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Abstract

With improved prediction combination using
weights based on their training performance
and stacking and multilayer perceptrons to
build deeper prediction models, RTMs become
the 3rd system in general at the sentence-level
prediction of translation scores and achieve
the lowest RMSE in English to German NMT
QET results. For the document-level task, we
compare document-level RTM models with
sentence-level RTM models obtained with the
concatenation of document sentences and ob-
tain similar results.

1 Introduction

Quality estimation task in WMT18 (Specia et al.,
2018) (QET18) address machine translation per-
formance prediction (MTPP), where translation
quality is predicted without using reference trans-
lations, at the sentence- (Task 1), word- (Task 2),
phrase-level (Task 3), and document-levels (Task
4). The tasks contain subtasks involving English-
German phrase-based machine translation (SMT)
and neural network-based SMT (NMT), German-
English SMT, English-Latvian SMT and NMT,
English-Czech SMT, and English-French SMT.
Task 1 is about predicting HTER (human-targeted
translation edit rate) scores (Snover et al., 2006),
Task 2 is about binary classification of words, Task
3 is about binary classification of phrases, and
Task 4 is about predicting multi-dimensional qual-
ity metrics (MQM) (Lommel, 2015).

We use referential translation machine
(RTM) (Biçici, 2017) models for building our
prediction models. RTMs predict data translation
between the instances in the training set and the
test set using interpretants, data close to the task
instances. Interpretants provide context for the
prediction task and are used during the derivation
of the features measuring the closeness of the

RTM interpretants
Task Train Test Training LM
Task 1 (en-cs, SMT) 41254 1000

0.225M 5M

Task 1 (en-de, SMT) 27273 1000
Task 1 (en-de, NMT) 14442 1000
Task 1 (de-en, SMT) 26963 1000
Task 1 (en-lv, SMT) 12251 1000
Task 1 (en-lv, NMT) 13936 1000
Task 1 (en-lv, NMT) 13936 1000
Task 3 (de-en, NMT) 6021 543
Task 4 (en-fr, NMT) 1200 269

Table 1: Number of instances and interpretants used.

test sentences to the training data, the difficulty
of translating them, and to identify translation
acts between any two data sets for building
prediction models. With the enlarging parallel and
monolingual corpora made available by WMT, the
capability of the interpretant datasets selected by
RTM models to provide context for the training
and test sets improve.

Figure 1 depicts RTMs and explains the
model building process. RTMs use parfda
(Bicici, 2018) for instance selection and ma-
chine translation performance prediction system
(MTPPS) (Biçici and Way, 2015) for generating
features. The total number of features vary de-
pending on the order of n-grams used (e.g. a log
of probability score from the language model for
each n-gram is used).

We use ridge regression, kernel ridge regres-
sion, k-nearest neighors, support vector regres-
sion, AdaBoost (Freund and Schapire, 1997),
gradient tree boosting, extremely randomized
trees (Geurts et al., 2006), and multi-layer percep-
tron (Bishop, 2006) as learning models in combi-
nation with feature selection (FS) (Guyon et al.,
2002) and partial least squares (PLS) (Wold et al.,
1984) where most of these models can be found
in scikit-learn. 1 Evaluation metrics listed

1http://scikit-learn.org/
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Figure 1: RTM depiction: ParFDA selects interpretants close to the training and test data using parallel cor-
pus in bilingual settings and monolingual corpus in the target language or just the monolingual target corpus in
monolingual settings; an MTPPS use interpretants and training data to generate training features and another use
interpretants and test data to generate test features in the same feature space; learning and prediction takes place
taking these features as input.

Figure 2: Document-level RTM model with separate
MTPPS run for each training and test document to ob-
tain corresponding feature representations, which are
filtered and processed before learning and prediction.

are Pearson’s correlation (r), mean absolute error
(MAE), and root mean squared error (RMSE).

We use Global Linear Models (GLM) (Collins,
2002) with dynamic learning (GLMd) (Biçici,
2017) for word- and phrase-level translation per-
formance prediction. GLMd uses weights in a
range [a, b] to update the learning rate dynamically
according to the error rate.

2 Mixture of Experts Models

We use prediction averaging (Biçici, 2017) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain
weighted average of the top k predictions, ŷ with
evaluation metrics indexed by j ∈ J and weights

Figure 3: Stacking training data, X, from m predictors.

with w:

wj,i =

{
1

evalj,i
if j is minimized

evalj,i if j is maximized
ŷ̂ŷyµk = 1

k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1 wj,i

∑k
i=1wj,i ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |

∑
j∈J ŷ̂ŷyj,wj

k
MIX

(1)
where weights are inverted to decrease error. We
only use the MIX prediction if we obtain better
results on the training set. We select the best
model using r and mix the results using r, RAE,
MRAER, and MAER. The set of evaluation met-
rics used for mixing also affects the results. Since
we try to obtain results with relative evaluation
metric scores less than 1, we filter out those re-
sults with higher than 1 relative evaluation metric
scores.

In our experiments, we found that assuming in-
dependent predictions and using pi/(1 − pi) for
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Task 4 model setting rP MAE RAE MAER MRAER
en-fr SMT doc stack -0.1725 43.0687 0.9857 0.8123 0.805
en-fr SMT doc mix -0.1812 43.5726 0.9973 0.8347 0.8256
en-fr SMT doc FS RR -0.177 44.058 1.0084 0.8509 0.8413
en-fr SMT sent stack 0.2109 42.5196 0.9732 0.8464 0.8372
en-fr SMT sent mix -0.2299 43.2402 0.9897 0.8197 0.8116
en-fr SMT sent FS KR -0.1844 43.2891 0.9908 0.8255 0.8167

Table 2: Training results on Task 4 with stacking and prediction averaging. FS RR is the top single model for doc
and FS KR for sent where RR is ridge regression and KR is kernel ridge regression.

Task 1 rP MAE RAE MAER MRAER
en-de SMT 0.4336 0.1365 0.8654 0.7951 0.798
en-de NMT 0.459 0.1138 0.8282 0.84 0.7771
de-en SMT 0.5634 0.1364 0.7953 0.7637 0.7573
en-cs SMT 0.5381 0.151 0.8109 0.7423 0.7679
en-lv SMT 0.3805 0.1362 0.9055 0.8755 0.8041
en-lv NMT 0.5714 0.1466 0.7971 0.753 0.7595

Table 3: Training results on Task 1 with prediction av-
eraging.

weights where pi represents the accuracy of the
independent classifier i in a weighted majority en-
semble (Kuncheva and Rodrı́guez, 2014) obtained
slightly better results (Equation (2)).

wj,i =
wj,i

1− wj,i
(2)

We also use stacking to build higher level mod-
els using predictions from base prediction models
where they can also use the probability associated
with the predictions (Ting and Witten, 1999). The
stacking models use the predictions from predic-
tors as features and build second level predictors
(Figure 3).

3 Document-level MTPP Model
Comparisons

We evaluate the effect of two different RTM
data modeling techniques for the document-level
task. Our first approach involves running separate
MTPPS instances for each training (green in Fig-
ure 2) or test (salmon colored) document to obtain
specific features for each document. Then, only
the document-level features and the min, max,
and average of the sentence-level features are used
to obtain an RTM representation vector instance
from each document. Our second approach con-
catenates the sentences from each document to ob-
tain a single sentence representing each and runs
an RTM model. Features from word alignment are
included in both and they share the interpretants.
The first approach use 1359 features and the sec-
ond use 383 features.

Task Model % error

Task 2

word

en-de SMT 0.080
en-de NMT 0.032
de-en SMT 0.066
en-cs SMT 0.116
en-lv SMT 0.027
en-lv NMT 0.058

gap

en-de SMT
en-de NMT 0.017
de-en SMT 0.040
en-cs SMT
en-lv SMT 0.030
en-lv NMT 0.017

Task 3

word

de-en SMT

0.020
phrase 0.015
word gap 0.030
phrase gap 0.011

Table 4: RTM Task 2 training error for some of the
models where GLMd is parallelized over splits. All
GLMd models use [0.5, 2] as weights. % error are twice
the overall error found based on all tags (2N+1).

Training results are in Table 2 where we com-
pare them and the first approach is denoted as doc
and the second as sent. The first approach obtained
the top results in QET16 (Bicici, 2016). doc ob-
tains better MAER (mean absolute error relative)
and MRAER (mean relative absolute error rela-
tive) (Biçici and Way, 2015). We obtain 3rd best
RMSE while we note that both MAE and RMSE
results are close to each other in all four submis-
sions on the test set.

4 Results

Table 1 lists the number of sentences in the train-
ing and test sets for each task and the number of
instances used as interpretants in the RTM mod-
els (M for million). We tokenize and truecase
all of the corpora using Moses’ (Koehn et al.,
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Task 4 model setting rP MAE RMSE
top 0.5337 56.2264 85.2319

RTM

en-fr SMT doc stack 0.0580 (4) 58.5680 (4) 87.8321 (4)
en-fr SMT doc mix -0.1210 (4) 57.5613 (4) 86.2219 (4)
en-fr SMT sent stack 0.0183 (4) 57.6245 (4) 86.4831 (4)
en-fr SMT sent mix -0.0812 (4) 57.7922 (4) 86.8650 (4)

Table 5: Task 4 test RTM results and the top result in the task.

Task 1 rP rS MAE RMSE

en-de SMT top 0.7397 0.7543 0.0937 0.1362
RTM 0.4166 (6) 0.4254 (4) 0.1353 (5) 0.1731 (6)

en-de NMT top 0.5129 0.6052 0.1114 0.1719
RTM 0.4704 (3) 0.5461 (3) 0.1192 (3) 0.1727 (1)

de-en SMT top 0.7667 0.7318 0.0945 0.1315
RTM 0.5772 (6) 0.5167 (5) 0.1311 (6) 0.1679 (4)

en-cs SMT top 0.6918 0.7105 0.1223 0.1693
RTM 0.5295 (3) 0.5348 (3) 0.1519 (3) 0.1952 (3)

en-lv SMT top 0.6188 0.5766 0.1202 0.1602
RTM 0.3521 (8) 0.2861 (7) 0.1430 (4) 0.1869 (3)

en-lv NMT top 0.6819 0.6665 0.1308 0.1747
RTM 0.5487 (4) 0.5017 (4) 0.1540 (3) 0.2006 (3)

Table 6: Test results of RTM in Task 1 where numbers
in parentheses show the rank and corresponding top re-
sults. RTM achieves the lowest RMSE in en-de NMT
and becomes the 3rd system in general. rP is Pearson’s
correlation and rS is Spearman’s correlation.

2007) processing tools. 2 LMs are built using
kenlm (Heafield et al., 2013). The comparison of
results on the training set are in Table 3 for Task 1
and in Table 2 for Task 4.

The results on the test set (Tables 5 and 6) shows
that RTM can become the 1st in en-de NMT and
3rd in general. Test results are taken from the com-
petition’s result submission websites at:

• sentence level https://competitions.

codalab.org/competitions/19316

• word level https://competitions.

codalab.org/competitions/19306

• phrase level https://competitions.

codalab.org/competitions/19308

• document level https://competitions.

codalab.org/competitions/19309

The references for the test sets are not released yet.
For Task 2 and Task 3, we model words or

phrases and gaps separately and then combine
their results. The error % on the training sets are
in Table 4 and the results on the test set are in Ta-
ble 7.

2https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

Model task F1 BAD F1 OK wF1

w
or

d

en-de
word 0.3300 (7) 0.8813 (3) 0.2908 (6)

SMT
gap 0.2547 (3) 0.9764 (1) 0.2487 (3)
src 0.1650 (2) 0.8591 (1) 0.1418 (2)

en-de
word 0.0927 (6) 0.9235 (1) 0.0856 (6)

NMT
gap 0.1360 (1) 0.9878 (1) 0.1343 (1)
src 0.0337 (2) 0.9209 (1) 0.0310 (2)

de-en
word 0.3790 (6) 0.8979 (3) 0.3403 (6)

SMT
gap 0.1463 (3) 0.9804 (1) 0.1435 (3)
src 0.1211 (2) 0.8946 (1) 0.1083 (2)

en-lv
word 0.3681 (3) 0.9044 (1) 0.3329 (3)

SMT
gap 0.1298 (3) 0.9853 (1) 0.1279 (3)
src 0.1195 (2) 0.8917 (1) 0.1066 (2)

en-lv
word 0.4280 (4) 0.8530 (1) 0.3651 (3)

NMT
gap 0.0829 (3) 0.9819 (1) 0.0814 (3)
src 0.1977 (2) 0.8418 (1) 0.1664 (2)

en-cs
word 0.5280 (4) 0.8257 (2) 0.4360 (4)

SMT
gap 0.1059 (3) 0.9810 (1) 0.1039 (3)
src 0.3229 (2) 0.7962 (2) 0.2571 (2)

ph
ra

se de-en

phrase 0.2651 (3) 0.9168 (1) 0.2431 (2)

SMT

gap 0.0518 (2) 0.9811 (1) 0.0508 (2)
src 0.0956 (1) 0.8994 (1) 0.0860 (1)
word 0.1648 (3) 0.9004 (2) 0.1484 (3)
gap 0.1029 (2) 0.9373 (1) 0.0964 (2)
src 0.0973 (2) 0.8376 (1) 0.0815 (2)

Table 7: RTM Task 2 and Task 3 results on the test set.
wF1 is average weighted F1 score (F1 multi).

5 Conclusion

Referential translation machines can achieve top
performance in automatic, accurate, and language
independent prediction of translation scores and
achieve to become the 1st system according to
RMSE for MTPP from English to German in
QET18. RTMs pioneer a language independent
approach and remove the need to access any task
or domain specific information or resource.
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