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Abstract

We present a comparison of word-based
and character-based sequence-to-sequence
models for data-to-text natural language
generation, which generate natural lan-
guage descriptions for structured inputs.
On the datasets of two recent generation
challenges, our models achieve compa-
rable or better automatic evaluation re-
sults than the best challenge submissions.
Subsequent detailed statistical and human
analyses shed light on the differences be-
tween the two input representations and
the diversity of the generated texts. In a
controlled experiment with synthetic train-
ing data generated from templates, we
demonstrate the ability of neural models to
learn novel combinations of the templates
and thereby generalize beyond the linguis-
tic structures they were trained on.

1 Introduction

Natural language generation (NLG) is an actively
researched task, which according to Gatt and
Krahmer (2018) can be divided into text-to-text
generation, such as machine translation (Koehn,
2017), text summarization (See et al., 2017),
or open-domain conversation response genera-
tion (Vinyals and Le, 2015) on the one hand, and
data-to-text generation on the other hand. Here,
we focus on the latter, the task of generating tex-
tual descriptions for structured data. Data-to-text
generation comprises the generation of system re-
sponses based on dialog acts in task-oriented dia-
log systems (Wen et al., 2015b), sport games re-
ports and weather forecasts (Angeli et al., 2010),
and database entry descriptions (Gardent et al.,
2017a). In this paper, we focus on sentence plan-
ning and surface realization. We build on data-to-
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text datasets of two recent shared tasks for end-to-
end NLG, namely the E2E challenge (Novikova
et al., 2017b) and WebNLG challenge (Gardent
et al., 2017b). Example input-text pairs for both
datasets are shown in Figure 1.

Neural sequence to sequence (Seq2Seq) mod-
els (Graves, 2013; Sutskever et al., 2014) have
shown promising results for this task, especially
in combination with an attention mechanism (Bah-
danau et al., 2014; Luong et al., 2015). Several re-
cent NLG approaches (Dusek and Jurcicek, 2016;
Mei et al., 2016; Kiddon et al., 2016; Agarwal and
Dymetman, 2017), as well as most systems in the
E2E and WebNLG challenge are based on this ar-
chitecture. While most NLG models generate text
word by word, promising results were also ob-
tained by encoding the input and generating the
output text character-by-character (Lipton et al.,
2015; Goyal et al., 2016; Agarwal and Dymetman,
2017). Five out of 62 E2E challenge submissions
operate on the character-level. However, it is diffi-
cult to draw conclusions from the challenge results
with respect to this difference, since the submitted
systems also differ in other aspects and were eval-
uated on a single dataset only.

Besides adequacy and fluency, variation is an
important aspect in NLG (Stent et al., 2005). In
addition to comparing the linguistic and content-
wise correctness of word- and character-based
Seq2Seq models through automatic and human
evaluation, we investigate the variety of their out-
puts. While template-based systems can assure
perfect content and linguistic quality, they of-
ten suffer from low diversity. Conversely, neural
models might generalize beyond a limited amount
of training texts or templates, thereby producing
more diverse outputs. To test this hypothesis, we
train Seq2Seq models on template-generated texts
with a controlled amount of variation and show
that they not only reproduce the templates, but also
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E2E input: name[Midsummer House], customer rating [average], near [The Bakers]
reference 1: Customers gave Midsummer House, near The Bakers, a 3 out of 5 rating.
reference 2: Midsummer house has an average customer rating and is near The Bakers.
delexicalized input: name[NAME], customer rating [average], near [NEAR]
delexicalized reference 1: Customers gave NAME, near NEAR, a 3 out of 5 rating.

WebNLG input: cityServed(Abilene Regional Airport[Abilene]), isPartOf(Abilene[Texas])
reference 1: Abilene is in Texas and is served by the Abilene regional airport.

reference 2: Abilene, part of Texas, is served by the Abilene regional airport.

delexicalized input: city served(AGENT-1[BRIDGE-1]), is part of(BRIDGE-1[PATIENT-1])
delexicalized reference 1: BRIDGE-1 is in PATIENT-1 and is served by the AGENT-1.

Figure 1: Example input-reference pairs from the E2E and WebNLG development set.

generate novel structures resulting from template
combinations.
In sum, we make the following contribution:

e We compare word- and character-based
Seq2Seq models for NLG on two datasets.

We conduct an extensive automatic and man-
ual analysis of the generated texts and com-
pare them to human performance.

In an experiment with synthetic training data
generated from templates, we demonstrate
the ability of neural NLG models to learn
template combinations and thereby general-
ize beyond the linguistic structures they were
trained on.

2 Related Work

This section reviews relevant related work accord-
ing to the two main aspects of this paper: differ-
ent input and output representations for data-to-
text NLG as well as measuring and controlling the
variation in the generated outputs.

2.1 Input and Output Representations

While the first NLG systems relied on hand-
written rules or templates that were filled with
the input information (Cheyer and Guzzoni, 2006;
Mirkovic et al., 2006), the availability of larger
datasets has accelerated the progress in statistical
methods to train NLG systems from data-text pairs
in the last twenty years (Oh and Rudnicky, 2000;
Mairesse and Young, 2014). Generating output
via language models based on recurrent neural net-
works (RNNs) conditioned on the input (Sutskever
et al., 2011) proved to be an effective method for
end-to-end NLG (Wen et al., 2015a,b, 2016).
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The input can be represented in several ways:
(1) In a discrete vector space via one-hot-
vectors (Wen et al., 2015a,b), or in a continuous
space either (2) by encoding fixed-size input in-
formation in a feed-forward neural network (Zhou
et al.,, 2017; Wiseman et al., 2017) or (3) by
the means of an encoder RNN, which processes
variable-sized inputs sequentially, giving rise to
the Seq2Seq architecture.

Character-based Seq2Seq models were first pro-
posed for neural machine translation (Ling et al.,
2015; Chung et al., 2016; Lee et al., 2017). Their
main advantage over word-based models is that
they can represent an unlimited word inventory
with a small vocabulary. They can learn to copy
any string from the input to the output, which is
especially useful for data-to-text NLG, as informa-
tion from the input such as the name of a restau-
rant or a database entity is often expected to ap-
pear verbatim in the generated text. Word-based
models, in contrast, have to make use of delexical-
ization during pre- and postprocessing (Wen et al.,
2015b; Dusek and Jurcicek, 2016) or have to apply
dedicated copy mechanisms (Gu et al., 2016; See
et al., 2017; Wiseman et al., 2017) to handle open
vocabularies. The other side of the coin is that se-
quences are much longer in character-based pro-
cessing, implying longer dependencies and more
computation steps for encoding and decoding.

Subword-based representations (Sennrich et al.,
2016; Wu et al., 2016) can offer a trade-off be-
tween word- and character-based processing and
are a popular choice in NMT and summariza-
tion (See et al., 2017). Here, the vocabulary con-
sists of subword units of different lengths, which
are assigned by minimizing the entropy on the
training set. We also experimented with such
representations in preliminary experiments, but



found them to perform much worse than word-
or character-based representations. Our impres-
sion is that recurring entity names in the training
data coming from multiple reference texts for the
same input lead to overfitting on the training vo-
cabulary and to poor generalization to novel in-
puts. This is also reflected by the rather unsatisfy-
ing performance of subword-based approaches in
the E2E' and WebNLG challenge (ADAPT sys-
tem (Gardent et al., 2017b)).

2.2 Output Diversity

Evaluation of data-to-text NLG has traditionally
centered around semantic fidelity, grammaticality,
and naturalness (Gatt and Krahmer, 2018; Oraby
et al., 2018b). More recently, the controllability
of the style of the outputs and their variation has
moved into focus as well (Ficler and Goldberg,
2017; Herzig et al., 2017; Oraby et al., 2018b,a).

Oraby et al. (2018b) showed that the n-gram en-
tropy of the outputs of a neural NLG system is sig-
nificantly lower compared to its training data. This
can be seen as evidence that the NLG system ex-
tracts only a few dominant patterns from the train-
ing data that it will generate over and over. With-
out explicit supervision signals, neural NLG mod-
els cannot distinguish linguistic or stylistic vari-
ation from noise. In the context of image cap-
tion generation Devlin et al. (2015) found Seq2Seq
models to exactly reproduce sentences from their
training data for 60% of the test instances.

Several approaches have been proposed to con-
trol NLG outputs with respect to certain stylistic
aspects, e.g., mimicking a specific persona or char-
acter (Lin and Walker, 2011; Walker et al., 2011;
Li et al., 2016), personality traits (Mairesse and
Walker, 2008; Herzig et al., 2017; Oraby et al.,
2018b,a), or various linguistic aspects such as for-
mality, voice, descriptiveness (Ficler and Gold-
berg, 2017; Bawden, 2017; Niu et al., 2017). All
share the feature that the NLG model is condi-
tioned on a representation of the desired aspect
in addition to the usual semantic input representa-
tion. While this approach makes it possible to suc-
cessfully control particular, clearly defined aspects
of the generated texts, further research is needed to
grant more flexible and comprehensive NLG out-
put control.

!The subword-based bzhang_submit system has the sec-
ond best ROUGE-L score, but ranks poorly in terms of BLEU
and quality in the human evaluation, see http://www.macs.
hw.ac.uk/InteractionLab/E2E/#results.
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3 Models

To encode variable-length inputs and generate
variable-length texts, we implement a standard
Seq2Seq model (Cho et al., 2014) with Long
Short-Term Memory (LSTM) cells (Hochreiter
and Schmidhuber, 1997) and attention. Given
a training dataset of input-text pairs D
{(z',y1), (z2,92) ...}, the model encodes an in-
put sequence * = {x; ...z, } of symbols z; into
a sequence of hidden states {h; ... h,} by apply-
ing a recurrent neural network (RNN) with LSTM
cells that can store and forget sequence informa-
tion:

hy = LSTM(X ™z, hy_1) (1)

The decoder generates the output se-
quence y; . . . Y, One symbol y; at a time by com-
puting p(ye|y1 - - - y¢—1, ) = softmax(W°"(cy)).

The decoder output ¢, also referred to as con-
text vector, summarizes the input information in
each decoding step as weighted sum of the en-
coder hidden states: ¢; = 2?21 ay;hi. The atten-
tion weights ay; are computed with the general at-
tention mechanism oy; = softmax(s;W?h;) (Lu-
ong et al., 2015). The decoder hidden states s; are
computed recursively based on the previous output
token and decoder output:

St — LSTM((XOUt(yt_l) o ct—l)’ St—l) (2)

sp is initialized to the final encoder hidden state
hn, hg, c_1 are initialized to 0; o denotes concate-
nation. The parameters of the models are the input
and output embedding matrices X™, X°", the en-
coder and decoder LSTM parameters, the attention
matrix 7W? and the output matrix W°". They are
optimized by minimizing the cross entropy of the
generated texts 3/ with the given references y_J for
each example in the training set.

Instead of forcing the decoder to decide on a
single output symbol in each decoding step, we
apply beam search (Cho et al., 2014; Bahdanau
et al., 2014) to explore n-best partial hypotheses
in parallel.

In the word-based model, each input symbol x;
and output symbol y; denotes a token. In contrast,
in the character-based model, each input and out-
put symbol denotes a single character. Our mod-
els learn separate encoder and decoder embedding
matrices.
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4 Data

We use two recently collected crowd-sourced
data-to-text datasets since they are larger and offer
more linguistic variety than previously available
datasets (Novikova et al., 2017b; Gardent et al.,
2017a). The E2E dataset (Novikova et al., 2017b)
consists of 47K restaurant descriptions based on
5.7K distinct inputs of 3-8 attributes (name, area,
near, eat type, food, price range, family friendly,
rating), split into 4862 inputs for training, 547 for
development and 630 for testing. The WebNLG
dataset (Gardent et al., 2017a) contains 25K ver-
balizations of 9.6K inputs composed of 1-7 DB-
pedia triples from 15 categories such as athletes,
comic characters, food, sport teams. It is divided
into 6893 inputs for training, 872 for development
and 1862 for testing. Both datasets have multiple
verbalizations for each input. On average there are
8.3 (min. 1, max. 46) verbalizations per input in
the E2E dataset and 2.63 (min. 1, max. 12) in the
WebNLG dataset, respectively.

To preprocess both datasets, we lowercase all
inputs and references and represent the inputs in
the bracketed format as shown in Figure 1. For the
word-based processing we additionally tokenize
the texts with the nltk-tokenizer (Bird et al., 2009)
and apply delexicalization, as also illustrated in
Figure 1. For the E2E dataset we adopt the chal-
lenge’s baseline delexicalization strategy (Dusek
and Jurcicek, 2016), which replaces the values of
the two open-class attributes name and near in
the input and references by placeholders. For the
WebNLG dataset, we adopt the delexicalization
strategy of the TILBURG submissions to the chal-
lenge, since it performed well and does not require
external information. They replaced the subject
and object entities of the DBpedia triples in the
input and text by numbered placeholders AGENT-
N, PATIENT-N, BRIDGE-N, depending on whether
they only appear as subject, object or in both roles
in the input of an instance. Additionally, we split
properties at the camel case in this dataset for both
the word- and character-based models as proposed
by the ADAPT and MELBOURNE submissions. Ta-
ble 1 displays statistics for both datasets and pro-
cessing types.

5 Experiments

We conduct our experiments with the OpenNMT
toolkit (Klein et al., 2017), which we extend
to also perform character-based processing. We
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E2E WebNLG
word char. word char.
avg. input length 28,5 106.0 24.8 139.8
avg. text length 20.0 1093 18.8 117.1
input vocabulary 48 39 312 78
output vocabulary 2,721 53 4,264 83

Table 1: E2E and WebNLG training split statis-
tics for word-based processing after delexicaliza-
tion and character-based processing.

tuned the hyperparameters for each dataset and
processing method to optimize the BLEU score on
the development sets. The word-based model for
the E2E dataset is trained by stochastic gradient
descent (SGD) (Robbins and Monro, 1951) and an
initial learning rate of 1.0. For all other models,
we achieved better performance with the Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.001. If there is no improvement
in the development perplexity, or in any case after
the eighth epoch, we halve the learning rate. Also,
we clip all gradients to a maximum of five. We
use a batch size of 64. To prevent overfitting, we
drop out units in the context vectors with a prob-
ability of 0.3. We keep the model with the lowest
development perplexity in 13 training epochs.

The word-based E2E model has 64-dimensional
word embeddings and a single encoder and de-
coder layer with 64 units each. All other models
use 500-dimensional word- or character embed-
dings and two layers in the encoder and decoder
with 500 dimensions each. While a unidirectional
encoder was sufficient for the word-based mod-
els, bidirectional encoders were beneficial for the
character-based models on both datasets.

We use a beam size of 15 for decoding with the
word-based models, and found a smaller beam of
five to yield better results for the character-based
models. This is probably due to the much smaller
vocabulary size of the character-based models.

For automatic evaluation, we report BLEU (Pa-
pineni et al., 2002), which measures the precision
of the generated n-grams compared to the refer-
ences, and recall-oriented ROUGE-L (Lin, 2004),
which measures the longest common subsequence
between the generated texts and the references.
We compute these scores with the E2E challenge
evaluation script”.

*https://github.com/tuetschek/e2e-metrics
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6 Results and Analysis

Table 2 and 3 display the results on the E2E and
WebNLG test sets for models of the respective
challenges and our own models®. Since the perfor-
mance of neural models can vary considerably due
to random parameter initialization and random-
ized training procedures (Reimers and Gurevych,
2017), we train ten models with different random
seeds for each setting and report the average (avg)
and standard deviation (SD).

On the E2E test set, our single best word- and
character-based models reach comparable results
to the best challenge submissions. The word-
based models achieve significantly higher BLEU
and ROUGE-L scores than the character-based
models*. On the WebNLG test set, the BLEU
score of our best word-based model outperforms
the best challenge submission by a small mar-
gin. The character-based model achieves a sig-
nificantly higher ROUGE-L score than the word-
based model, whereas the BLEU score difference
is not significant. In the following, we analyze our
models in more detail.

6.1 Analysis of Within-Model Performance
Differences

The large performance span of the character-based
models on the E2E dataset is due to a single outlier
model; the second worst model scores 64.5 BLEU
points. The worst-scoring model had a lower ac-
curacy of 91.8% on the development set, whereas
all other models scored above 92.2%. To gain
more insight on what might constitute the large
performance difference, we manually compared
the generated texts for ten randomly selected in-
puts for each number of attributes (60 inputs in to-
tal) of the character-based model with the best and
worst BLEU score. We found that the worst model
makes many mistakes on inputs with three to five
attributes, often adding, modifying or removing
information, whereas the outputs are mostly cor-
rect for inputs with six attributes or more. For
these, the outputs of the model with the low-
est BLEU score are occasionally even better than
those of the best model, which often omits in-

3For an exact comparison, we recomputed the
WebNLG challenge results with the E2E evaluation
script. They are usually 1-2 points below the scores reported
by Gardent et al. (2017b).

4 All tests for significance in this paper are conducted with
Wilcoxon rank sum tests with Bonferroni correction at a p-
level of 0.05.

formation (mainly concerning the attribute family
friendly). We conclude that the large performance
difference might be caused by automatic evalua-
tion measures punishing additions more severely
than omissions.

We also observe a large performance span for
the WebNLG word-based models. Here, we have
two models that score exceptionally well with
57.4/58.4 BLEU points, whereas the remaining
eight models only obtain BLEU scores in a range
of 43.8-48.1. Again, we observe that better models
in terms of BLEU score obtain higher accuracies
on the development set. We manually compared
the outputs of ten randomly chosen inputs for each
number of input triples (75 inputs in total) for the
model with the highest and lowest BLEU score.
In this case, we found that the large difference
in the automatic evaluation measures seems jus-
tified: The low-scoring model often hallucinates
information not present in the input and generally
produces many ungrammatical texts, which is not
the case for the best model.

system BLEU ROUGE-L
challenge
baseline 65.9 68.5
Thomson Reuters (np 3) 68.1 69.3
Thomson Reuters (np 4) 67.4 69.8
HarvardNLP & H. Elder 67.4 70.8
own
word 67.8+0.8 70.440.6
character 64.6+6.0 67.91+4.7
word (best on dev.) 67.8 70.2
char. (best on dev.) 67.6 704

Table 2: E2E test set results. Own results corre-
spond to avg+SD of ten runs and single result of
best models on the development set.

6.2 Automatic Evaluation of Human Texts

To gain an impression of the expressiveness of the
automatic evaluation scores for NLG, we com-
puted the average scores that the human refer-
ences would obtain. Table 4 shows the BLEU
and ROUGE-L development set scores when treat-
ing each human reference as prediction once and
evaluating it against the remaining references,
compared to the scores of the word-based and
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system BLEU ROUGE-L metric human word char.
challenge E2E
baseline 32.1 43.3 BLEU 55.540.7 68.2+1.4 65.8+2.6
MELBOURNE 43.4 61.0 ROUGE-L 62.0+0.4 72.1+£0.7 69.8£2.6
TILBURG-SMT 43.1 58.0 WebNLG
UPF-FORGE 37.5 58.8
BLEU 48.3+0.7 40.6+4.2 43.74+24

own ROUGE-L 62.4+03 585+3.0 63.140.8
word (best on dev.) 44.2 60.9
char. (best on dev.) 413 584 Table 4: E2E and WebNLG development set re-
word 37.043.8 56.342.6 sults in the format avg+SD. Human results are av-
character 307417 584407 eraged over using each human reference as predic-

Table 3: WebNLG test set results. Own results
correspond to single best model on development
set and avg+SD of ten runs.

character-based models’. Strikingly, on the E2E
development set, both model variants significantly
outperform human texts by far with respect to
both automatic evaluation measures. While the
human BLEU score is significantly higher than
those of both systems on the WebNLG devel-
opment set, there is no statistical difference be-
tween human and system ROUGE-L scores. This
further demonstrates the limited utility of BLEU
and ROUGLE-L scores to evaluate NLG out-
puts, which was previously suggested by weak
correlations of such scores with human judg-
ments (Scott and Moore, 2006; Reiter and Belz,
2009; Novikova et al., 2017a). Furthermore, the
high scores on the E2E dataset imply that the mod-
els succeed in picking up patterns from the train-
ing data that transfer well to the similar develop-
ment set, whereas human variation and creativity
are punished by lexical overlap-based automatic
evaluation scores.

6.3 Manual Error Analysis

Since the expressiveness of automatic evaluation
measures for NLG is limited, as shown in the pre-
vious subsection, we performed a manual error
analysis on inputs of each length. We define the
input length as the number of input attributes for
the E2E dataset, ranging from three to eight, and
number of input triples for the WebNLG dataset,
ranging from one to seven. We randomly selected

>For a fair comparison between human and model perfor-
mance, we randomly removed one reference for each instance
in the models’ evaluation to ensure the same average number
of references. We excluded 55 WebNLG instances that had
only one reference.
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tion once.

E2E WebNLG
word char. word char.
content errors
info. dropped 40.0 30.0 429 66.7
info. added 0.0 0.0 6.7 1.9
info. modified 44 00 19.0 1.9
info. repeated 0.0 0.0 152 28.6
linguistic errors
punctuation errors 5.6 5.6 8.6 3.8
grammatical errors  13.3 144 152 124
spelling mistakes 0.0 0.0 95 57
overall correctness
content correct 556 70.0 46.7 314
language correct 833 81.1 695 79.0
all correct 489 61.1 333 267

Table 5: Percentage of affected instances in man-
ual error analysis of 15 randomly selected devel-
opment set instances for each input length.

15 development instances for each input length,
resulting in a total of 90 annotated E2E instances
and 105 WebNLG instances.

One annotator (one of the authors of this paper)
manually assessed the outputs of the models that
obtained the best development set BLEU score as
summarized in Table 5°. As we can see from the
bottom part of the table, all models struggle more
with getting the content right than with produc-
ing linguistically correct texts; 70-80% of the texts
generated by all models are completely correct lin-
guistically.

8 Although multiple annotators could increase the reliabil-
ity of these results, the annotator reported that the task was
very straightforward. We do not expect marking content and
linguistic errors to lead to annotator disagreements, with the
exception of accidentally missed errors.



E2E WebNLG

human word character human word character
unique sents.  866.3+16.5 203.5+30.6 366.8+60.0 1,185.0+12.6 603.74+144.3 875.4430.2
unique words  419.7416.7 64.41+2.3 73.1£7.2 14473+7.4  620.3+£35.5 881.5+26.0
word E 6.5+0.0 5.1+0.0 5.54+0.0 7.1+0.0 6.34+0.0 6.61+0.0
1-3-grams E 10.4+0.0 7.740.1 8.2+0.1 11.6+0.0 10.140.1 10.540.1
% new texts 99.7+0.2 98.2+0.3 98.8+0.2 91.1+0.3 69.8+4.8 87.5+0.6
% new sents. 85.1+1.1 61.8+6.4 71.4+4.7 87.4+0.4 57.2+5.8 82.1+1.2

Table 6: Linguistic diversity of development set references and generated texts as avg+SD. ‘% new’ de-
notes the share of generated texts or sentences that do not appear in training references. Higher indicates

more diversity for all measures.

Comparing the two datasets, we again observe
that the WebNLG dataset is much more challeng-
ing than the E2E dataset, especially with respect to
correctly verbalizing the content. This can be at-
tributed to the increased diversity of the inputs and
texts and to the limited availability of training data
for this dataset (cf. Table 1). Moreover, spelling
mistakes only appeared in WebNLG texts, mainly
concerning omissions of accents or umlauts. This
also indicates that there is too few and noisy data
for the models to learn the correct spelling of all
words. Notably, we did not observe any non-
words generated by the character-based models.

The most frequent content error in both datasets
concerns omission of information. For the E2E
dataset, the family friendly attribute is most fre-
quently dropped by both model types, indicating
that the verbalization of this boolean attribute is
more difficult to learn than other attributes, whose
values mostly appear verbatim in the text. Infor-
mation modification of the word-based model is
mainly due to confusing English with Italian food.
Information addition and repetition only occur in
the WebNLG dataset. The latter is an especially
frequent problem of the character-based model, af-
fecting more than a quarter of all texts.

In comparison, character-based models repro-
duce the content more faithfully on the E2E
dataset while offering the same level of linguis-
tic quality as word-based models, leading to more
correct outputs overall. On the WebNLG dataset,
the word-based model is more faithful to the in-
puts, probably because of the effective delexi-
calization strategy, whereas the character-based
model errs less on the linguistic side. Overall,
the word-based model yields more correct texts,
stressing the importance of delexicalization and
data normalization in low resource settings.
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6.4 Automatic Evaluation of Output
Diversity

While correctness is a necessity in NLG, in many
settings it is not sufficient. Often, variation of the
generated texts is crucial to avoid repetitive and
unnatural outputs. Table 6 shows automatically
computed statistics on the diversity of the gener-
ated texts of both models and human texts and
on the overlap of the (generated) texts with the
training set. We measure diversity by the num-
ber of unique sentences and words in all develop-
ment set references and generated texts, as done
e.g. by Devlin et al. (2015). Additionally, we re-
port the Shannon text entropy as measure of the
amount of variation in the texts following (Oraby
et al., 2018b). We compute the text entropy E for
words (unigrams) and uni-, bi-, and trigrams as
follows:

flw)

2 total

_ f(w)
E=-Y" o los 3)
weV

where V is the set of all word types or uni-, bi-
and trigrams, f denotes frequency and total is the
token count or total number of uni-, bi- and tri-
grams in the texts, respectively.

To measure the extent by which the models gen-
eralize beyond plugging in restaurant or other en-
tity names into templates extracted from the train-
ing data, we compute the results on the delexical-
ized outputs of the word-based models and delex-
icalize the character-based models’ outputs. For
the human scores, we generate n artificial predic-
tion files, treating each n-th reference (42 for E2E,
8 for WebNLG) as reference, apply delexicaliza-
tion, and average the scores for the n files.

On both datasets, our systems produce signif-
icantly less varied outputs and reproduce more



Template 1: NAME is a [FAMILY-FRIENDLY] EATTYPE which serves [FOOD] food [in the PRICE RANGE
price range]. [It has a RATING rating] [and is located in the AREA areal, near NEAR]]. [It is not FAMILY-
FRIENDLY.]

Example: NAME is a family-friendly coffee shop which serves Chinese food in the low price range. It
has a high customer rating and is located in the city centre area, near NEAR.

Template 2: The [FAMILY-FRIENDLY] EATTYPE NAME serves [FOOD] food [in the PRICE RANGE
price range]. [It is located in the AREA area[, near NEAR].] [It has a RATING rating.] [It is not FAMILY-
FRIENDLY.]

Example: The family-friendly coffee shop NAME serves Chinese food in the low price range. It is
located in the city centre area, near NEAR. It has a high customer rating.

Learned combinations of Template 1 and 2:

e NAME is a restaurant which serves English food in the moderate price range. It is located in the city
centre area, near NEAR. It has a customer rating of 1 out of 5. It is not family friendly.

o The family-friendly pub NAME serves Indian food in the low price range. It has a customer rating of 5

out of 5 and is located in the riverside area, near NEAR.

Figure 2: Templates used for synthetic training data generation, parts in brackets are realized only if
the input contains the corresponding attribute. Learned combinations are two template combinations
produced by a model trained on data generated from both templates.

texts and sentences from the training data than the  rating and location of the restaurant as shown
human texts. Interestingly, however, the character-  in Figure 2. Potential combinations of the two
based models generate significantly more unique  templates are to combine the beginning of Tem-
sentences and copy significantly less from the  plate 1 with the ordering of rating and area of
training data than the word-based models, which  Template 2 or vice versa. We generate a single
copy about 40% of their generated sentences from  reference text for all 2261 training inputs of the

the training data. E2E dataset where the NAME and EATTYPE at-
tribute are present as these are the two obliga-
7 Generalizing from Templates tory attributes for the templates. We train word-

based models on training data generated with
Template 1, Template 2 and the concatenation of
the training data from Template 1 and 2. To keep
the amount of training data equal in all experi-
ments, we once repeat the training corpus gener-
ated only with Template 1 or Template 2. The hy-
perparameters for the three models can be found
in the appendix.

In search for empirical evidence that neural mod-
els are able to surpass the structures they were
trained on, we train Seq2Seq models with syn-
thetic training data created by templates. This
enables us to control the variation in the training
data and identify novel generations of the model
(if any). We investigate two questions: (1) Do
the neural NLG models indeed accurately learn the
templates from the training data? (2) Do they learn
to combine the training templates to produce more c@1 c@2 c@5 c@30
varied outputs than seen during training?

We generate synthetic training data based on template 1 08 08 09 17
template 2 1.0 1.2 1.3 1.9

two templates. Template 1 corresponds to UKP-
TUDA’s submission to the E2E challenge’, where template 1+2 | 0.9 16 22 3.3
ge + reranker 09 19 27 33

the order of describing the input information is

fixed. Specifically, the restaurant’s customer rat-  Taple 7: Manual evaluation of generated texts for
ing is always mentioned before its location. For 10 random test instances of a word-based model
Template 2, we change the the beginning of the  (rained with synthetic training data from two tem-
template and switch the order of mentioning the  plates. c@n: avg. number of correct texts (with

— respect to content and language) among the top n
Thitps://github.com/UKPLab/e2e-nlg-challenge-2017/ P guage) & P

blob/master/components/template-baseline.py hypotheses.
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Table 7 shows our manual evaluation of the top
30 hypotheses for 10 random E2E test inputs gen-
erated by models trained with data synthesized
from the two templates. As is evident from the first
two rows, all models learned to generalize from
the training data to produce correct texts for novel
inputs consisting of unseen combinations of input
attributes. It was verified in the manual evaluation
that 100% of the texts generated by models trained
on a single template adhered to this template. Yet,
the picture is a bit different for the model trained
on data generated by both templates. While the top
two hypotheses are equally distributed between
adhering to Template 1 and Template 2, more than
5% among the lower-ranked hypotheses consti-
tute a template combination such as the example
shown in the bottom part of Figure 2. For 60% of
the examined inputs, there was at least one such
hypothesis resulting from template combination,
of which two thirds were actually correct verbal-
izations of the input.

Since we found that the models frequently
ranked correct hypotheses below hypotheses with
content errors, we implemented a simple rule-
based reranker based on verbatim matches of at-
tribute values. The reranker assigns an error point
to each omission and addition of an attribute value.
As can be seen in the final row of Table 7, this sim-
ple reranker successfully places correct hypothe-
ses higher up in the ranking, improving the prac-
tical usability of the generation model by now of-
fering almost three correct variants for each input
among the top five hypotheses on average.

8 Conclusion

We compared word-based and character-based
Seq2Seq models for data-to-text NLG on two
datasets and analyzed their output diversity. Our
main findings are as follows: Overall, Seq2Seq
models can learn to verbalize structured inputs in
a decent way; their success depends on the extent
of the domain and available (clean) training data.

Second, in a comparison with texts produced by
humans, we saw that neural NLG models can even
surpass human performance in terms of automatic
evaluation measures. On the one hand, this un-
veils the ability of the models to extract general
patterns from the training data that approximate
many reference texts, but on the other hand also
once more stresses the limited utility of such mea-
sures to evaluate NLG systems.
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Third, in light of the multi-faceted analysis we
performed, it is difficult to draw a general con-
clusion on whether word- or character-based pro-
cessing is more useful for data-to-text generation.
Both models yielded comparable results with re-
spect to automatic evaluation measures. In the
manual error analysis, the character-based model
performed better on the E2E dataset, whereas the
word-based model generated more correct outputs
on the WebNLG dataset. Character-based models
were found to have a significantly higher output
diversity.

Finally, in a controlled experiment with word-
based Seq2Seq models trained on data synthesized
from templates, we showed the capability of such
models to perfectly reproduce the templates they
were trained on. More importantly, models trained
on two templates could generalize beyond their
training data and come up with novel texts. In fu-
ture work, we would like to extend this line of re-
search and train more model variants on a higher
number of templates.
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A Hyperparameters for Models Trained
on Synthetic Training Data

For the model trained on template-generated data,
we tune the hyperparameters to achieve 100% ac-
curacy for their best hypotheses on template-
generated references on the development set. All
models have a single-layer LSTM with 64 hid-
den units in the encoder and decoder. We half
the learning rate starting from the eighth train-
ing epoch or if the perplexity of the validation set
does not improve. The gradient norm is capped at
two. The decoder uses the general attention mech-
anism. For decoding, we set the beam size to 30.
Table 8 shows hyperparameters which differ for
the models.

hyperparameter T1 T2 T1+2
encoder unidirectional  bidir.
embedding size 28 28 30
optimizer Adam SGD  SGD
init. learning rate 0.001 1.0 1.0
batch size 4 4 16
dropout 0.4 0.5 0.3
epochs 25 13 15

Table 8: Hyperparameters for the models trained
on synthetic training data generated from Tem-
plate 1 (T 1), Template 2 (T 2) and both (T 1+2).
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