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Abstract

Modeling traditional NLG tasks with data-
driven techniques has been a major focus
of research in NLG in the past decade. We
argue that existing modeling techniques
are mostly tailored to textual data and are
not sufficient to make NLG technology
meet the requirements of agents which tar-
get fluid interaction and collaboration in
the real world. We revisit interactive in-
struction giving as a challenge for data-
driven NLG and, based on insights from
previous GIVE challenges, propose that
instruction giving should be addressed in a
setting that involves visual grounding and
spoken language. These basic design de-
cisions will require NLG frameworks that
are capable of monitoring their environ-
ment as well as timing and revising their
verbal output. We believe that these are
core capabilities for making NLG technol-
ogy transferrable to interactive systems.

1 Introduction

The past decade has seen substantial progress in
data-driven methods for natural language gener-
ation (NLG). It is now widely agreed that data-
driven techniques are needed to obtain NLG sys-
tems that are adaptive and human-like (Belz,
2008), domain-independent (Wen et al., 2016),
and – with recent methods from vision & lan-
guage cf. (Bernardi et al., 2016) – suitable for
agents that interact with humans in a physical en-
vironment (such as dialogue systems or robots)
(Kazemzadeh et al., 2014). Despite this progress,
however, data-driven NLG is rarely used in current
real-world interactive systems, where more tradi-
tional (template-based) approaches for generating
verbal output still persist.

In this paper, we argue that existing methods in
data-driven modeling for NLG are heavily tailored
to textual data and, therefore, fail to meet the re-
quirements of dialogue systems, social agents or
robots which target fluid interaction and collabo-
ration in the real world. In the traditional view,
the NLG task is usually framed as follows: given
some non-verbal piece of data as input (e.g. sen-
sor data, a meaning representation, facts from a
knowledge base), the system needs to decide what
to say (do content selection, text or sentence plan-
ning, micro-planning), and how to say it (do lex-
icalization, surface realization), cf. (Reiter and
Dale, 1997). While recent data-driven systems
have mostly overcome previous modular archi-
tectures that assigned these decisions to separate
components in the processing pipeline (Konstas
and Lapata, 2013), they still follow basic assump-
tions related to how the system processes its non-
linguistic input and verbal output:

• static input: NLG systems are usually trained
to map a given input to some written out-
put, meaning that the environment does not
change while the system is producing output

• perfect input: NLG systems are often trained
on perfect representations of an environment
or a knowledge base

• one-shot output: NLG systems do not need
to monitor whether the listener has actually
understood the output, strategies that are fre-
quent in conversation (revision, correction,
installments) do not have to be considered

• no temporal dimension: NLG systems as-
sume that their output is not immediately
consumed, i.e. it does not need to be pack-
aged or timed (e.g. a text is produced as a
whole)
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These assumptions are convenient when fram-
ing NLG tasks as machine learning problems (e.g.
as ranking, classification or sequence-to-sequence
learning), but they are highly problematic for in-
teractive systems. To illustrate this point, we pro-
pose to revisit instruction giving as a challenge for
data-driven NLG in interactive systems: here, a
human instruction follower (IF) and an agent as
the instruction giver (IG) have to achieve a com-
mon goal in a visual environment (e.g. find a route
or treasure, assemble an object). The IG knows
how to complete the task (e.g. where the treasure
is, how the object looks like) but cannot affect the
environment. The IF can affect the environment
and the objects in it, but needs the IG’s instructions
to achieve the goal. In the context of the GIVE
challenge (Byron et al., 2007), this setting has re-
ceived considerable attention in the NLG commu-
nity for some time (Byron et al., 2009; Striegnitz
et al., 2011), but has not been developed further
since then.

Generally, we believe that future approaches to
instruction giving in NLG should extend GIVE
along the following dimensions, in order to enable
transfer of NLG technology to real-world applica-
tions like robots or dialogue systems:

• vision: generating instructions from a low-
level visual representation of the environ-
ment, i.e. without perfect access to visually
present objects and their properties

• spoken language: generating spoken instruc-
tions, such that the IF’s non-verbal actions
can happen concurrently with the IG’s verbal
utterances

• timing and information delivery: going be-
yond traditional NLG approaches focussing
on content selection and/or surface realiza-
tion, and move to real-time incremental pro-
cessing that captures the affordances of spo-
ken language and fluid interaction

In the following, we will show that these points
constitute considerable challenges for the state-of-
the-art in data driven NLG research and outline di-
rections for how they could be addressed.

2 Visual grounding for instructions

A fundamental design decision in GIVE was to use
a virtual environment such that the NLG systems
had access to a perfect symbolic representation of

Figure 1: Instruction example in the BLOCKS
data set (Bisk et al., 2018)

the visually present objects and their properties.
In the meantime, a lot of research in human-robot
interaction has be done on modeling instructions
in more realistic visual environments, though this
community has often focussed on grounding ver-
bal instructions to robot actions, cf. (Chai et al.,
2018). Bisk et al. (2016) have proposed a nice for-
mulation of a move-by-move instruction following
task in an object assembly domain (see Figure 1):
given an image of the current state of an environ-
ment (left image) and a verbal instruction, the task
is to predict the target state of the environment af-
ter executing the instruction (right image). This
move-by-move setting abstracts away from the in-
ternal action representations of a robot and also
from general aspects of planning.

We believe that this set-up is promising for
NLG as well, where the task would be to gener-
ate a verbal instruction that enables the IF to ex-
ecute a particular action or achieve a state change
of the environment, while the system (the IG) is
given the current and the goal state of an environ-
ment as an image. This would be natural exten-
sion of existing language generation systems that
are able to generate descriptions of real-world im-
ages (Bernardi et al., 2016), or referring expres-
sions to objects in real-world images (Yu et al.,
2017). At the same time, it would require systems
to go beyond the commonly used CNN-LSTM ar-
chitecture (Vinyals et al., 2015; Devlin et al., 2015;
Mao et al., 2016; Yu et al., 2017) as these currently
only map visual representations of single images
or objects to verbal output. Instead, a visually
grounded instruction generation system needs to
reason about expressions that relate the current vi-
sual state to a target state, such as place the block
to the right (source state) as the highest block on
the board (target state) in Figure 1.

Conceptually, the problem of generating in-
structions in object assembly domains is simi-
lar to generating relational referring expressions
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which have been a notorious challenge for refer-
ring expression generation in general (Krahmer
and Van Deemter, 2012). Relational expressions
are also challenging for neural architectures (Hud-
son and Manning, 2018), and grounding (under-
standing) of relational referring expressions has
been addressed in some recent work (Cirik et al.,
2018; Hu et al., 2017) following the idea of mod-
ular networks based on syntactic structures (An-
dreas et al., 2016). However, none of these mod-
els is designed for generating relational structures
in verbal expressions, such as instructions.

3 Spoken language dynamics

From research on situated spoken dialogue, it is
well known that spoken and written language bear
very different affordances. In spoken communi-
cation, listeners react, both non-verbally and ver-
bally, to what speakers are saying, while they are
saying it; and speakers adapt what they are saying,
based on the reactions (or lack thereof) that they
get, while they are speaking. The field of Conver-
sation Analysis (see (Stivers and Sidnell, 2012) for
a recent overview) and, taking up and further de-
veloping some of their ideas, the work of Herbert
(Clark, 1996) has done much to shed light on the
intricate strategies that interactants follow to co-
construct dialogue in this way.

Figure 2 illustrates some prominent strategies
that speakers use to achieve task success in spoken
communication, with an instruction giving exam-
ple taken from our PentoRef data (Zarrieß et al.,
2016). Here, the IF has to assemble an object out
of Pentomino pieces while the IG observes his ac-
tions over a camera feed. During a time span of ap-
proximately 30 seconds, the IG produces 18 short
utterances in total that instruct the IF what to do
next (e.g. turn to the left), confirm the IF’s action
(exactly), or repair what she is currently doing (to
the left, this is to the right). Also, interestingly, the
final step of the instruction (i.e. how to put the tar-
get piece to its target location, image 10-12 in Fig-
ure 2) is left underspecified by the IG as it is obvi-
ous to the IF how to complete the task. This level
of coordination and adaptation between speakers
and listeners is impossible in written communica-
tion where verbal and non-vernal actions cannot
happen concurrently.

Unfortunately, most research on data-driven
NLG still focusses entirely on written text or typed
utterances, even in the domain of dialogue, as ex-

isting platforms and workflows for data collection
are radically more efficient for text as compared to
speech. Also the GIVE setting used typed com-
munication. An interesting pilot study on a spo-
ken version of the GIVE challenge was carried out
by (Striegnitz et al., 2012) who found that interac-
tions between participants were faster, more nat-
ural and rich of conversational phenomena (e.g.
installments) that cannot be observed in text or
typed chat. Another promising the direction here
is the platform developed by (Manuvinakurike and
DeVault, 2015), which extends the standard pro-
cedure for collecting chat interactions via crowd-
sourcing to spoken dialogue.

4 Monitoring, timing, revision

When facing uncertainty through visual ground-
ing and dynamics through spoken language, NLG
systems will need to address a range of decisions
that, currently, completely fall out of the scope
of research in this area. In the interactive world,
NLG needs to monitor the listener’s reaction in
real-time and be able to quasi-continuously decide
when to produce verbal output and how to poten-
tially revise previous or future output. Thus, in
order to generate fluid instructions as in the inter-
action shown in Figure 2, it is precisely the combi-
nation of when to speak and what to say that mat-
ters: an utterance that is appropriate at a particular
point in time, might already be perceived as inap-
propriate or confusing shortly after.

To the best of our knowledge, aspects of moni-
toring and timing have not been addressed in data-
driven NLG frameworks, though incremental pro-
cessing has been shown to be highly effective in
experimental or rule-based settings, cf. (Skantze
and Hjalmarsson, 2013; Skantze et al., 2014; Buß
and Schlangen, 2010). In the dialogue commu-
nity, specific tasks that involve timing have been
modelled in a data-driven way, such as barge-in
detection (Selfridge et al., 2013), end-of-utterance
detection (Raux and Eskenazi, 2012; Maier et al.,
2017)), or turn-taking (Skantze, 2017) .

Even less work has been carried out on NLG
systems that are able to produce revision, repair
or correction utterances which can be essential
to achieve task success, as shown in Figure 2.
In (Zarrieß and Schlangen, 2016), we have ex-
plored an installment-based approach in a refer-
ring expression generation system for objects in
real-world images, and found that even simple,
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IG: then you take the green 
W ... top right

IG: and you turn it to the left IG: uh now it's to the right

IG: yes

IG: turn left . yes

IG: a little more


IG: so that it's diagonal

IG: a little more

IG: exactly
 IG: and now put to the left next 
to the T


IG: to the left

IG: this is to the right


IG: yes exactly

IG: like this


IG: exactly

IG: into this spot


IG: now you take the pink 
piece over there ...


1 2 3 4

5 6 7 8

9 10 11 12

Figure 2: Example for task-oriented conversation in shared visual space from (Zarrieß et al., 2016): the
joint task for the IF and IG is to build a puzzle out of Pentomino pieces where the IF can manipulate
pieces on a physical gameboard and the IG sees the outline of the puzzle, observes the IF’s actions in
real-time (over a camera feed) and instructs the IF over headphones; the overall interaction time shown
here is approx. 30 secconds; utterances have been translated to English from German transciptions

hand-crafted strategies for repair and revision very
clearly improve the referential success of the sys-
tem. (Villalba et al., 2017) propose a formal
approach to generating contrastive referring ex-
pressions which is designed for similar scenar-
ios. What is clearly missing to date, however, is
a data-driven NLG framework that encompasses
these various aspects of conversational grounding
and timing in interaction.

5 Conclusion

This paper has discussed the task of interactive
instruction giving from the perspective of data-
driven NLG. We have argued that, if this task is set
up so that it involves visual grounding and spoken
language, it will constitute an interesting and con-
siderable challenge for existing data-driven NLG
frameworks. We believe that addressing this chal-
lenge and coming up with data collections and
modeling methods for it will substantially forward
the state-of-the-art in NLG, and foster transfer of
NLG technology to real-world interactive systems.
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