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Abstract
This paper describes the submissions of the
team from the University of Tartu for the
sentence-level Quality Estimation shared task
of WMT18. The proposed models use fea-
tures based on attention weights of a neural
machine translation system and cross-lingual
phrase embeddings as input features of a re-
gression model. Two of the proposed models
require only a neural machine translation sys-
tem with an attention mechanism with no addi-
tional resources. Results show that combining
neural networks and baseline features leads
to significant improvements over the baseline
features alone.

1 Introduction

Over the last several years the quality of machine
translation has grown significantly. However even
today most machine translation systems produce
a lot of unreliable translations, with translation
quality varying greatly between different input and
output segments. To estimate the quality of these
translations several methods have been proposed
(Specia et al., 2013; Martins et al., 2017; Kim
et al., 2017a,b).

In this article we propose an approach to qual-
ity estimation that is based on a regression model
with different sets of features stemming from the
internal parameters of a neural machine translation
(NMT) system. We investigate how different in-
put features of the regression model affect the cor-
relation between the automatic quality estimation
score and human assessment. We show that our
models work for any translation output, without
access to the translation system that produced the
translations in question.

2 Method

The main idea of our method is to use features
based on NMT attention weights and metrics

based on cross-lingual embeddings as features of
a regression model. In the following we explain
the details of both these feature sources.

2.1 Attention Weights

The encoder-decoder NMT systems with an at-
tention mechanism (Bahdanau et al., 2014) pro-
duce the translation output with the help of com-
puted attention weights showing the strength of
the connection between the input and output to-
kens. These attention weights resemble a soft
alignment and their visualization often clearly in-
dicates the translation quality that can be expected
– see Figure 1 for an example of a well translated
sentence.

Rikters and Fishel (2017) have shown that the
attention weights can be used for confidence es-
timation, but only if these attention weights were
computed along with translations, using the inter-
nal parameters of the NMT system producing the
translations. We expand their approach to apply
attention weights to any translations, regardless
of whether they were produced by a data-driven,
rule-based translation system or even a human
translator. The same approach is used for quality
estimation in (Yankovskaya and Fishel, 2018).

To get attention weights for any translation pair,
we replace the decoding part of the NMT sys-
tem with computing the probability of the given
translation under an NMT model for that lan-
guage. This way beam search and selecting the
output token with the highest predicted proba-
bility is replaced with selecting the next given
output token; in other words, force-decoding is
done. Thus, we can get attention weights for any
source/translation pair without even knowing any-
thing about the system that produced this transla-
tion output.

To get features for a regression model we have
computed the following metrics proposed by Rik-
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Figure 1: Attention alignment visualization of a well translated sentence from English to German. The thicker
the line, the stronger the connection between the tokens (Rikters et al., 2017). It is visible from the alignment
visualization alone that the quality/confidence of the translation system is high: each input/output token has a
strong connection to one or at most two tokens on the other side.

ters and Fishel (2017) (see their paper for a more
detailed definition):

• Coverage Deviation Penalty (CDP) penal-
izes the sum of attentions per input token,
so tokens with less or too much attention get
lower scores.

• Absentmindedness Penalties (APin and
APout) compute the dispersion via the en-
tropy of the attention distribution of input and
output tokens.

• Total is the sum of all three metrics described
above.

In addition to the metrics above we have cal-
culated the ratio between input and output absent-
mindedness penalties as a small modification.

2.2 Cross-lingual Embeddings
NMT attention weights show the strength of the
connection between the input and output tokens,
but require running each segment pair through
the NMT system. Here we try to align the in-
put and output embeddings directly with the same
aim of estimating the similarity between the in-
put and output segments. This is done by tak-
ing the embedding-enhanced BLEU score called
BLEU2VEC (Tättar and Fishel, 2017) and doing it
cross-lingually.

We used three different types of embeddings to
learn the cross-lingual similarity:

• Word-level embeddings were trained on to-
kenized data that consisted only of unigram
words.

• Phrase-level embeddings were trained on
data that concatenated words into phrases
stochastically (Tättar and Fishel, 2017).
Phrases consisted of up to three words con-
catenated with underscores.

• BPE-level embeddings use the embeddings
from NMT systems that are trained on byte
pair encoded data (Sennrich et al., 2015).
BPE (byte-pair encoding) splits words into
sub-word units in order to reduce the number
of unique tokens.

The word-level and phrase-level embeddings
were trained separately using monolingual cor-
pora.Embeddings for BPE-s came from the
attention-decoder translation system used in the
attention weight feature extraction. These embed-
dings were not trained separately, so no additional
training time was required for them.

After learning the monolingual embeddings,
joint cross-lingual vector spaces are learned based
on the monolingual ones, using the method of
(Conneau et al., 2017). Cross-lingual mappings
are learned between all the language pairs using
MUSE1. In case of word-level and phrase-level
mappings we used the supervised learning which

1A library for Multilingual Unsupervised or Su-
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Figure 2: An examples of cross-lingual embeddings for French and English in the same vector space. On the
figure, the closest neighbor was found and put on the graph. Dimensions are reduced from 300 down to the 2 first
PCA components. Phrases are concatenated with two underscores. Blue means the source word/phrase and red
means the nearest neighbor.

uses a seed dictionary of 1500 words for learning
the mapping. For BPE embeddings we used the
unsupervised cross-lingual mapping, which does
not require a seed dictionary. Both methods of
learning cross-lingual mappings for embedding
spaces are described in (Conneau et al., 2017).

With the cross-lingual embeddings ready we
compute the BLEU2VEC score:

• we find the optimal alignment between the
words, n-grams or subwords of the input and
output segments using beam search

• using this alignment we compute the BLEU
score’s (Papineni et al., 2002) n-gram preci-
sions, giving partial credit to aligned n-gram
(or word/sub-word) pairs equal to the cosine
similarity of their cross-lingual embeddings

We can see examples of words/phrases after
training cross-lingual embeddings in Figure 2.
The nearest neighbor for a source word or phrase
is visualized in the figure, which can be words or
phrases in target language.

pervised word Embeddings, https://github.com/
facebookresearch/MUSE

3 Experimental Settings

3.1 Data

We have applied our methods to all lan-
guage pairs presented in the WMT18 shared
task on sentence-level quality estimation (Specia
et al., 2018): German-English, English-German,
English-Latvian and English-Czech. For English-
German and English-Latvian language pairs the
translation output was produced by NMT and
SMT systems, for other languages only SMT
translations were given.

The number of sentences for each language pair
and each machine translation system is shown in
Table 1.

3.2 Experiments

The main goal of our experiments is to predict the
normalized edit distance (HTER) (Snover et al.,
2006). To estimate the quality of prediction we
used the Pearson correlation coefficient.

As a regression model we used Random Forest
(Ho, 1995) with a grid search algorithm for the op-
timization of parameters.

To get force-decoded attention weights and
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EN-DE DE-EN EN-CS EN-LV

nmt smt nmt smt nmt smt nmt smt

train 13442 26299 - 26032 - 40254 12936 11251

dev 1000 1000 - 1000 - 1000 1000 1000

test 1023 1926 - 1254 - 1920 1448 1315

Table 1: Number of sentences for each language pair and each machine translation system.

BPE embeddings for all language pairs we used
NMT models trained by the University of Edin-
burgh (Sennrich et al., 2017) for English-German,
German-English and English-Czech; for English-
Latvian we used a different NMT model trained
separately.

Our chosen implementation of word and phrase
embeddings was FastText (Bojanowski et al.,
2016) with a continuous bag-of-words (CBOW)
model and the number of dimensions for embed-
dings was set to 300. MUSE (Conneau et al.,
2017) was used for extracting cross-lingual em-
beddings, with default parameters. A simple beam
search was implemented for finding the quality es-
timation BLEU2VEC score, with beam size 3.

Initial tests showed that models with features
based on cross-lingual embeddings only gave a
close-to-zero Pearson correlation score, therefore
these were not included as standalone features
into the final experiments. A combination of
cross-lingual embeddings (words, phrases, BPE)
demonstrated a little bit better results but they
were still lower than results obtained by using a
model based on the attention weights. Taking into
the account these results, we ran the final experi-
ments with the following sets of features:

• QuEst: a standard set of 17 black-box QuEst
features (Specia et al., 2013);

• AttW: features based on the force-decoded
attention weights: CDP , APin, APout,
total, APratio;

• QuEst+AttW: a combination of QuEst and
attention weights features;

• QuEst+AttW+CrEmb3: a combination of
QuEst, attention weights and cross-lingual
embeddings (phrases, words and BPE) fea-
tures;

• AttW+BPE: a combination of attention
weights and cross-lingual embeddings (BPE)

features – to test a scenario of using only the
parameters of an NMT system, both for the
attention weights and the BPE embeddings

• AttW+CrEmb3: a combination of atten-
tion weights and cross-lingual embeddings
(phrases, words and BPE) features.

The model with QuEst features was used as a
baseline.

4 Results

The resulting Pearson coefficients for the dev and
test sets for the all given language pairs are pre-
sented in Table 2. As one can see the high-
est values were obtained by applying the models
QuEst+AttW or QuEst+AttW+CrEmb3. For
English-German (NMT and SMT) and English-
Latvian (SMT) language pairs the difference be-
tween these two models is negligible.

The baseline model shows the best result for
all language pairs but German-English in com-
parison with two of our models: AttW and
AttW+BPE. Although for English-Czech and
English-Latvian (NMT) the difference between
the baseline model and our models is small:
0.389/0.355 and 0.462/0.445. It is interesting to
note that for German-English all of our proposed
models showed a result that is more than twice the
baseline model’s result.

The main advantage of our models AttW and
AttW+BPE is that they do not require additional
resources like language models, n-gram frequen-
cies, alignment probability files or even additional
embedding models. In the case when the trans-
lation output is produced by an NMT system with
an attention mechanism both models require atten-
tion weights or/and BPE embeddings of this NMT
model. In the case when the system produced the
translation is unknown one might use any NMT
system with an attention mechanism.
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EN-DE DE-EN EN-CS EN-LV
smt nmt smt smt smt nmt

dev test dev test dev test dev test dev test dev test

QuEst 0.387 0.369 0.390 0.354 0.392 0.220 0.406 0.389 0.382 0.389 0.491 0.462

AttW 0.292 0.249 0.197 0.219 0.539 0.533 0.313 0.319 0.336 0.323 0.394 0.438
AttW+
BPE

0.303 0.260 0.207 0.230 0.553 0.544 0.326 0.355 0.357 0.323 0.403 0.445

AttW+
CrEmb3

0.303 0.209 0.244 0.224 0.559 0.551 0.353 0.250 0.349 0.323 0.454 0.444

QuEst+
AttW

0.453 0.426 0.405 0.373 0.565 0.554 0.468 0.451 0.460 0.402 0.562 0.531

QuEst+
AttW+
CrEmb3

0.457 0.424 0.408 0.369 0.592 0.570 0.487 0.406 0.461 0.404 0.585 0.542

Table 2: The Pearson correlation coefficients for the dev and test sets for all language pairs.

5 Discussions

As we mentioned above, the value of the Pearson
correlation coefficient for German-English lan-
guage pair is much higher than the values for
other language pairs. A similar result is observed
for the data of the last year Quality Estimation
shared task, where the resulting Pearson correla-
tion coefficient produced by the model AttW was
0.302 for English-German and 0.485 for German-
English. We assume that this is related to the
domain of data: German-English and English-
Latvian data belongs to one domain (pharmaceuti-
cal) whereas English-German and English-Czech
sentences were taken from the another domain
(IT). This assumption is confirmed by the fact that
the values of the Pearson correlation coefficient for
English-Latvian are also slightly higher than the
values for other language pairs.

To investigate how the choice of the NMT sys-
tem affects the Pearson correlation between an
automatic prediction and human assessment, we
compared the results of our NMT system and Uni-
versity of Edinburgh’s NMT system for German-
English language pair.

The resulting Pearson coefficients of two pro-
posed models AttW and QuEst+AttW are pre-
sented in Table 3. The resulting scores differ but
not significantly; although on one hand this sug-
gests that the choice of the NMT system is not im-
portant, both of the compared NMT systems are
general-domain models, equally dissimilar from
both of the test data domains; a more thorough
comparison is left for future explorations.

AttW
QuEst
+AttW

dev test dev test

Edinburgh’s
NMT system

0.539 0.533 0.565 0.554

Our NMT
system

0.560 0.562 0.594 0.584

Table 3: The Pearson coefficients of two regression
models for German-English language pair. Attention
weights were obtained from two different systems.

6 Conclusions

In this paper we described our submissions to the
sentence-level subtask of WMT18 Quality Esti-
mation task. We proposed several models for qual-
ity estimation of machine translation based on at-
tention weights and embeddings. Our models do
not require any additional resources, except for an
NMT system and/or cross-lingual word embed-
dings learned from monolingual corpora. In the
case when the translation output is produced by
an NMT system with an attention mechanism, two
of our models require only attention weights and
BPE embeddings that are already created by this
system.

For several language pairs the proposed models
demonstrated comparable results with the baseline
model. In the case of the German-English lan-
guage pair all of our systems showed a much bet-
ter result compared to the baseline model. Fur-
thermore, the combination of neural networks and
baseline features gave much better results than the
results of the baseline model.
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We plan to further experiment with the attention
weights for in-domain systems and compare the
scores obtained by using the internal and force-
decoded attention weights.
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