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Abstract

Recent approaches to the Automatic Post-
editing (APE) of Machine Translation (MT)
have shown that best results are obtained by
neural multi-source models that correct the
raw MT output by also considering informa-
tion from the corresponding source sentence.
To this aim, we present for the first time a
neural multi-source APE model based on the
Transformer architecture. Moreover, we em-
ploy sequence-level loss functions in order to
avoid exposure bias during training and to be
consistent with the automatic evaluation met-
rics used for the task. These are the main fea-
tures of our submissions to the WMT 2018
APE shared task, where we participated both
in the PBSMT subtask (i.e. the correction of
MT outputs from a phrase-based system) and
in the NMT subtask (i.e. the correction of neu-
ral outputs). In the first subtask, our system
improves over the baseline up to -5.3 TER and
+8.23 BLEU points ranking second out of 11
submitted runs. In the second one, character-
ized by the higher quality of the initial transla-
tions, we report lower but statistically signifi-
cant gains (up to -0.38 TER and +0.8 BLEU),
ranking first out of 10 submissions.

1 Introduction

The purpose of Automatic Post-Editing (APE) is
to correct the raw output of a Machine Transla-
tion system by learning from human corrections.
Since the inner workings of MT engines are often
not accessible (e.g. by users relying on Google
Translate), hence impossible to modify and im-
prove, APE becomes a solution to enhance the
quality of the translated segments. Good solutions
to the problem have high potential in the transla-
tion industry, where better translation means lower
costs for human revision and where the adapta-
tions of third-party, general-purpose systems to
new projects is a major need.

In the last few years, the APE shared tasks
at WMT (Bojar et al., 2015, 2016, 2017) have
renewed the interests in this topic and boosted
the technology around it. Moving from the
phrase-based approaches used in the first edi-
tions of the task (Chatterjee et al., 2015), last
year the multi-source neural models (Chatterjee
et al., 2017; Junczys-Dowmunt and Grundkiewicz,
2017; Hokamp, 2017) have shown their capability
to significantly improve the output of a PBSMT
system. These APE systems shared several fea-
tures and implementation choices, namely: 1) an
RNN-based architecture, 2) the use of large arti-
ficial corpora for training, 3) model ensembling
techniques, 4) parameter optimization based on
Maximum Likelihood Estimation (MLE) and 5)
vocabulary reduction using the Byte Pair Encod-
ing (BPE) technique. Although they achieve good
performance and impressive translation quality
improvements, some of these techniques are not
optimal for the actual deployment of APE tech-
nology in the translation industry. The main rea-
sons are the long time required for model train-
ing and the high maintenance costs of complex
architectures that combine multiple models. To
make APE solutions usable and useful for the in-
dustrial market, our submissions focus on the de-
velopment of an end-to-end system that does not
require multiple models and external components
(e.g. hypothesis re-ranker), but leverages a fast to
train architecture, effective pre-processing meth-
ods and task-specific losses to boost performance.
Our main contributions are:

• We adapt the Transformer (Vaswani et al.,
2017) to the APE problem, so that multi-
ple encoders can be exploited to leverage in-
formation both from the MT output to be
corrected and from the corresponding source
sentence (multi-source encoding).
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• We explore different strategies for combining
token and sentence level losses.

• We apply ad hoc pre-processing for the
German language by re-implementing the
pipeline used by the best system at the
WMT‘17 Translation task (Huck et al.,
2017).

• In addition to the artificial data released
by (Junczys-Dowmunt and Grundkiewicz,
2016), we make extensive use of a synthetic
corpus of 7.2M English-German triplets (Ne-
gri et al., 2018), which was provided by the
organizers as additional training material.

We participated in both the APE‘18 subtasks
with positive results. In the PBSMT subtask our
top run improves the baseline up to -5.3 TER and
+8.23 BLEU points (ranking second out of 11 sub-
missions) while, in the NMT subtask, it achieves a
-0.38 TER and +0.8 BLEU improvement (ranking
first out of 10 submissions).

2 Multi-source Transformer Network

The Transformer network (Vaswani et al., 2017),
like most of the sequence-to-sequence models,
follows an encoder-decoder architecture. It
uses stacked layers for the encoder and the de-
coder. The encoder layers consist of a multi-head
self-attention, followed by a position-wise feed-
forward network. The decoder layers have an ex-
tra multi-head encoder-decoder attention after the
multi-head self-attention sub-layer. Also, a soft-
max normalization is applied to the output of the
last layer in the decoder to generate a probabil-
ity distribution over the target vocabulary. Since
there is no recurrence in this architecture, a posi-
tional encoding is added to both the source and the
target word embeddings in order to empower the
model to capture the position of the words. More
formally, the positional encoding is defined as fol-
lows:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)

where pos is the position of the word in the sen-
tence, i is the dimension of the vector, and dmodel

is the dimensionality of the word embeddings.
The attention is a mapping from a query (Q), a

key (K), and a value (V ) to an output vector. In

Transformer, the attention is based on dot-product
attention which is defined as follow:

Attention(Q,K, V ) = softmax(QKT /
√
dk)V

where dk is added as a scaling factor for improv-
ing the numerical stability, which is equal to the
dimensionality of the key matrix. The multi-head
attention receives h different representations of
(Q,K, V ), which makes it possible to learn dif-
ferent relationships between information coming
from different positions simultaneously. It is com-
puted as follows:

MH(Q,K, V ) = Concat(head1, ..., headh)WO

where h is number of heads and WO is a param-
eter matrix with hdv*dmodel dimension. In Trans-
former, the multi-head attention is used in two dif-
ferent ways: encoder-decoder and self-attention.
In the self-attention, in both the encoder and the
decoder, the Q, K, and V matrices are coming
from the previous layer, while in the encoder-
decoder attention, Q matrix comes from the pre-
vious layer, and the K and V matrices come from
the encoder.

In order to encode the source sentence in addi-
tion to the MT output, we employ the multi-source
method by Zoph and Knight (2016). Our model
consists of two encoders, one for the source sen-
tence and one for the MT output. The outputs of
these two encoders are concatenated and passed as
the key in the attention. This helps to have a better
representation, leading to a more effective atten-
tion at decoding time.

3 Sequence-Level Loss Function

For training the model, most of the approaches in
sequence-to-sequence modeling try to maximize
the likelihood over the training data. In this sce-
nario, the loss function is a token-level loss defined
as:

LMLE = −
N∑

n=1

p(yn|y<n,x)

where p(yn|y<n,x) is the probability of generat-
ing the target word in the n-th position. Ranzato
et al. (2015), however, indicate two drawbacks for
Maximum Likelihood Estimation (MLE). First,
during training, the previous words passed to the
decoder are always chosen from the ground-truth.
However, the fact that at test time the previous
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words are chosen from the model distribution, re-
sults in a bias called exposure bias. Such bias
makes the model unable to recover from the er-
rors made in the decoding step, which easily have
a cumulative catastrophic effect. Second, using
MLE as loss function, the model is optimized
to maximize the probability of the training data,
while the performance of the model is evaluated
by the sequence-level evaluation metrics (TER and
BLEU in the case of the APE task). In order
to overcome the mentioned drawbacks, follow-
ing Minimum Risk Training (MRT) introduced by
Shen et al. (2016), we use a risk function which is
defined as:

RMRT =
∑

y∈S(x)

P (y|x)∑
y′∈S(x) P (y′|x)

∆(y)

where S(x) is a set of sampled hypotheses from
the model for the input sentence x, P (y|x) is
the probability of the sampled hypothesis, and
∆(y) is a cost value for generating the sample
y, e.g. ∆(y) = −BLEU(y). Following Sen-
nrich et al. (2016), we employ negative smoothed
sentence-level BLEU (Papineni et al., 2002; Chen
and Cherry, 2014) for computing the cost func-
tion.1

4 Data Pre-processing

In order to reduce the vocabulary size, on the Ger-
man MT output and post-edits we apply our re-
implementation of the word segmentation method
introduced by Huck et al. (2017). It consists of
three different steps:

1. Suffixes are separated from the word stems
by using a modified version of snowball
stemming, which separates and keeps the suf-
fixes instead of stripping them;

2. The output of the previous step is passed to
the empirical compound splitter described in
(Koehn and Knight, 2003), which is run with
the same parameters reported in (Huck et al.,
2017);

3. The output of the previous step is segmented
with Byte Pair Encoding (BPE) (Sennrich
et al., 2016).

1Although TER (Snover et al., 2006) is the primary evalu-
ation metric for the task, we opted for BLEU since, according
to (Shen et al., 2016), optimizing with this metric gives better
results also when evaluation is done with TER.

For the English source sentences, we only use BPE
to reduce the vocabulary size.

5 Experimental Setting

5.1 Data

To train our models, we used both the in-domain
data released by APE the task organizers and the
synthetic data provided as additional training ma-
terial.

In-domain Data. In-domain data consist of
English-German (SRC, MT, PE) triplets in which
the MT element (a German translation of the En-
glish SRC sentence) has been generated by “black-
box” MT systems: a phrase-based one for the PB-
SMT subtask and a neural one for the NMT sub-
task. In both cases, the post-edit element (PE)
is a correction of the target made by professional
post-editors. The PBSMT training set, which is
the largest one, comprises 28K triplets. The NMT
training set, is smaller in size and contains 13K
instances. From the two training corpora, we ex-
tracted 1K triplets to be used as development set to
compare the performance of different models dur-
ing training.

Synthetic data. Since building neural APE
models heavily relies on the availability of large
training data, we took advantage of the following
two corpora:

• the eSCAPE corpus (Negri et al., 2018),
which contains 7.2M English-German
triplets for each MT paradigm (i.e. 7.2M
phrase-based and neural translations of the
same source sentences). It has been gener-
ated from a parallel English-German corpus,
by taking the target sentences as artificial
post-edits and the machine-translated source
sentences as MT elements of each triplet.

• The artificial corpus provided by Junczys-
Dowmunt and Grundkiewicz (2016), which
contains 4.0M English-German triplets gen-
erated by applying a round-trip translation
protocol to German monolingual data.

Before applying the pre-processing described in
Section 4 to the eSCAPE data, we performed the
following two cleaning steps:

1. We removed the triplets in which the length
ratio between the source sentence and the
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post-edit is too different from the average in
the corpus;

2. We run a language identifier2 in order to re-
move the triplets having a non-English source
sentence or a non-German post-edit.

The application of these two cleaning steps re-
sulted in the removal of approximately 600K in-
stances from the eSCAPE corpus.

5.2 Evaluation Metrics
In order to evaluate our models, we use the two au-
tomatic evaluation metrics: i) TER which is com-
puted based on edit distance (Snover et al., 2006)
and ii) BLEU which is the geometric mean of n-
gram precisions multiplied to the brevity penalty
(Papineni et al., 2002).

5.3 Hyperparameters
We set the number of merging rules to 32K for
applying BPE in the pre-processing steps. We
employ OpenNMT-tf toolkit (Klein et al., 2017)
for our implementation, by using 512 dimensions
for word embeddings, 4 layers for both the en-
coders and the decoder with 512 units, and feed-
froward dimension of 1,024. In order to avoid
over-fitting, we use attention and residual dropout
by setting the dropout probability to 0.1, along
with the label-smoothing with parameter equal to
0.1. For training using MLE, we use the Adam op-
timizer (Kingma and Ba, 2014) with batch size of
8,192 tokens, learning rate of 2.0 and the warm-
up strategy introduced by (Vaswani et al., 2017)
with the warm-up steps equals to 8,000. For train-
ing using MRT, we use stochastic gradient descent
optimizer with the batch size of 4,096 tokens. We
also employ the beam search with beam width of
5 to sample hypotheses from the model.

6 Results

For both the subtasks, we train six different mod-
els. The performance of these models on the PB-
SMT and NMT development sets is reported in Ta-
bles 1 and 2.

Generic. First, we train a model using the union
of the (out-domain) synthetic datasets. As ex-
pected, the performance of this model in both sub-
tasks is lower than the baseline. We only train this

2For this purpose we used the language detector
available at: https://github.com/optimaize/
language-detector.

model as initial generic model in order to fine-tune
it using the in-domain data.

MLE. Using MLE, we fine-tune the generic
model on the corresponding in-domain data for
each subtask. For the PBSMT subtask, this model
achieves a -6.73 TER and +9.94 BLEU improve-
ment over the baseline. The gain is much lower for
the NMT subtask (-0.33 TER and +0.85 BLEU),
confirming that, together with the availability of
less training data, the quality of the underlying
NMT system has left little space for improvement.

MRT. We continue the training by using MRT
in two ways: i) by adding the reference to the
set of hypotheses sampled from the model and
ii) without adding the reference. In contrast with
Shen et al. (2016), who suggest to add the refer-
ence to the sampled set of hypotheses, we found
that adding the reference is harmful. Actually, by
adding the reference to the sample, the other hy-
potheses are considered as poor alternatives, since
they have a lower BLEU score. Nevertheless,
these samples usually have good quality and a con-
siderable overlap with the reference. Therefore,
updating the model in the direction of decreas-
ing the probability of these hypotheses is does not
seem a promising direction.

MRT + MLE. In order to avoid this problem
and take advantage of the reference, we re-run the
previous learning step using the linear combina-
tion of the two loss functions. Formally, we use
the following loss function:

Lcomb = αLMLE + (1− α)RMRT

where α is set to 0.5 to give equal importance to
the two components3 The results show that com-
bining the two loss functions makes the model able
to learn also from the reference without ignoring
the contribution of the other hypotheses.

Our model outperforms the best performing
system at the last round of the shared task (Chat-
terjee et al., 2017), with improvements up to -1.27
TER and +1.23 BLEU on the PBSMT develop-
ment set. Although we are using more out-of-
domain data, it is interesting to note that these
scores are obtained with a much simpler architec-
ture, which does not require to ensemble n mod-
els and to train a re-ranker. Since using only

3We leave for future work the empirical estimation of op-
timal values for α.
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Model Reference TER BLEU
Generic - 25.00 61.69
MLE - 18.08 72.86
MRT Yes 18.02 72.91
MRT No 18.44 73.05
MLE + MRT Yes 17.99 72.99
MLE + MRT No 17.95 73.121

Table 1: Results of the multi-source Transformer with
specific losses on the PBSMT outputs. The perfor-
mance of the MT baseline are 24.81 TER and 62.92
BLEU. Superscript 1 denotes that improvement over
MLE is statistically significant.

Model Reference TER BLEU
Generic - 17.35 72.55
MLE - 14.75 77.61
MRT Yes 14.81 77.57
MRT No 14.78 77.74
MRT + MLE Yes 14.75 77.68
MRT + MLE No 14.68 77.68

Table 2: Results of the multi-source Transformer with
specific losses on the NMT outputs. The performance
of the MT baseline are 15.08 TER and 76.76 BLEU.

MRT produced a better BLEU score in NMT sub-
task, we submitted the best model using only MRT
without reference as our Primary submission, and
the best model using MRT+MLE as our Con-
trastive submission.

7 Test Set Results

The performance of the primary and contrastive
APE systems on the test set for both the subtasks
is reported in Table 3. Apart from a minimal varia-
tion in the TER scores for the PBSMT subtask, the
results confirm what previously seen on the devel-
opment set. Our APE systems are able to signifi-
cantly improve the quality of the PBSMT outputs
by achieving a gain of -5.62 TER and +8.23 BLEU
points.

When post-editing the output of a NMT sys-
tem, the gains are smaller (-0.38 TER and +0.8
BLEU). This is somehow expected since the role
of an APE system is to fix MT errors: in pres-
ence of higher quality translations (from PBSMT
to NMT: -7.4 TER and +12.54 BLEU) there are
less errors to correct and the chance to apply un-
necessary changes is higher. Apart from that, our
APE systems are able to improve the NMT outputs
showing that, even in this challenging condition,

Task System TER BLEU

PBSMT
Baseline 24.24 62.99
Primary 18.94 71.22
Contrastive 18.62 71.04

NMT
Baseline 16.84 74.73
Primary 16.46 75.53
Contrastive 16.55 75.38

Table 3: Submissions at the WMT APE shared task.

APE is useful.

8 Conclusion

We presented the FBK’s submissions to the APE
shared task at WMT 2018. Our models extend a
Transformer-based architecture by: 1) leveraging
multi-source inputs consisting in the source and
MT texts and 2) taking advantage of combined to-
ken and task-specific losses. Moreover, an ad hoc
text pre-processing for the German language and
more artificial data are exploited to help the train-
ing of the model. The resulting systems show large
gains in performance when post-editing the PB-
SMT translations (our top-submission ranks sec-
ond in this subtask), while minimal improvements
are obtained when correcting the NMT outputs
(still, our top-run ranks first in this subtask). These
differences in performance strongly depend on the
initial quality of the MT outputs that significantly
changes from the PBSMT to the NMT system.

It is worth to remark that our implementation
choices were mainly driven by the needs of a trans-
lation market in which simple solutions that are
easy to maintain are always preferable to complex
architectures. In this direction, our APE systems
consist of a single network that can be trained in an
end-to-end fashion, without recourse to ensembles
of multiple models or the concatenation of com-
ponents (e.g. hypothesis re-ranker) that have to be
trained independently.
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