%, with a

maximum of 19% for CSSAG (9). This is similar

to human standards: Human annotators may also

agree on a category that does not match the gold

standard. In our CSSAG subset, this occurred for

10% of annotations, as well.

Given this picture, our recommendation is to

manually review answers in the order of the

amount of learner disagreement on the category,

beginning with NA. The first lines of Table 7 show

that in the binary case, reviewing only NA cases

of course means no manual work (three graders

have to agree at least partially on two labels, so

there is always a clear majority for one label), at

error levels between 11% (Mohler (2)) and 30%

(SEB). For four out of the seven corpora, error

levels would already be close to human agreement

error (at 1−Accuracy =15% – recall Section 4).

This picture is close to single-grader performance

in Section 5.1.

In the more complex multi-class case, this strat-

egy reduces the manual grading effort to between

6% (CSSAG (9)) and 9% (Mohler (11)) of all

items in the multi-class case. Assuming that the

Proceedings of the 7th Workshop on NLP for Computer Assisted Language Learning at SLTC 2018 (NLP4CALL 2018)

63



Overall 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
P 58.5 96.0 0 37.5 0 30.6 13.6 21.8 3.8 20.8 4.4 78.0
R 57.3 19.0 4.4 0 0 1.0 13.6 23.8 25.0 27.4 8.7 86.3

RF
P 38.1 67.9 0 0 33.3 13.3 20.6 12.5 37.5 8.8 18.6 56.7
R 50.9 95.0 0 0 2.9 2.2 5.7 5.8 13.8 2.4 6.7 94.9

H κ 0.41 0.30 0.01 0.10 0.15 0.62 0.15 0.62 κ < 0 0.13 0.02 0.82
RF κ 0.10 0.79 κ < 0 κ < 0 0.05 0.02 0.06 0.03 0.15 κ < 0 0.01 0.15

Table 6: Mohler: Human-gold (H) and machine-gold (RF) P and R. Human-human κ values. n.a.: No prediction

made.

Binary Classification Multiclass

Strategy Measures ASAP CREE CREG CSSAG Mohler Beetle SEB ASAP CSSAG Mohler

NA
only

Effort (%) 0 0 0 0 0 0 0 7 4 9
Error (%) 16 15 16 29 11 23 30 28 44 41

PartA/
weak

Effort (%) 12 7 – 12 5 13 12 23 35 50
Error (%) 12 13 – 23 9 17 25 18 25 15

PartA/
all

Effort (%) 20 19 12 27 7 24 28 39 50 59
Error (%) 8 9 9 17 8 13 18 11 19 15

Table 7: Remaining effort (in % of items) and remaining error for all corpora following different review strategies.

NA only: Review no-agreement answers; PartA/weak: Revise PartA predictions of classes with weak classifier

performance; PartA/all: Revise all PartA predictions. Bold: Error at or below observed human agreement. –:

CREG has no majority class.

hand-assigned categories are always correct, re-

maining error would then range between 28%

(ASAP (5)) and 45% (CSSAG (9)). More hu-

man effort is clearly needed to further reduce er-

ror in most grading situations, even though grader

workload has been greatly reduced over the single-

grader case (where 25-50% of predictions had to

be reviewed) and remaining error also drops for

ASAP and Mohler compared to using a single

grader.

Finding Errors Figure 1 implies that grades

predicted in partial agreement are unreliable be-

tween 32% (CREE, CREG) and 43% (CSSAG (2),

Mohler (2)) for the binary case and (at best) half of

the time for the multiclass case. For comparison,

grades predicted in full agreement are unreliable

between 4 and 25% in the binary case and between

14 and 38% in the multiclass case. Focusing on

PartA predictions is therefore an efficient use of

human effort.

We can zoom in further on likely errors by con-

centrating on the categories that are most likely

affected because the machine graders perform

weakly on them. For ASAP (5), machine grad-

ing performance is known to be worst for classes

0.33, 0.66 and 1 (see RF performance in Table 5).

60% of the erroneous PA predictions are in fact for

those classes. Reviewing all PartA cases for these

categories, which make up 16% of the total data

set, and additionally checking all items where the

machine graders disagree (7%) results in a reduc-

tion of manual grading effort of 77% of the items,

while holding remaining error at 18%. Remaining

error can be further reduced to 11% by revising the

PartA predictions for all classes instead of just the

weakest classes. Humans still review only 39% of

all answers in this case (corresponding to 61% of

effort saved).

Table 7 shows the remaining manual effort and

error for all data sets for the PartA/weak strategy

(revise cases of NA and those PartA categories that

the RF grader is known to perform weakly on) as

well as for the PartA/all strategy. For the binary

corpora, the predictions for the minority class are

reviewed for the PartA/weak strategy.

Clearly, the same patterns hold across all data

sets: For binary classification, just using the en-

semble predictions reaches error at human levels

for CREE and Mohler (recall, however, that these

corpora are strongly biased towards the majority

class). When reviewing all PartA predictions, five

out of seven corpora show remaining error levels

below the observed human error level of 15%, and

for four of these five, the error is even below 10%

at a maximum of 28% of items reviewed. In the

harder multiclass case, two of the three corpora

show human-level remaining error, but some more

reviewing effort is needed (up to 60% of items, or

50% for CSSAG at 20% remaining error). This

mirrors the complexity of the task, but is still a

sizeable reduction.
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Relaxing the Evaluation A second measure

that helps save human effort is reconsidering the

gravity of machine errors in the multiclass case:

In repeated formative testing, a difference between

actual and predicted grade of one grade step out

of five (or even eleven) may not be of much con-

sequence for the student. To model this relaxed

evaluation, we use the definitions from above for

FullA, PartA and NA predictions. However, we

now count a prediction as correct if it is within

one grade step of the gold category. We also apply

the relaxed prediction matching to the reviewing

recommendations: We now only review NA cases

and those PartA cases where the predictions differ

by more than one grade step (the majority predic-

tion is accepted for the other PartA cases).

This relaxation is very relevant: 75% of PartA

predictions for the ASAP (5) data and 72% for

the Mohler (11) data differ within one grade step.

For CSSAG (9), however, only four out of more

than 800 PartA predictions are within one grade

step of another. This pattern of results can be ex-

plained by a tendency of the Decision Tree (DT)

learner to predict the extreme categories. Since the

Mohler and ASAP data are biased towards those

categories, all the learners show this pattern and

predictions match closely. CSSAG has a bias to-

wards the middle category as well as the top that

SVM and RF reflect better than DT. Therefore,

they may cast votes that differ strongly from the

DT vote.

The results of relaxed evaluation and review are

very encouraging for practical application: For

ASAP, error drops to 7% when reviewing just 25%

of the data. This is at the human level observed

for ASAP. Previously, reviewing all PartA predic-

tions in strict evaluation, 11% of error remained

and 38% of data were reviewed. For Mohler, 5%

error remain after reviewing 38% of data (from

15% of error while reviewing 59% of data). For

CSSAG, there is of course no change. This pat-

tern of results makes the approach very promising

for formative assessment, where testing is frequent

(causing high grader workload) and the individual

test result can still be informative even if it is ap-

proximate.

7 Implications for Real-World Users

Our motivation for this work was to help human

graders in language instruction (and elsewhere)

save time and effort on manual grading of free text

answers. Our analysis shows that human effort can

be reduced drastically by following our reliability-

guided review strategy, while grading error stays

at or even drops below the human level. However,

there are a few points to consider for real-world

graders as they choose the correct level of revision

strictness for their testing context.

Human revision error We make the assump-

tion that human review always determines the cor-

rect category. This may seem optimistic given the

human error rate of up to 15% in Section 4, but it

is hard to predict grader error more precisely for

the general case. Our results in Section 4 show

that grading error is lowest in a situation where

graders have clear scoring rubrics and are (pre-

sumably) carefully trained. Ad hoc grading by

teachers shows the highest error rates. For this

scenario, it can be hoped that, as the number of an-

swers to review drops, grader alertness and moti-

vation will rise, leading to cleaner annotation. We

therefore report the assumed-to-be-perfect num-

bers and leave it to each grader to discount them

by the likely error rates incurred in their process.

Distortion of the grade distribution How will

using the proposed method alter the grade distribu-

tion? The most conservative case means reviewing

all PartA judgements, as this issue is likely to mat-

ter most when stakes are high. The only remain-

ing system error (following our assumption about

perfect human revisions) are the cases where the

ensemble agrees on the wrong category. We anal-

ysed CSSAG multiclass, because it has multiple

human annotations that are independent of gold

(and therefore shows the phenomenon on humans

agreeing on non-gold categories, like the machine

ensembles). First of all, in both data sets (multi-

ple human-annotated subset of CSSAG and mul-

tiple machine-annotated complete CSSAG), the

most frequent categories are 0, 1 and 0.5, in this

order. Another similarity is that in both cases,

mis-assignments end up mostly in the more fre-

quent classes. For the human annotations, mis-

assignments are most often labelled 0 and 0.5, for

the machine annotation, 0 and 1 (the two most fre-

quent classes). There are, however, some differ-

ences: The humans showed a clear tendency to as-

sign the next lower frequent class (mis-labelling

0.5 as 0 or 0.75 as 0.5). They rarely wrongly

agreed on the label 1, and true 1s were labelled

as 0.75 or even 0.5. Conversely, the machines are
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overly generous: They tend to mis-label as 1, even

though 0 is the most frequent class in the data (al-

most twice as frequent as 1).The reason may be

that many true 0 answers are simply empty or con-

tain just a few (non-informative) words. The ma-

chines therefore tend to over-generalise to the next

more frequent category, 1, if an answer does not fit

that pattern, even if it is still incorrect. There is an

indication of this behaviour in the learner perfor-

mance in Table 4: Precision for class 1 is much

lower than for class 0, at similar recall. This in-

dicates that class 1 predictions are more often un-

reliable, and the machine is therefore being overly

generous. Note, however, that this distortion af-

fects only 11% of the data.

This error analysis suggests that we might im-

prove the automated grader by training it only

on non-empty incorrect answers, thereby remov-

ing the bias towards distinguishing between empty

and non-empty rather than correct and incorrect.

The empty answers would then be trivially la-

belled as incorrect after filtering.

In general, since items to review are chosen

on the basis of classifier grades, if the ensem-

ble shares a bias towards a specific category, the

grades of that category will be reviewed dispropor-

tionally rarely. Fortunately, learner bias follows

the frequency biases in the data, so that the bias

categories are generally graded reliably, as mir-

rored in the remaining error levels for our strategy.

However, classifier bias and it’s tendency may still

be relevant depending on the testing context, as we

have seen.

Language lerner corpora In our experiments,

language learner corpora generally fare better than

content assessment corpora. The CREE and

CREG corpora feature binary categories which

were annotated reliably (κ = 0.64 for CREE, only

items with annotator agreement for CREG). While

a κ of 0.64 might not sound impressive, it gives an

idea how hard the task of awarding the equivalent

of “pass” or “fail” in these contexts are. This is the

best-case scenario for the automated learners. In

this situation, corpus size does not seem to matter

as much as might be expected: The RF learner per-

forms as well for CREE and CREG as it does for

the binarised version of ASAP, which is roughly

16 times larger.

An additional factor in this scenario may be

that CREE and CREG appear to be easier to

machine-grade than many content-assessment cor-

pora (Padó, 2016). Padó (2017) hypothesizes that

this effect is due in part to the fact that the ma-

jority of questions in language learner corpora are

text comprehension questions, which require re-

production and tend to produce answers that are

very close to the reading text as well as the ref-

erence answer taken from this text. Additionally,

language learners’ limited proficiency may keep

them from paraphrasing freely, which compounds

the effect.

In sum, the language learner corpora we used

for our experiments are very well suited to train

reliable automated graders, and this is mirrored in

the evaluation results: The machine ensemble pre-

dictions (in full and partial agreement) were cor-

rect at about the level of human performance (85%

of labels correct) without any human review. This

can optimally be raised to 91% correct categories

when reviewing just 20% of the data. The remain-

ing error (where the ensemble fully agrees on the

wrong category) is at 9% of the data, which is the

same level as human agreement on the wrong cat-

egory for a subset of CSSAG.

This makes our strategy especially promising

for free text grading in language instruction: On

the one hand, the question type is frequent and

grading therefore adds substantially to the teach-

ers’ workloads; on the other hand, machine-

supported manual grading yields grades that are

definitely reliable enough for formative testing and

possibly even summative testing (after the reserva-

tions about possible distortions in grade distribu-

tion are considered).

Lessons for ad-hoc manual grading Compar-

ing the CSSAG, Mohler and ASAP data set, we

also observe that the amount of training data avail-

able per category and the quality of human an-

notation clearly matters. Although the categories

are imbalanced in all data sets, the absolute num-

ber of examples for each of the five categories

in the ASAP data is considerably higher than for

Mohler and CSSAG, where some categories are

very sparse. Also, the human κs are much higher

and more consistent for the ASAP data. Conse-

quently, the machine graders learn to make high-

quality predictions. In light of this observation, we

recommend using as few categories as possible in

automatically supported grading to avoid sparse-

ness issues and to prioritise clear category defini-

tions (resulting in high human grader agreement).

As the analysis of the manual grading shows, too
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many categories lead to unclear representations in

humans as well, which in turn do not allow for

clear models using machine learning. Fewer cat-

egories are also easier to interpret, as the differ-

ences of individual steps on a 10-point scale are

less clear than differences for example on a 6-point

scale.

In some NLP tasks, reducing the scale is not an

option. Therefore, information about easily mod-

elled categories could be used to focus the annota-

tion effort on the harder categories to ensure con-

sistent models.

8 Conclusions and Future Work

We have shown the practical usefulness of unop-

timised automatic grading tools for reducing hu-

man grading effort, based on seven different cor-

pora and two different grading scenarios. For the

binary grading scenario, where only correct vs. in-

correct is distinguished, effort can be reduced by

at least 75%. In more complex grading scenar-

ios of assigning grades based on various levels of

granularity, effort can be reduced by at least 40% –

depending on the scale complexity. This reduction

in effort retains an acceptable error rate, which is

comparable to or even below human error rate. In

the literature reviewed in Section 2, a reduction in

grading effort of of 60% is possible while the hu-

man error levels.

Although our suggested strategy involves vari-

ous evaluation steps, it is nevertheless technically

simple to use for the human grader: Individual

automatic graders have to be analysed with re-

spect to their performance using Precision and Re-

call in order to determine their biases. The au-

tomatic grader predictions are then compared us-

ing Inter-Annotator Agreement, which gives a de-

tailed picture of the grading quality of individ-

ual categories and items. This enables the human

grader to focus the correction effort on the most

important cases, ignoring automatic annotations

that are most likely correct.

The cases to be revised can be chosen accord-

ing to available grading time and required level of

remaining error: First, only items that did not re-

ceive an automatic grade have to be corrected. In

the binary case this even means no manual effort

at all, but this strategy also leaves the highest er-

ror rate. Second, only items where the automatic

graders are not unanimous and predict weakly per-

forming categories are manually checked. This re-

sults in an error rate of 9-25% while reviewing

13% of the data for the binary scenario and 25-

50% of the data for the multiclass scenario. The

most detailed strategy involves reviewing all items

that did not receive an unanimous vote. This re-

sults in an error rate at or below human level, while

reviewing 7-28% of the data for the binary sce-

nario and 40-60% of the data for the multiclass

scenario. Further reductions of effort and error

are possible if evaluation is slightly relaxed in the

multiclass case.

Our results match insights from the general ma-

chine learning domain: a) Grader performance

correlates to the number of training instances for

a category. b) By using three flawed automated

graders, we make use of the power of error in-

dependence in the machine ensemble (Kuncheva,

2004).

Finally, based on our analysis we can give

recommendations for Computer-Aided Language

Learning (CALL), especially regarding the de-

velopment of corpora, which serve as the basis

of many approaches. In order to optimise ma-

chine grading performance, first, the grading scale

should not be too fine-grained, as rarely occurring

categories are problematic even for humans. Sec-

ond, the grading categories should be clearly de-

fined. But thirdly, even relatively small-sized cor-

pora are sufficient to create good models for auto-

matic pre-grading if the first two points are true.

Our strategy seems especially promising for

short answer grading in language instruction. On

the one hand, the question type is frequent and

grading therefore adds substantially to the teach-

ers’ workloads; on the other hand, machine-

supported manual grading in our experiments

yields grades that are definitely reliable enough for

formative testing at a fraction of the manual effort.

Given the encouraging results of the present

study, a logical future step to extend this work

would be a user study with real-world human

graders, since our work so far has been carried out

only on existing corpora.
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