Going Dutch: Creating SimpleNLG-NL

Ruud de Jong
Human Media Interaction
University of Twente
Enschede, The Netherlands
r.f.dejonglutwente.nl

Abstract

This paper presents SimpleNLG-NL, an
adaptation of the SimpleNLG surface re-
alisation engine for the Dutch language. It
describes a novel method for determining
and testing the grammatical constructions
to be implemented, using target sentences
sampled from a treebank.

1 Introduction

SimpleNLG is a Java-based surface realisation li-
brary aimed at practical applications (Gatt and
Reiter, 2009). It is meant to be simple to use,
and in an architecture redesign in version 4 of
the software it was also made easy for devel-
opers to alter its code. Over the years, Sim-
pleNLG has been adapted for several languages
other than English, such as German (Bollmann,
2011), Brazilian-Portuguese (De Oliveira and Sri-
pada, 2014) and Italian (Mazzei et al., 2016).

In this paper we present a new version of
SimpleNLG for surface realisation in Dutch,
called SimpleNLG-NL. Like most adaptations for
other languages, it is based on SimpleNLG-EnFr
(Vaudry and Lapalme, 2013): a bilingual ver-
sion of SimpleNLG that supports both English and
French, based on SimpleNLG version 4.2. The ar-
chitecture of SimpleNLG-EnFr was split into lan-
guage independent and language dependent parts,
making it relatively easy to add new languages.

As Dutch is closely related to German, Simple-
NLG for German (Bollmann, 2011) might seem a
more obvious starting point for SimpleNLG-NL.
However, SimpleNLG for German is based on the
differently structured version 3 of SimpleNLG,
which made it unsuitable to build on.

This paper is structured as follows. In Sec-
tion 2 we describe the method we used for devel-
oping SimpleNLG-NL, followed in Section 3 by

73

Mariét Theune
Human Media Interaction
University of Twente
Enschede, The Netherlands
m.theune@utwente.nl

an overview of the main characteristics of Dutch
and how we implemented them. In Section 4 we
present the current coverage of SimpleNLG-NL
over a set of test sentences. We end with conclu-
sions and directions for future work.

2 Method

Instead of following the structure of e.g., a gram-
mar reference book for adapting the rules of Sim-
pleNLG, we developed SimpleNLG-NL using tar-
get sentences sampled from a dependency tree-
bank for Dutch. In SimpleNLG-IT (Mazzei et al.,
2016) sentences from a dependency treebank were
used as well, but only for evaluation purposes.
For SimpleNLG-NL, we expanded their use to
the development phase, using them in an iterative
generate-evaluate-revise process.

For each sentence, the SimpleNLG input was
written manually and the resulting realisation was
compared with the target sentence. Differences
between the realisation and the target sentence
were analysed. Based on this, the relevant gram-
mar rules were adapted for Dutch and missing lex-
icon entries were added. This process was re-
peated for each sentence, increasing the size of the
covered grammar subset with each iteration.

The generate-evaluate-revise cycle was carried
out in four rounds.

First round: In the first round we tried to re-
produce 12 target sentences of increasingly higher
word count. We assumed that increasing the word
count would also increase the grammatical com-
plexity of the sentence.

Second round: In the second round we applied
unit tests to 37 short sentences that were man-
ually written to test one feature of SimpleNLG-
NL, or a combination of very few features. Fea-
tures that were tested included basic verb inflec-

Proceedings of The 11th International Natural Language Generation Conference, pages 73—78,
Tilburg, The Netherlands, November 5-8, 2018. (©2018 Association for Computational Linguistics

tion, both regular and irregular, as well as adjec-
tives and their inflection (10 sentences), morphol-
ogy of different verb groups in multiple tenses (12
sentences) and syntax of negated sentences (5 sen-
tences). Finally, 10 sentences were used to test in-
terrogative sentence types.

Third round: In the third round we included
two more sets of target sentences from the Dutch
treebank. The first set consisted of 11 medium-
length sentences (7-13 words). The second set
consisted of 10 long sentences (14-20 words).

Fourth round: In the final round, 16 more
unit tests were carried out. These were aimed at
testing combinations of tenses, voices and verb
form (perfect or simple). They were based on the
same input sentence, which contained a subject, a
verb and a direct object.

The test sentences for Rounds 1 and 3 were ran-
domly selected from the Dutch Wikipedia corpus
(100,000 sentences) available in Dact,' a viewer
for Alpino corpora. Alpino is a dependency parser
for Dutch (Bouma et al., 2001).2 After a sentence
was randomly picked, based on the word count
needed for the current round, it was tested for
two requirements: the sentence had to be gram-
matically correct and it should not contain direct
speech. SimpleNLG does not support properly
embedding direct speech in a sentence and neither
would SimpleNLG-NL.

For each sentence that was selected, the input
code for generation had to be written. We did this
based on its dependency tree from the treebank,
as generated by the Alpino parser. As the input
for SimpleNLG is structured similar to a depen-
dency tree, the Alpino trees could fairly easily be
converted into input code. Similar to the conver-
sion rules used in the evaluation of SimpleNLG-
IT, when converting the dependency trees to Sim-
pleNLG we kept the input isomorphic to the tree in
terms of subject, object etc. We did not use canned
text in the input (except for names and fixed multi-
word expressions), and we did not provide infor-
mation about word order or punctuation.

We started the creation of SimpleNLG-NL by
cloning the French parts of SimpleNLG-EnFr.
French was chosen because its features seemed

"http://rug-compling.github.io/dact/
http://www.let.rug.nl/~vannoord/alp/
Alpino/

74

more related to Dutch than the English features, in
particular with respect to the more complex mor-
phology of French and Dutch compared to En-
glish. Therefore, the first realisation results used
French grammar rules. For the lexicon, we trans-
lated the closed classes from the French lexicon
(106 entries). The open part of the lexicon started
out empty; missing entries (for irregular word
forms) were added as we went along. A full lexi-
con was created later, as described in Section 3.5.

3 Adaptations for Dutch

The main changes we made to SimpleNLG for sur-
face realisation in Dutch are described in this sec-
tion. As our main references for Dutch grammar
and morphology we used the online linguistic re-
sources Taalportaal® and e-ANS.*

3.1 Nouns

In Dutch, pluralisation of nouns almost always
consists of adding either -en or -s as a suffix to
the singular form. Which suffix to use is deter-
mined by the stress of the noun’s last syllable:
use -en when stressed; use -s when unstressed.
However, since we do not have information on
stress, and there are many exceptions to this rule,
SimpleNLG-NL instead uses a set of word end-
ings to determine when to use the -s suffix.> Other
exceptions can be added to the lexicon. Dutch
also has compound nouns. Compounds are cur-
rently treated as regular nouns. Because of that,
pluralisation may result in an incorrect form if the
compound is not in the lexicon and does not have
one of the predetermined word endings described
earlier. When adding plural suffixes, other mor-
phological rules may apply to ensure the correct
spelling of the surface form. Specifically, some-
times vowels need to be removed or consonants
added to the noun stem.

3.2 Verbs

The following tenses have been implemented
in SimpleNLG-NL: present simple, past simple,
present perfect, past perfect, future and condi-
tional. When inflecting verbs, SimpleNLG-NL
first checks the lexicon for irregular verb forms. If
none are found, it uses the rules for regular verbs.
Inflections are based on the stem of the verb. For
*http://www.taalportaal.org/
*http://ans.ruhosting.nl/e—ans/

Shttp://ans.ruhosting.nl/e-ans/03/05/
03/body.html

http://rug-compling.github.io/dact/
http://www.let.rug.nl/~vannoord/alp/Alpino/
http://www.let.rug.nl/~vannoord/alp/Alpino/
http://www.taalportaal.org/
http://ans.ruhosting.nl/e-ans/
http://ans.ruhosting.nl/e-ans/03/05/03/body.html
http://ans.ruhosting.nl/e-ans/03/05/03/body.html

example, past tense inflection involves adding the
suffix -fe if the stem ends in an unvoiced conso-
nant; in all other cases -de is added. Similar to
nouns, in some cases the spelling of the verb stem
needs to be changed.

Auxiliary verbs have to be added in the fu-
ture tense (zullen ‘will’) and the conditional tense
(zouden ‘would’). They are placed before the verb.
The perfect form also requires one of two auxiliary
verbs (zijn ‘be’ or hebben ‘have’), which can be
specified in the lexicon. Lastly, passive sentences
require zijn ‘be’ to be added. When these features
are combined, such as in a passive conditional per-
fect sentence, in the current version of the system
this results in an incorrect order of auxiliary verbs.
In some cases, one or more auxiliary verbs have
to be placed after the main verb, but the system
currently does not do this.

Separable Complex Verbs. In Dutch, a special
group of verbs is that of the so-called Separable
Complex Verbs (SCVs). An SCV is a verb that
consists of a main verb and a prepended preverb
(Booij and Audring, 2018). This preverb can be
any word, but is often a preposition.

In the past and present simple tenses in main
clauses, SCVs are split into their preverb and main
verb, and their order is reversed. The main verb is
inflected as it would if it were on its own. For ex-
ample: foekennen in the third person present be-
comes hij kent toe (‘“he assigns”). The position
of the preverb in the main clause is flexible: di-
rect objects, indirect objects, prepositional phrases
and even entire subclauses can be placed between
the main verb and its preverb. In SimpleNLG-NL,
we decided to position the preverb at the end of
the sentence by default. In the perfect tenses and
in subordinate clauses, the preverb attaches to the
main verb. The main verb is inflected normally,
and the preverb is prefixed to it after inflection.
This results in, for example, hij heeft toegekend
(“he has assigned”) and dat hij toekent (“that he
assigns”).

The input for an SCV can be in either of
two forms: foelkennen or toekennen. The first
input splits the verb kennen from the preverb
toe. SimpleNLG-NL will then look for ken-
nen in the lexicon and inflect it appropriately
(either from lexicon data or regular verb rules).
This is similar to how SimpleNLG for German
deals with such verbs (Bollmann, 2011). In the
second case, SimpleNLG-NL checks if the verb

75

is marked as an SCV in the lexicon using the
<preverb></preverb> field. If it is not,
SimpleNLG-NL tries to detect if the verb is an
SCV based on a list of common SCV prefixes:
bij, in, na, uit, op, af, mee, tegen, tussen, terug,
toe. However, not all SCVs can be caught this
way, as several verbs prefixed by a preposition are
not SVCs, but look exactly like them with the dif-
ference being the stress. For example, doorboren
(regular verb: ‘pierce’; SVC: ‘continue drilling’)
is only an SVC if the stress is on door.

3.3 Adjectives

Dutch adjectives can be used predicatively and at-
tributively, with only the latter being supported
by SimpleNLG and SimpleNLG-NL. Depending
on the number and gender properties of the noun
phrase, the adjective requires the suffix -e. Similar
to nouns and verbs, in some cases the spelling of
the stem needs to be changed.

Comparatives and superlatives are created with
a suffix (-er or -st). In some cases, the adverbs
meer (“more”) or meest (“most”) are used instead.
In all cases, the adjective can be appended with the
earlier mentioned -e. Comparative and superla-
tive forms can be overwritten in the lexicon using
the <comparative></comparative> and
<superlative></superlative> fields.

3.4 Word order

SimpleNLG-NL uses the subject-verb-object or-
der for main clauses and subject-object-verb for
relative clauses and interrogative sentences. Ex-
ceptions are made for SCVs, as described in Sec-
tion 3.2. The order of other constituents, specifi-
cally modifiers, can vary depending on many fac-
tors. Currently, SimpleNLG-NL allows for ma-
nipulating word order by specifying modifiers as
‘premodifiers’ or ‘postmodifiers’ in the input; oth-
erwise, a default (and not always correct) word or-
der is chosen.

3.5 Lexicon

A lexicon was created by parsing the Dutch pages
of Wiktionary®. The content is licensed under the
CC BY-SA 3.0 license’, which makes it suitable
for release with SimpleNLG-NL. This resulted in
a lexicon containing 79437 entries (nouns, verbs,
adverbs, adjectives and prepositions), including

*https://www.wiktionary.org/
"https://creativecommons.org/licenses/
by-sa/3.0/deed

https://www.wiktionary.org/
https://creativecommons.org/licenses/by-sa/3.0/deed
https://creativecommons.org/licenses/by-sa/3.0/deed

Sentence set Sentences

Exact matches

Accepted as correct

Round 1 12
Round 2 37
Round 3 (medium) 11
Round 3 (long) 10
Round 4 16
Total 86

8
37
9
5
10
69

66.7% 11 91.7%
100.0% 37 100.0%
81.8% 9 81.8%
50.0% 7 70.0%
62.5% 10 62.5%
80.2% 74 86.0%

Table 1: The final coverage of SimpleNLG-NL after development and testing. Generated sentences were
“accepted as correct” if they met the criteria described in Section 4.

the closed part described in Section 2 and the en-
tries added during the development rounds.

To accommodate making a choice in the trade-
off between larger lexicons that take longer exe-
cution time and smaller lexicons that may miss
required entries (cf. (De Oliveira and Sripada,
2014)), two smaller lexicons were generated based
on subsets of the larger lexicon. The subsets were
determined by matching the entries with word
forms from a word frequency list based on Open-
Subtitles.® Words in the frequency list can have
multiple corresponding lexicon entries. The small-
est lexicon, based on the top 1000 most frequent
words, contains 3386 entries. The top 10,000
words result in 8600 entries. The full lexicon is
over 10 MB, while the medium one is just over
1MB and the smallest is half of that. The choice
of lexicon is based on scope and performance re-
quirements. By default, SimpleNLG-NL uses the
medium lexicon.

4 Evaluation

To determine the coverage of SimpleNLG-NL,
each sentence generated in one of the four rounds
described in Section 2 was judged on correctness.
Since the number of sentences to be evaluated was
small, using automated evaluation metrics such
as BLEU (Papineni et al., 2002) would not have
made much sense; moreover, these would not take
into account that word order in Dutch is relatively
free. Therefore we chose to manually evaluate the
sentences.

We considered a sentence generated by
SimpleNLG-NL to be generated “correctly” if the
output met at least one of the following criteria:

e The output matched the target sentence ex-
actly, including punctuation; or

$https://github.com/hermitdave/
FrequencyWords/

76

e The output only differed from the target in
terms of punctuation (commas and quotation
marks), with no change in meaning; or

e The output differed from the target in terms
of word order, but without making the sen-
tence unwellformed or causing a change in
meaning.

The criteria are ordered by inclusiveness, with
the first being the preferred outcome (“exact
match”). The final coverage by SimpleNLG-NL
of the test sentences according to these criteria, af-
ter all four rounds of generate-evaluate-revise, is
shown in Table 1.

Results round 1: Out of 12 sentences, 11 were
generated correctly (91.7%). The result counting
only exact matches is 8 out of 12 (66.7%). Of the
three accepted mismatches, one missed some non-
mandatory commas, and two had acceptable dif-
ferences in word order from their target sentences.
(One lacked topicalisation, which is currently un-
supported, and the other placed the past participle
at the end of the sentence, a merely stylistic dif-
ference.) SimpleNLG-NL could not reproduce the
longest sentence from Round 1 (26 words). This
was due to several problems. First, SimpleNLG
cannot handle clauses without verbs, in this case
an enumeration (“tasks such as X, Y and Z”). Sec-
ond, the sentence contained a verb cluster as well
as an attributively used infinitive, neither of which
SimpleNLG-NL could handle.

Results round 2: In Round 2, all 37 short
test sentences were generated correctly, as exact
matches (100%).

Results round 3: Of the 11 medium-length sen-
tences, 9 were generated as exact matches (81.8%)
and the same number were accepted as correct.
The two incorrectly generated sentences both had
problems with modifier ordering. Of the 10 long

https://github.com/hermitdave/FrequencyWords/
https://github.com/hermitdave/FrequencyWords/

sentences, 7 were generated correctly (70.0%).
This includes two sentences that did not match ex-
actly. One accepted mismatch added an unneces-
sary (but acceptable) comma, the other positioned
the preverb of an SCV at the end of the sentence.
While that position is acceptable, it can be stylisti-
cally preferable to reduce the distance between the
main verb and the preverb. However, SimpleNLG-
NL does not yet support such a stylistic mech-
anism. The problems with the three incorrectly
generated sentences involved incorrect ordering of
modifiers and a verb cluster (te gaan wonen, lit.
“to go live”), and lack of support for main clauses
connected by a semi-colon.

Results round 4: Of the 16 varieties of the same
sentence, 10 were generated as exact matches.
There were no mismatches accepted as correct.
The incorrect sentences all had an incorrect word
order. Active sentences in the future perfect and
the conditional tenses incorrectly positioned the
auxiliary verb before the object. In passive sen-
tences in the perfect form, the order of the verb
and the two or three auxiliary verbs was incorrect
(e.g., zal zijn geweest gegooid should be zal ge-
gooid zijn geweest “will have been thrown”).

Overall results: In total, 74 out of 86 test sen-
tences (86.0%) were generated correctly. Of these,
69 (80.2%) are exact matches. If we only look
at the 33 treebank sentences from Rounds 1 and
3, then 28 (84.8%) were generated correctly, with
22 (66,7%) exact matches. The open part of the
lexicon gained 59 entries during the development
rounds. Combined with the closed part, the final
lexicon contained 165 entries. This lexicon was
later replaced by a more extensive one, containing
over 8000 entries (see Section 3.5).

5 Conclusions and Future Work

We have developed SimpleNLG-NL, a new ver-
sion of SimpleNLG that is fit for surface realisa-
tion in Dutch. During the development process,
the coverage of SimpleNLG-NL was gradually ex-
panded by iteratively generating and testing on
sentences from a Dutch treebank. Eventually, over
80% of the test sentences could be generated cor-
rectly, with a few acceptable differences in punc-
tuation and word order. The issues with word or-
der of auxiliary verbs will be addressed in future
work.

Currently, word order can be altered with the

77

use of premodifiers and postmodifiers. However,
a better approach may be the one used in Simple-
NLG for German, where Bollmann (2011) pro-
vided a feature to choose the desired word order.
This also allows for easier sentence manipulation.

As the target sentences used for development
and testing covered many different sentence struc-
tures, we believe the current grammatical cover-
age of SimpleNLG-NL is sufficient for simple sur-
face realisation in Dutch. SimpleNLG-NL will
be used in the POSTHCARD project’® to realise
(parts of) templates for dialogue generation, used
to simulate conversations with patients suffering
from Alzheimer’s disease. The simulation aims to
provide training for caregivers based on scenarios
with a virtual Alzheimer’s patient.

SimpleNLG is publicly available on Github.'”
Like SimpleNLG, SimpleNLG-NL is released un-
der Mozilla Public License 1.1,'! allowing for
modification and commercial use. The Simple-
NLG-NL code includes comments and Javadoc
information that should make it easy to use and
adapt. In addition, the SimpleNLG wiki'? will be
adapted for SimpleNLG-NL.

Acknowledgements

This research was carried out partially within the
POSTHCARD project, funded by the European
AAL programme (aal-call-2017-045). POSTH-
CARD is being made possible in The Netherlands
by ZonMw, under project number 735170004.

References

Marcel Bollmann. 2011. Adapting SimpleNLG to
German. In Proceedings of the I13th European
Workshop on Natural Language Generation (ENLG
2011), pages 133—138.

Geert Booij and Jenny Audring. 2018. Separable com-
plex verbs (SCVs). Retrieved June 04, 2018 from
http://www.taalportaal.org/taalportaal/topic/pid/topic-
13998813296768009.

Gosse Bouma, Gertjan Van Noord, and Robert Mal-
ouf. 2001. Alpino: Wide-coverage computational
analysis of Dutch. In Computational Linguistics
in the Netherlands 2000: Selected Papers from the
Eleventh CLIN Meeting, pages 45-59.

*http://posthcard.eu

Yhttps://github.com/rfdj/SimpleNLG-NL

"https://www.mozilla.org/en-US/MPL/

Phttps://github.com/simplenlg/
simplenlg/wiki

http://www.taalportaal.org/taalportaal/topic/pid/topic-13998813296768009
http://www.taalportaal.org/taalportaal/topic/pid/topic-13998813296768009
http://posthcard.eu
https://github.com/rfdj/SimpleNLG-NL
https://www.mozilla.org/en-US/MPL/
https://github.com/simplenlg/simplenlg/wiki
https://github.com/simplenlg/simplenlg/wiki

Rodrigo De Oliveira and Somayajulu Sripada. 2014.
Adapting SimpleNLG for Brazilian Portuguese re-
alisation. In Proceedings of the 8th International
Natural Language Generation Conference (INLG),
pages 93-94.

Albert Gatt and Ehud Reiter. 2009. SimpleNLG: A re-
alisation engine for practical applications. In Pro-
ceedings of the 12th European Workshop on Natural
Language Generation, pages 90-93.

Alessandro Mazzei, Cristina Battaglino, and Cristina
Bosco. 2016. SimpleNLG-IT: Adapting Sim-
pleNLG to Italian. In Proceedings of the 9th Inter-
national Natural Language Generation conference,
pages 184-192.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th annual meeting on association for com-
putational linguistics, pages 311-318.

Pierre-Luc Vaudry and Guy Lapalme. 2013. Adapt-
ing SimpleNLG for bilingual English-French reali-
sation. In Proceedings of the 14th European Work-
shop on Natural Language Generation, pages 183—
187.

78

