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Abstract 

This paper describes the POSTECH’s sub-

mission to the WMT 2018 shared task on 

Automatic Post-Editing (APE). We pro-

pose a new neural end-to-end post-editing 

model based on the transformer network. 

We modified the encoder-decoder attention 

to reflect the relation between the machine 

translation output, the source and the post-

edited translation in APE problem. Experi-

ments on WMT17 English-German APE 

data set show an improvement in both TER 

and BLEU score over the best result of 

WMT17 APE shared task. Our primary 

submission achieves -4.52 TER and +6.81 

BLEU score on PBSMT task and -0.13 

TER and +0.40 BLEU score for NMT task 

compare to the baseline. 

1 Introduction 

Although machine translation technology has im-

proved, machine translation output inevitably in-

volves errors and the type of errors in the output 

varies depending on the machine translation sys-

tem. Correcting those systematic errors inside the 

system may cause other problems such as increase 

of the decoding complexity (Chatterjee et al., 

2015). For this reason, Automatic Post-Editing 

(APE) is suggested as an alternative to enhance the 

performance of the machine translation. 

APE aims at the automatic correction of system-

atic errors in the machine translation output with-

out any modification of the original machine trans-

lation system (Bojar et al, 2015; Bojar et al, 2016; 

Bojar et al, 2017). Basically, APE problem can be 

defined as a translation problem from machine 

translation output (mt) to post-edited sentence (pe), 

but source sentence (src) is used as an additional 

source for the problem. As a result, APE problem 

becomes a multi-source translation problem be-

tween two sources (mt, src) and a target (pe). 

Due to the additional source, APE has two trans-

lation directions, the mt→pe direction and the 

src→pe direction. Previous researches have sug-

gested various methods to combine the two direc-

tions with neural network architecture, such as log-

linear combination of two translation models 

(Junczys-Dowmunt and Grundkiewicz, 2016), fac-

tored translation model (Hokamp, 2017) and multi-

encoder architecture (Libovický et al., 2016; Chat-

terjee et al., 2017; Junczys-Dowmunt and Grund-

kiewicz, 2017; Variš and Bojar, 2017). 

Among the methods, we focus on the multi-en-

coder approach because it is more appropriate to 

model the multi-source translation problem. Also, 

considering the importance of proper attention 

mechanism, as shown in the research of Junczys-

Dowmunt and Grundkiewicz (2017), we use the 

transformer network (Vaswani et al., 2017) com-

posed of a novel attention mechanism. 

With this consideration, our submission to the 

WMT 2018 shared task on Automatic Post-Editing 

is a neural multi-encoder model based on the trans-

former network. We extend the transformer net-

work implementation in Tensor2Tensor (Vaswani 

et al., 2018) library to implement our model. We 

participated in both PBSMT task and NMT task 

with this multi-encoder model. 

In this paper, we introduce the multi-encoder 

transformer network for APE. The remainder of 

the paper is organized as follows: Section 2 con-

tains the related work. Section 3 describes our 

method. Section 4 gives the experimental results, 

and Section 5 is the conclusion. 

2 Related Work 

2.1 Multi-Encoder Architecture 

For a multi-source translation problem, the proper 

modeling of the relation between the multiple 

sources and the target is important. Combining 

two separate single-source translation models for 
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each source-target relation (Junczys-Dowmunt 

and Grundkiewicz, 2016) or constructing single 

input by combining the all sources (Hokamp, 2017) 

may be a solution, but these are not the exactly 

modeling the multi-source translation problem. 

Zoph and Knight (2016) proposed the basic 

model of the multi-source translation problem. 

Their multi-encoder architecture uses trilingual 

data and contains separate encoders for each input 

to model the conditional probability of the target 

over the two sources. Libovický et al. (2016) 

showed the application of this multi-encoder archi-

tecture to model APE problem. They used the same 

architecture in both APE task and multi-modal 

translation task, because the two tasks can be de-

fined as multi-source translation problem. 

Although their model did not show a good result 

in the competition, the idea of multi-encoder archi-

tecture succeeded in the following WMT evalua-

tion (Chatterjee et al., 2017; Junczys-Dowmunt 

and Grundkiewicz, 2017; Variš and Bojar., 2017) 

and achieved good results. 

2.2 Transformer Network 

Transformer network is a novel neural machine 

translation architecture proposed by Vaswani et al. 

(2017), which avoids recurrence and convolution 

and focuses on the attention mechanism. The net-

work utilizes an encoder-decoder architecture 

based on the stacked layers and each layer uses a 

new novel attention mechanism called multi-head 

attention. 

Multi-head attention is a variation of scaled dot-

product attention. It employs a number of attention 

heads for information from different representation 

subspaces at different positions. With this charac-

teristic, multi-head attention can model the de-

pendency between tokens regardless of their dis-

tance up to the number of heads. 

Transformer network uses the multi-head atten-

tion in three different ways: self-attention in en-

coder, masked self-attention in decoder, and en-

coder-decoder attention. The self-attention and the 

masked self-attention model the internal depend-

ency of the input and the output respectively, and 

the encoder-decoder attention models the depend-

ency between the input and the output. 

With this attention mechanism, transformer net-

work achieved the state-of-the-art result on the 

WMT 2014 English-to-German and English-to-

French translation tasks, and were faster to train 

than other prior models (Vaswani et al., 2017).  

3 Multi-Encoder Transformer Network 

In a normal multi-source translation problem, all of 

the sources and the target are assumed to be a dif-

ferent representation of a common abstracted 

meaning. However, in APE problem, we cannot 

adopt this assumption because the machine trans-

lation output is considered to have systematic er-

rors. These errors make a gap between the machine 

translation output and the post-edited sentence. 

Therefore, for APE problem, we should aim to re-

duce the gap, not to find the common abstracted 

meaning. In this intuition, the three directions 

should be considered to model the APE problem, 

sentence correction (mt→pe), ideal translation 

(src→pe), and original translation (src→mt). 

Even though Bérard et al. (2017) used a chained 

architecture for the context information of original 

translation, most of previous approaches focused 

on combining sentence correction and ideal trans-

lation. However, in terms of reducing the gap, APE 

problem is close to modeling the relation between 

original translation and ideal translation, rather 

than the relation between the machine translation 

output and the post-edited sentence. 

Our multi-encoder transformer network is based 

on this idea. Figure 1 illustrates the overall archi-

tecture of our multi-encoder transformer network 

Figure 1: The overall architecture of multi-encoder 

transformer network for automatic post-editing task. 
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for APE problem. We extend transformer network 

to have two encoders, one for the machine transla-

tion output and the other for the source sentence. 

Each encoder has its own self-attention layer and 

feed-forward layer to process each input separately. 

Also, we add two multi-head attention layers to de-

coder, one for original translation dependency 

(src→mt) and another for ideal translation depend-

ency (src→pe). After these attention layers, the 

words common to both the machine translation 

output and the post-edited sentence have similar 

dependency on the source sentence, so those com-

mon words obtain similar source contexts. Then 

we apply multi-head attention between the output 

of those attention layers, expecting that the source 

context helps the decoder to recognize those com-

mon words which should be remained in post-ed-

ited sentence. 

In short, we added the second encoder for the 

source sentence to the transformer network and 

modified the encoder-decoder attention structure 

to reflect the relation between the original transla-

tion and the ideal translation. 

4 Experimental Results 

4.1 Data 

We used WMT’18 official data set (Chatterjee et 

al., 2018) for PBSMT task and NMT task individ-

ually. The official PBSMT data set consists of 

training data, development data and two test data 

(2016, 2017), and the official NMT dataset consists 

of training data and development data. 

We adopted the artificial training data (Junczys-

Dowmunt and Grundkiewicz, 2016) as an addi-

tional training data for both tasks. Table 1 summa-

rizes the statistic of the data sets. In addition, the 

artificial-small data set is the subset of the artifi-

cial-large data set. 

4.2 Training Parameters 

We used the base model parameters of transformer 

network: 6 stacks, 8 heads, 512 hidden dimension, 

2,048 feed-forward dimension, 64 key dimension, 

64 value dimension, dropout probabilities 0.1 and 

Adam optimization with β1=0.9, β2=0.997 and 

ε=10-9. 

We built a shared word piece vocabulary with 

size of 216 from the combined set of PBSMT train-

ing data set and artificial-large data set for PBSMT 

model. For NMT model, we used the combined set 

of official data and artificial-small data to build the 

vocabulary, with consideration of the difference 

between two tasks. 

For training, we used a mini batch size of 2,048 

with max sequence length of 256 and initial learn-

ing rate of 0.2. We set warmup steps to 16k and 

trained the model during 160k steps. Model check-

points were saved every 1,000 mini batches. We 

select this model as our base model. 

4.3 Tuning 

After 160k steps of training, we tuned the base 

model in two step. For the first tuning step, we re-

duced the training data to the sum of the official 

training data set and artificial-small data set. We 

trained the base model on the reduced training data 

during 30k steps more and selected the model with 

the lowest validation loss (1st-tuned). 

For the second tuning step, we used the official 

training data to fine-tune the 1st-tuned model. We 

used the same tuning method with 1k training step. 

The model with lowest validation was selected as 

the final model (2nd-tuned). 

4.4 Evaluation 

We evaluated the models using the WMT data set, 

computing the TER (Snover et al., 2006) and 

BLEU (Papineni et al., 2002) scores on the de-

coded output. The decoding parameter is the same 

as the default decoding parameter of the Ten-

sor2tensor. We used the scores of original machine 

translation output as the baseline to compare our 

results. Table 2 shows the results of the evaluation 

on PBSMT data set and NMT data set. 

The result on PBSMT data set is comparable to 

the last year’s top result without any additional 

post-processing. In contrast, the result on NMT 

data set shows almost no improvement. We guess 

that the different characteristics of PBSMT artifi-

cial data set from the NMT training data set causes 

the result. 

Task Data set Sentences TER 

PBSMT 

training set 23,000 25.35 

development set 1,000 24.81 

test set 2016 2,000 24.76 

test set 2017 2,000 24.48 

artificial-small 526,368 25.55 

artificial-large 4,391,180 35.37 

NMT 
training set 13,442 14.89 

development set 1,000 15.08 

Table 1: Statistics for WMT APE data sets. 
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4.5 Submitted System 

We used checkpoint averaging to make an ensem-

ble model for submission candidates. For the better 

result, we used various checkpoint saving frequen-

cies in the second tuning step and trained the model 

five times for each frequency. Then, we applied 

checkpoint averaging on the models with follow-

ing conditions: top-5 models (top5), top-5 models 

in a fixed checkpoint frequency (fix5), five top-1 

models for various checkpoint frequencies (var5). 

We used TER score on the development data set to 

select the models. In addition, we chose the top-1 

model to the submission candidate. Table 3 sum-

marizes the result of the four submission candi-

dates on both PBSMT and NMT data set. For the 

submission, we chose three models with low TER 

score and high BLEU score.  

Table 4 shows the official result of the submitted 

model on WMT18 test data set. Our primary sub-

mission for PBSMT achieves -4.52 TER and +6.81 

BLEU scores and our primary submission on NMT 

task -0.13 TER and +0.40 BLEU scores compare 

to the baseline. 

5 Conclusion 

In this paper, we propose a multi-encoder trans-

former network for APE task. We modified the 

structure of encoder-decoder attention to reflect the 

relation between machine translation output, 

source sentence and post-edited sentence in APE. 

Our multi-encoder model showed a comparable re-

sult to the top result of last year’s competition on 

PBSMT task, although almost no improvement on 

NMT task. 

Task Systems TER↓ BLEU↑ 

PBSMT 

WMT18-Baseline 24.24  62.99  

PRIMARY (top5) 19.72  69.80  

CONTRASTIVE1 (fix5) 19.63  69.87  

CONTRASTIVE2 (var5) 19.74  69.70  

NMT 

WMT18-Baseline 16.84  74.73  

PRIMARY (fix5) 16.71  75.13  

CONTRASTIVE1 (top1) 16.70  75.14  

CONTRASTIVE2 (var5) 16.71  75.20  

Table 4: The official results of the submitted models to WMT18 APE task.. 

 

model 

PBSMT   NMT 

dev test 2016 test 2017 
 

dev 

TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ 

Mutli-T2T_top5-avg 18.87  71.72  19.15  70.88  18.82  70.86    14.97  77.22  

Mutli-T2T_fix5-avg 18.88  71.68  19.22  70.80  18.90  70.78   14.96  77.25  

Mutli-T2T_var5-avg 18.85  71.83  19.19  70.75  18.85  70.68   14.97  77.25  

Mutli-T2T_top1 18.91  71.66  19.23  70.78  18.91  70.74    14.94  77.26  

Table 3: The results of submitted models on WMT APE data set. 

model 

PBSMT   NMT 

dev test 2016 test 2017  dev 

TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑   TER↓ BLEU↑ 

MT Baseline 24.81  62.92  24.76  62.11  24.48  62.49   15.08  76.76  

Multi-T2T_base  22.80  66.36  22.70  65.84  22.98  65.46   16.73  74.43  

Multi-T2T_1st-tuned 21.11  68.78  21.20  67.95  21.64  67.33   15.76  76.02  

Multi-T2T_2nd-tuned 19.05  71.79  19.14  70.98  19.26  70.50    15.27  76.88  

Chatterjee et al. (2017)* 19.22  71.89  19.32  70.88  19.60  70.07    ─ ─ 

Table 2: The result of multi-encoder transformer network on WMT APE data set. 
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