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Abstract

We posed the shared task of assigning sen-
tence-level quality scores for a very noisy cor-
pus of sentence pairs crawled from the web,
with the goal of sub-selecting 1% and 10%
of high-quality data to be used to train ma-
chine translation systems. Seventeen partici-
pants from companies, national research labs,
and universities participated in this task.

1 Introduction

Training corpora for machine translation come
in varying degrees of quality. On the one ex-
treme end they are carefully professionally trans-
lated specifically for this purpose which may have
done under the instruction to provide fairly lit-
eral translations and adherence to sentence-by-
sentence correspondences. The other extreme are
sentence pairs extracted with fully automatic pro-
cesses from indiscriminate crawling of the World
Wide Web.

The Shared Task on Parallel Corpus Filtering
targets the second extreme, although the methods
developed for this data condition should also carry
over to less noisy parallel corpora. In setting this
task, we were motivated by our ongoing efforts
to create large publicly available parallel corpora
from web sources and the recognition that noisy
parallel data is especially a concern for neural ma-
chine translation (Khayrallah and Koehn, 2018).

This paper gives an overview of the task,
presents its results and provides some analysis.

2 Related Work

Although the idea of crawling the web indiscrimi-
nately for parallel data goes back to the 20th cen-
tury (Resnik, 1999), work in the academic com-
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munity on extraction of parallel corpora from the
web has so far mostly focused on large stashes
of multilingual content in homogeneous form,
such as the Canadian Hansards, Europarl (Koehn,
2005), the United Nations (Rafalovitch and Dale,
2009; Ziemski et al., 2015), or European Patents
(Téger, 2011). A nice collection of the products of
these efforts is the OPUS web site! (Skadins et al.,
2014).

We are currently engaged in a large-scale effort
to crawl text from the web. This work has been
funded by Google Faculty Awards and is also cur-
rently funded by the European Union via the Con-
necting Europe Facility.” In 2016, we organized a
shared task on document alignment as part of this
effort (Buck and Koehn, 2016).

Acquiring parallel corpora from the web typi-
cally goes through the stages of identifying web
sites with parallel text, downloading the pages of
the web site, aligning document pairs, and align-
ing sentence pairs. A final stage of the processing
pipeline filters out bad sentence pairs. These exist
either because the original web site did not have
any actual parallel data (garbage in, garbage out),
or due to failures of earlier processing steps.

In 2016, a shared task on sentence pair filter-
ing? was organized, albeit in the context of clean-
ing translation memories which tend to be cleaner
that the data at the end of a pipeline that starts with
web crawls.

There is a robust body of work on filtering out
noise in parallel data. For example: Taghipour
et al. (2011) use an outlier detection algorithm

"http://opus.lingfil.uu.se/

*http://www.paracrawl .eu/

*NLP4TM 2016: Shared task
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to filter a parallel corpus; Xu and Koehn (2017)
generate synthetic noisy data (inadequate and non-
fluent translations) and use this data to train a clas-
sifier to identify good sentence pairs from a noisy
corpus; and Cui et al. (2013) use a graph-based
random walk algorithm and extract phrase pair
scores to weight the phrase translation probabili-
ties to bias towards more trustworthy ones.

Most of this work was done in the context of sta-
tistical machine translation, but more recent work
targets neural models. Carpuat et al. (2017) fo-
cus on identifying semantic differences in trans-
lation pairs using cross-lingual textual entailment
and additional length-based features, and demon-
strates that removing such sentences improves
neural machine translation performance.

As Rarrick et al. (2011) point out, one type of
noise in parallel corpora extracted from the web
are translations that have been created by machine
translation. Venugopal et al. (2011) propose a
method to watermark the output of machine trans-
lation systems to aid this distinction. Antonova
and Misyurev (2011) report that rule-based ma-
chine translation output can be detected due to cer-
tain word choices, and statistical machine transla-
tion output can be detected due to lack of reorder-
ing.

Belinkov and Bisk (2017) investigate the impact
of noise on neural machine translation. They focus
on creating systems that can translate the kinds of
orthographic errors (typos, misspellings, etc.) that
humans can comprehend. In contrast, Khayrallah
and Koehn (2018) address noisy training data and
focus on types of noise occurring in web-crawled
corpora. They carried out a study how noise that
occurs in crawled parallel text impacts statistical
and neural machine translation.

There is a rich literature on data selection which
aims at sub-sampling parallel data relevant for a
task-specific machine translation system (Axelrod
et al., 2011). van der Wees et al. (2017) find that
the existing data selection methods developed for
statistical machine translation are less effective for
neural machine translation. This is different from
our goals of handling noise since those methods
tend to discard perfectly fine sentence pairs (say,
about cooking recipes) that are just not relevant for
the targeted domain (say, software manuals). Our
task is focused on data quality that is relevant for
all domains.
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3 Task

The shared task tackled the problem of filtering
parallel corpora. Given a noisy parallel corpus
(crawled from the web), participants developed
methods to filter it to a smaller size of high quality
sentence pairs.

Specifically, we provided a very noisy 1 bil-
lion word (English token count) German—English
corpus crawled from the web by the Paracrawl
project. We asked participants to subselect sen-
tence pairs that amount to (a) 10 million words,
and (b) 100 million words, counted on the En-
glish side. The quality of the resulting subsets
was determined by the quality of a statistical ma-
chine translation (Moses, phrase-based) and a neu-
ral machine translation system (Marian) trained on
this data. The quality of the machine translation
system was measured by BLEU score on the (a)
official WMT 2018 news translation test set and
(b) other undisclosed test sets.

Note that the task addressed the challenge of
data quality and not domain-relatedness of the data
for a particular use case. Hence, we discouraged
participants from subsampling the corpus for rel-
evance to the news domain. Thus, we place more
emphasis on the undisclosed test sets, although we
report both scores.

Participants in the shared task submitted a file
with quality scores, one per line, corresponding to
the sentence pairs. The scores do not have to be
meaningful, except that higher scores indicate bet-
ter quality. The scores were uploaded to a Google
Drive folder which remains publicly accessible.*

Evaluation of the quality scores was done by
subsampling 10 million and 100 million word cor-
pora based on these scores, training statistical and
neural machine translation systems with the sub-
sampled corpora, and evaluation translation qual-
ity on blind test sets using the BLEU score.

For development purposes, we released config-
uration files and scripts that mirror the official test-
ing procedure with a development test set. The de-
velopment pack consists of

e a script to subsample corpora based on qual-

ity scores

e a Moses configuration file to train and test a

statistical machine translation system

e Marian scripts to train and test a neural ma-

chine translation system

“https://drive.google.com/drive/folders/
1zZNP1AThm-Rnvxsy8rXzChC49bcO®_TGO



Type of Noise Count
Okay 23%
Misaligned sentences 41%
Third language 3%
Both English 10%
Both German 10%
Untranslated sentences 4%
Short segments (<2 tokens) 1%
Short segments (3—-5 tokens) 5%
Non-linguistic characters 2%

Table 1: Noise in the raw Paracrawl corpus.

e the test set from the WMT 2016 Shared Task
on Machine Translation of News as develop-
ment set

e the test set from the WMT 2017 Shared Task
on Machine Translation of News as develop-
ment test set

The web site for the shared task® provided de-
tailed instructions on how to use these tools to
replicate the official testing environment.

4 Data
4.1 Training Data

The provided raw parallel corpus is the outcome
of a processing pipeline that aimed at high recall at
the cost of precision, so it is very noisy. It exhibits
noise of all kinds (wrong language in source and
target, sentence pairs that are not translations of
each other, bad language, incomplete of bad trans-
lations, etc.).

A cursory inspection of the corpus is given in
Table 1. According to analysis by Khayrallah and
Koehn (2018), only about 23% of the data is okay,
but even that fraction may be flawed in some way.
Consider the following sentence pairs that we did
count as okay even though they contain mostly un-
translated names and numbers.

DE: Anonym 2 24.03.2010 um 20:55 314 Kom-
mentare

EN: Anonymous 2 2010-03-24 at 20:55 314
Comments

DE: << erste < zurlick Seite 3 mehr letzte >>
EN: << first < prev. page 3 next last >>

It is an open question if such data is also harm-
ful, merely irrelevant, or maybe even beneficial.

Shttp://www.statmt.org/wmt18/parallel-corpus
-filtering.html

The raw corpus consists of a billion words of
English, paired with German on the sentence level.
It was deduplicated from a subset of the raw
Paracrawl Release 1.

4.2 Provided Meta Information

The provided corpus file contains three items per
line, separated by a TAB character:

o English sentence
e German sentence

e Hunalign score

The Hunalign scores were obtained from the
sentence aligner (Varga et al., 2005). They may
be a useful feature for sentence filtering, but they
do not by themselves correlate strongly with sen-
tence pair quality. None of the participants gener-
ally used this score.

Participant’s systems may take the source of the
data into account, e.g., by discounting sentence
pairs that come from a web domain with gener-
ally low quality scores. To this end, we released
the URL sources for each sentence pair as addi-
tional data set. Note that due to de-duplication a
single sentence pair may have several URL pairs
associated it, since it may appear on multiple web
pages.

Participants were also allowed to use existing
tools and external training data to build their fil-
tering methods. Specifically, they were permitted
to use the WMT 2018 news translation task data
for German-English (without the Paracrawl paral-
lel corpus) to train components of their method.

4.3 Test Sets

The goal of the task is to filter down to high-
quality sentence pairs, but not to sentence pairs
that are most fitting to a specific domain. Dur-
ing the submission period of the task, we only an-
nounced that we will use the official new transla-
tion test set from the WMT 2018 Shared Task of
Machine Translation of News,® which was not re-
leased at that time yet.

In total, we used six test sets. For statistics see
Table 2. Two of them were taken from existing
evaluation campaigns, four were created for this
shared task.

NEWSTEST2018 The test set from the WMT
2018 Shared Task of Machine Translation of

6http://www.statmt.org/wmt18/translation-task.html
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News. It contains news stories that were ei-
ther translated from German to English or
from English to German.

IWSLT2017 The test set from the IWSLT 2017
evaluation campaign. It consists of tran-
scripts of talks given at the TED conference.
They cover generally accessible topics in the
area of technology, entertainment, and de-
sign.

ACQUIS This test set was extracted from the Ac-
quis Communtaire corpus, which is avail-
able on OPUS’ (Tiedemann, 2012) (which
was the source to create the subsequent 3
test sets). The test set consists of laws of
the European Union that have to be incorpo-
rated into the national laws of the EU mem-
ber countries. We only used sentences with
15 to 80 words, and removed any duplicate
sentence pairs.

EMEA This test set was extracted from documents
European Medicines Agency, which consist
of public health announcements and descrip-
tions of medications. We only used sentences
with 20 to 80 words, and removed any dupli-
cate sentence pairs.

GLOBALVOICES This test set was extracted from
news stories posted and translated on Global
Voices, an international and multilingual
community of bloggers, journalists, transla-
tors, academics, and human rights activists.
We selected several complete stories from
this corpus.

KDE This test set was extracted from KDE4 local-
ization files, which is open source software
for Linux. We only used sentences with 15
to 80 words, and removed any duplicate sen-
tence pairs.

For all the test sets, we checked for overlap with
the training data, to prevent the possibility of hav-
ing the test set being contained in the released
noisy parallel data. We originally considered a test
set based on the PHP documentation but removed
it because that was contained in Paracrawl.

The official scoring of machine translation sys-
tems generated from the subsampled data sources
is the average of the individual BLEU scores for
each test set.

"http://opus.nlpl.eu/

729

Test set Sentences | English Words
NEWSTEST2018 2998 58,628
IWSLT2017 1138 18,162
ACQUIS 2862 98,624
EMEA 3000 93,071
GLOBALVOICES 3000 54,930
KDE 3000 109,716

Table 2: Statistics for the test sets used to evalu-
ate the machine translation systems trained on the
subsampled data sets. Word counts are obtained
with wc on untokenized text.

5 Evaluation Protocol

The testing setup mirrors the development envi-
ronment that we provided to the participants.

5.1 Particpants

We received submissions from 17 different orga-
nizations. See Table 3 for the complete list of
participants. The participant’s organizations are
quite diverse, with 3 participants from Spain, 3
participants from the United States, 2 participants
from Germany, 1 participant each from Canada,
Greece, China, Japan, France, Latvia, Estonia,
United Kingdom, and Brazil. 9 of the participants
are companies, 3 are national research organiza-
tions, and 5 were universities.

Each participant submitted up to 5 different sets
of scores, resulting in a total of 44 different sub-
missions that we scored.

5.2 Subset Selection

We provided to the participants a file containing
one sentence pair per line. A submission to the
shared task consists of a file with the same number
of lines, with one score per line corresponding to
the quality of the corresponding sentence pair.
Using the score file, we selected subsets of a
pre-defined size, defined by the number of English
words. We chose the number of English words
instead of German words, since the latter would
allow selection of sentence pairs with very few
German words and many English words which are
beneficial for language model training but do not
count much towards the German word total.
Subselecting sentence pairs is done by finding a
threshold score, so that the sentence pairs that will
be included in the subset have a quality score at
and above this threshold. In some cases, a submis-
sion assigned this threshold score to a large num-



Acronym Participant and System Description Citation

AFRL Air Force Research Lab, USA (Erdmann and Gwinnup, 2018)

Alibaba Machine Intelligence Technology Lab, Alibaba Group, China (Lu et al., 2018)
ARC Inst. for Language and Speech Proc./Athena RC, Greece (Papavassiliou et al., 2018)
U Tartu University of Tartu, Estonia (Barbu and Barbu Mititelu, 2018)

JHU Johns Hopkins University, USA (Khayrallah et al., 2018)

LMU Ludwig Maximilian University of Munich, Germany (Hangya and Fraser, 2018)
MAIJE Weblnterpret, Spain (Fomicheva and Gonzéalez-Rubio, 2018)

Microsoft Microsoft Corp., USA (Junczys-Dowmunt, 2018)

NICT National Inst. of Information and Communications Tech., Japan (Wang et al., 2018)
NRC National Research Council, Canada (Littell et al., 2018; Lo et al., 2018)

Prompsit Prompsit, Spain (Sanchez-Cartagena et al., 2018)

RWTH Rheinland-Westphilische Technical University, Germany (Rossenbach et al., 2018)
Speechmatics | Speechmatics, United Kingdom (Ash et al., 2018)

Systran Systran, France (Pham et al., 2018)

Tilde Tilde, Latvia (Pinnis, 2018)

UTFPR Federal University of Technology, Parana, Brazil (Paetzold, 2018)

Vicomtech Vicomtech, Spain (Azpeitia et al., 2018)

Table 3: Participants in the shared task.

ber of sentence pairs. Including all of them would
yield a too large subset, excluding them yields a
too small subset. Hence, we randomly included
some of the sentence pairs to get the desired size
in this case.

5.3 System Training

Given a selected subset of given size for a system
submission, we built statistical (SMT) and neu-
ral machine translation (NMT) systems to evaluate
the quality of the selected sentence pairs.

SMT For statistical machine translation, we
used Moses (Koehn et al., 2007) with fairly ba-
sic settings, such as Good-Turing smoothing of
phrase table probabilities, maximum phrase length
of 5, maximum sentence length of 80, lexical-
ized reordering (hier-msir-bidirectional-fe), fast-
align for word alignment with grow-diag-final-and
symmetrization, tuning with batch-MIRA, no op-
eration sequence model, 5-gram language model
trained on the English side of the subset with no
additional data, and decoder beam size of 5,000.

NMT For neural machine translation, we used
Marian (Junczys-Dowmunt et al., 2018). It uses
the default settings of version 1.5, with 50,000
BPE operations, maximum sentence length of
100, layer normalization, dropout of 0.2 for RNN
states, 0.1 for source embeddings and 0.1 for tar-
get embeddings, exponential smoothing, and de-

730

coding with beam size 12 and length normaliza-
tion (1). Training a system for the 10 million word
subset was limited to 20 epochs and took about 10
hours. Training a system for the 100 million word
subset was limited to 10 epochs and took about 2
days.

Scores on the test sets were computed with
multi-bleu-detok.perl included in Moses.
We report case-insensitive scores.

6 Results

6.1 Core Results

The official results are reported in Table 4. The
table contains the average BLEU score over all the
6 test sets for the 4 different setups

e statistical machine translation for 10 million
word corpus

e statistical machine translation for 100 million
word corpus

e neural machine translation for 10 million
word corpus

e neural machine translation for 100 million
word corpus

In the table, we highlight cells for the best
scores for each of these settings, as well as scores
that are close to it.

One striking observation is that the scores differ
much more for the 10 million word subset than for



Participant System SMT | SMT | NMT | NMT

10M | 100M | 10M | 100M
AFRL afrl-cvg-large 21.9 25.2 13.8 30.2
AFRL afrl-cvg-mix-meteor | 23.4 25.3 27.1 30.3
AFRL afrl-cvg-mix 22.5 25.2 19.8 30.1
AFRL afrl-cvg-small 21.9 22.9 13.5 21.1
AFRL afrl-cyn-mix 22.4 25.0 | 25.1 29.6
Alibaba alibaba-div 24.1 264 | 27.6 31.9
Alibaba alibaba 241 264 | 27.6 31.9
ARC arc-11 22.7 26.1 19.8 31.3
ARC arc-13 22.4 26.1 25.8 31.3
ARC arc-9 21.9 26.0 | 24.0 31.3
U Tartu tartu-hybrid-pipeline | 22.3 257 | 252 30.6
JHU zipporah-10000 22.6 258 | 253 30.2
JHU zipporah 22.6 258 | 254 29.8
LMU Imu-ds-Im-si 23.1 254 | 221 29.0
LMU Imu-ds-lm 23.3 25.6 | 23.6 29.5
LMU Imu-ds 23.3 255 | 23.6 29.5
LMU Imu 21.5 25.6 | 23.0 30.5
MAIJE webinterpet 22.5 26.1 24.8 31.2
Microsoft microsoft 24.4 26.5 | 28.6 | 32.1
NICT nict 23.5 26.0 | 259 30.0
NRC nrc-mono-bicov 21.0 262 | 23.1 31.6
NRC nrc-mono 19.8 26.0 | 20.7 31.2
NRC nrc-seve-bicov 22.1 262 | 25.3 31.7
NRC nre-yisi-bicov 23.9 264 | 274 31.9
NRC nre-yisi 235 264 | 265 31.8
Prompsit prompsit-al 22.8 264 | 25.6 31.7
Prompsit prompsit-lm 21.3 26.3 19.4 31.8
Prompsit prompsit-lm-nota 20.1 26.2 19.3 31.7
Prompsit prompsit-sat 22.9 26.3 26.1 31.7
RWTH rwth-count 239 259 | 26.6 31.1
RWTH rwth-nn 24.5 262 | 28.0 31.2
RWTH rwth-nn-redundant 24.6 26.2 | 28.0 31.3
Speechmatics | balanced-scoring 23.8 258 | 279 31.0
Speechmatics | prime-neural 23.9 259 | 28.0 30.8
Speechmatics | purely-neural 18.1 25.8 18.0 30.0
Systran systran 21.8 254 | 243 29.9
Tilde tilde-max-rescored 23.0 260 | 26.6 31.2
Tilde tilde-max 21.4 26.2 | 23.6 31.2
Tilde tilde-isolated 21.0 259 | 226 30.8
UTFPR utfpr-tree 17.6 20.7 114 11.9
UTFPR uftpr-regression 20.8 224 21.8 22.2
UTFPR utfpr-forest 13.2 17.0 6.6 6.2
Vicomtech vicomtech 23.2 259 | 264 304
Vicomtech vicomtech-ngsat 23.3 258 | 25.6 249

Table 4: Main results. BLEU scores (case-insensitive) are reported on the average of 6 test sets. Best
performance on a test set is reported in bright green, scores within 0.5 BLEU points off the best in light
green, and scores within 1 BLEU point off the best in light yellow.
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the 100 million word subset. Scores also differ
more for neural machine translation systems than
for statistical machine translation systems.

For the 10 million word subset, there are only
2 submissions within 0.5 BLEU of the best sys-
tem for statistical machine translation, and O for
neural machine translation. For the 100 million
word subset, there are 15 submissions within 0.5
BLEU of the best system for statistical machine
translation, and 9 submissions within 0.5 for neu-
ral machine translation. Note that many of these
submissions come from the same participants.

For both data sets, scores for neural machine
translation are significantly higher. For the 10 mil-
lion word subsets, the best NMT score is 28.6,
while the best SMT score is 24.6. For the 100
million word subsets, the best NMT score is 32.1,
while the best SMT score is 26.5. To be fair, statis-
tical machine translation is typically trained with
large monolingual corpora for language modelling
that are essential for good performance.

6.2 Results by Test Set

Table 5 and 6 break out the results by each of
the test sets, for statistical machine translation and
neural machine translation, respectively.

The use of multiple test sets was motivated by
the objective to discourage participants to filter
sentence pairs for a specific domain, instead of fil-
tering for general quality. Some participants used
domain-specific data for training some elements of
their filtering systems, such as monolingual news
data sets to train language models but argued that
these are broad domains that do not lead to domain
over-fitting.

The results do not evoke the impression that
some systems are doing better on some domains
than others, at least not more than random vari-
ance would lead to expect. The closest test sets to
the development sets are NEWSTEST2018, GLOB-
ALVOICES, and maybe IWSLT2018. Only the 10
million word submissions rwth-nn and rwth-nn-
redundant seem to do much better on these sets
than others, relative to other submissions.

6.3 Additional Subset Sizes

Since we were interested in the shape of the
curve of how different corpus sizes impact ma-
chine translation performance, we subselected ad-
ditional subset size. Specifically, in addition to the
10 and 100 million word corpora, we also subse-
lected 20, 30, 50, 80, 150, and 200 million words.
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See Figure 1 for results for neural machine
translation systems (also broken down by each in-
dividual test set) and Figure 2 for statistical ma-
chine translation systems. We only computed re-
sults for six systems due to the computational cost
involved.

The scoring on additional subset sizes was not
announced before the submission deadline for the
shared task, so none of the participants optimized
for these. In fact, some participants assigned the
same low value for almost all sentence pairs that
would be ignored when subselecting the 100 mil-
lion word corpus. So, when subsampling larger
corpora (150 and 200 million words, as we have
done), the resulting system scores collapse.

The curves for neural machine translation sys-
tem scores peak almost always at 100 million
words, although also occasionally at 80 or 150
million words. Since we did not plot these curves
when setting up the shared task, we cannot say if
100 million words is just a optimal value for this
corpus or if participants overfitted their system to
this value, although we would guess the first.

The performance between the submissions are
quite similar on the different test sets. None of
the submissions we show in the figures has overly
optimized on the news test set.

7 Methods used by Participants

Not surprising due to the large number of submis-
sions, many different approaches were explored
for this task. However, most participants used a
system using three components: (1) pre-filtering
rules, (2) scoring functions for sentence pairs, and
(3) a classifier that learned weights for feature
functions.

Pre-filtering rules. Some of the training data
can be discarded based on simple deterministic fil-
tering rules. These may include rules to remove

e too short or too long sentences

e sentences that have too few words (tokens
with letters instead of just special characters),
either absolute or relative to the total number
of tokens

e sentences whose average token length is too
short or too long

e sentence pairs with mismatched lengths in
terms of number of tokens
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MAIJE webinterpet 22.5 27.2 21.3 19.1 24.5 21.2 22.0| 26.1 30.7 22.9 22.4 30.6 23.7 26.2
Microsoft microsoft 244 29.5 21.6 19.7[28.7 22.5 24.7| 26.5 31.4 23.2122.3 [31.4/23.926.9
NICT nict 23.5 27.8 20.9 19.3 25.9 21.4]25.5| 26.0 30.8 22.8 22.0 30.4 23.4 26.6
NRC nrc-mono-bicov 21.0 25.1 17.9 16.6 24.2 20.0 22.1| 26.2 31.1 22.8 22.4 31.1 23.8 26.2
NRC nrc-mono 19.8 23.5 16.6 15.5 23.1 18.6 21.4| 26.0 30.6 22.7 22.1 30.7 23.7 26.2
NRC nre-seve-bicov 22.1 26.0 18.6 18.8 27.9 20.1 21.4| 26.2 31.1 22.8 22.2 31.2 23.7 26.5
NRC nre-yisi-bicov 239 28.7 21.3 19.7 26.4 22.1 25.2| 26.4|31.4 22.8 22.4 31.1 23.8/26.9
NRC nre-yisi 23.5 28.0 21.1 19.3 26.0 21.8 25.0| 26.4 31.0/23.2 22.5(/30.8 23.9 26.8
Prompsit prompsit-al 22.8 26.0 19.9 19.1 27.0 20.1 24.3| 26.4 31.2 22.8/22.5|31.3 23.8/26.9
Prompsit prompsit-lm 21.3 254 19.5 16.9 23.2 19.3 23.3| 26.3 31.1 22.8/22.5/31.0 23.6 26.6
Prompsit prompsit-lm-nota 20.1 249 19.4 159 19.7 18.6 21.9| 26.2 31.0 22.9 22.2 30.9 23.5 26.5
Prompsit prompsit-sat 22.9 27.0 19.0 19.0 27.4 20.6 24.6| 26.3 31.0 22.8/22.5/31.1 23.6/26.9
RWTH rwth-count 239 28.6 21.8 21.0 26.8 22.0 22.8| 25.9 30.7 22.9 22.0 30.2 23.5 26.3
RWTH rwth-nn 24.5129.6/ 21.8 121.4 28.022.7 23.8| 26.2 30.823.2 22.2 30.9 23.4 26.6
RWTH rwth-nn-redundant  [24.6 29.6/21.8 [21.4 28.1 22.6 23.9| 26.2 30.8 23.1 22.1 30.9 23.6 26.8
Speechmatics | balanced-scoring 23.8 28.2 21.0 19.7 27.6 21.5 24.7| 25.8 30.3 22.6 22.0 30.5 23.3 26.3
Speechmatics | prime-neural 23.9 28.2 20.5 19.6 28.3 21.4 253| 259 30.4 22.5 21.9 30.7 23.3 26.4
Speechmatics | purely-neural 18.1 20.4 15.1 13.6 22.2 16.3 21.0| 25.8 30.3 22.5 21.9 30.6 23.2 26.2
Systran systran 21.8 25.4 19.4 16.7 25.7 19.9 23.9| 25.4 30.0 22.3 21.5 30.1 22.7 26.1
Tilde tilde-max-rescored | 23.0 27.3 19.8 18.3 27.7 21.0 24.1| 26.0 30.6 22.8 21.9 30.9 23.4 26.2
Tilde tilde-max 21.4 25.0 18.2 16.6 25.6 19.7 23.6| 26.2 30.8 22.8 22.1 31.1 23.6 26.6
Tilde tilde-isolated 21.0 243 17.4 16.2 25.1 19.4 23.5] 25.9 30.6 22.5 22.0 30.8 23.2 26.5
UTFPR utfpr-tree 17.6 20.5 14.7 14.0 21.0 16.1 19.0] 20.7 23.7 18.2 17.1 23.9 18.9 22.3
UTFPR uftpr-regression 20.8 25.1 18.6 16.2 23.7 19.1 22.2| 22.4 26.5 20.2 17.4 26.0 20.5 23.5
UTFPR utfpr-forest 132 149 99 10.6 16.8 12.1 15.0| 17.0 18.7 14.4 13.9 204 152 19.2
Vicomtech |vicomtech 232 27.5 204 19.3 26.5 21.2 24.6| 259 30.5 22.5 22.2 30.3 23.4 26.6
Vicomtech | vicomtech-ngsat 23.3 27.5 19.8 19.3 26.8 21.1 25.1| 25.8 30.2 22.4 22.1 30.0 23.4 26.7

Table 5: Detailed results for SMT performance. BLEU scores (case-insensitive) are reported on all the 6
test sets. The best performance on a test set is reported in bright green, scores within 0.5 BLEU points
off the best in light green, and scores within 1 BLEU point off the best in light yellow.
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AFRL afrl-cvg-large 13.8 11.2 6.1 155238 89 17.4| 30.2 37.0 26.3 26.5 35.1 28.0 28.2
AFRL afrl-cvg-mix-meteor | 27.1 33.4 23.3125.6/29.9 25.4 25.0| 30.3 37.4 26.0 26.6 35.2 28.1 28.4
AFRL afrl-cvg-mix 19.8 19.7 10.9 23.9 26.9 14.8 22.7| 30.1 37.4 26.1 26.4 34.8 28.1 28.1
AFRL afrl-cvg-small 135109 5.6 153 23.7 85 169| 21.1 23.3 16.8 22.9 26.2 19.0 18.1
AFRL afrl-cyn-mix 25.1 29.2 21.4 242 29.0 22.7 24.0| 29.6 36.2 25.1 26.2 35.0 27.4 27.7
Alibaba alibaba-div 27.6 35.0 25.2 24.1 29.8 25.8 25.7| 31.9 39.5 27.1/28.4 36.7 29.1 30.7
Alibaba alibaba 27.6 35.2125.6/24.2 29.4 25.6 25.5| 31.9 39.7 27.3|28.4|36.4 29.1 30.6
ARC arc-11 19.8 20.3 11.4 21.1 27.4 14.7 23.7| 31.3 39.0 26.6 27.8 35.9 28.3 30.4
ARC arc-13 25.8 31.3 21.2 22.9 30.2 23.4 25.7| 31.3 39.0 26.6 27.6 36.0 28.2 30.6
ARC arc-9 24.0 30.4 20.2 21.5 28.8 22.9 20.0| 31.3 39.0 26.5 27.6 35.8 28.3 30.7
U Tartu tartu-hybrid-pipeline | 25.2 31.6 21.8 21.8 28.1 24.0 23.6| 30.6 38.2 26.2 27.5 35.8 28.1 27.8
JHU zipporah-10000 25.3 31.4 23.1 22.8 26.3 24.0 24.3| 30.2 36.8 24.2 27.6 35.4 27.7 29.3
JHU zipporah 254 31.3 23.1 22.5 26.6 24.4 24.5| 29.8 36.4 23.2 27.3 35.1 27.3 29.2
LMU Imu-ds-lm-si 22.1 31.2 22.0 16.8 24.0 23.8 14.7| 29.0 36.2 25.7 24.4 33.2 27.5 27.1
LMU Imu-ds-lm 23.6 31.9 22.4 18.5 27.0 24.6 17.5| 29.5 37.0 25.5 25.2 33.5 27.5 28.2
LMU Imu-ds 23.6 31.8 22.1 18.4 27.1 24.5 17.9| 29.5 36.7 25.5 25.2 34.1 27.7 27.9
LMU Imu 23.0 28.8 21.1 16.0 27.0 23.3 21.6| 30.5 37.8 25.9 25.8 35.6 28.5 29.6
MAIJE webinterpet 24.8 32.4 24.8 22.6 24.6 24.3 20.2| 31.2 38.7 26.9 27.9 35.6 28.9 29.2
Microsoft microsoft 28.6 35.7 25.1 23.732.7 26.7|27.8 | 32.1 39.9 27.4 28.336.7 29.3 30.8
NICT nict 25.9 32,9 23.7 21.7 27.6 25.1 24.6| 30.0 37.3 25.8 26.1 34.1 27.6 29.2
NRC nrc-mono-bicov 23.1 27.9 19.3 19.0 26.4 22.0 23.7| 31.6 38.9 27.1 28.1 36.0 28.9 30.4
NRC nrc-mono 20.7 25.0 17.2 16.6 23.8 19.8 21.9] 31.2 38.4 26.8 27.9 35.7 28.0 30.3
NRC nre-seve-bicov 25.3 30.3 21.5 22.6 31.7 23.1 22.9| 31.7 39.4 27.1 28.3 36.3 28.9 30.1
NRC nre-yisi-bicov 27.4 33.9 24.4 232 29.8 254 27.8| 31.9 39.6 26.9/28.4/36.6 29.1 30.7
NRC nre-yisi 26.5 32.7 23.9 22.2 28.6 24.8 26.8| 31.8 39.3 27.1 27.9 36.3 29.0/30.9
Prompsit prompsit-al 25.6 31.1 22.4 21.8 30.0 23.2 24.9| 31.7 39.4 27.0 28.1 36.6 28.6 30.6
Prompsit prompsit-lm 19.4 26.5 20.2 18.9 17.4 19.5 14.2| 31.8 39.5 27.3|284 36.6 28.9 30.4
Prompsit prompsit-lm-nota 19.3 26.1 20.0 18.8 17.3 19.8 14.0| 31.7 39.8 26.7 28.3 36.4 29.1 30.0
Prompsit prompsit-sat 26.1 31.6 20.8 22.1 31.2 23.7 26.8| 31.7 39.2 26.7 28.2 36.4 28.7 30.8
RWTH rwth-count 26.6 34.8 25.0 24.4 27.7 259 22.1| 31.1 38.6 26.9 27.5 35.4 29.0 28.9
RWTH rwth-nn 28.0136.0 25.2 25.2 31.1126.7 23.7| 31.2 38.8 26.7 27.7 36.1 28.7 29.3
RWTH rwth-nn-redundant | 28.0/36.0]25.2 25.3 31.1 26.6 23.9| 31.3 39.2 26.5 27.4 36.3 28.7 29.6
Speechmatics | balanced-scoring 27.9 34.0 24.6 24.7 30.9 25.0 28.0| 31.0 37.8 26.5 27.9 354 28.2 30.1
Speechmatics | prime-neural 28.0 34.7 24.1 24.4 31.4 24.9(28.2| 30.8 37.4 26.5 27.8 35.1 28.2 30.1
Speechmatics | purely-neural 18.0 21.8 15.6 13.1 21.3 17.6 18.4| 30.0 35.2 25.8 26.9 35.1 27.4 29.8
Systran systran 24.3 29.6 21.3 19.1 28.3 23.0 24.6| 29.9 36.3 25.1 26.2 35.1 26.9 29.8
Tilde tilde-max-rescored | 26.6 32.4 22.1 22.1 31.3 24.4 27.1| 31.2 38.6 26.8 27.5 36.6 28.2 29.6
Tilde tilde-max 23.6 28.0 19.5 17.9 28.5 22.3 25.1| 31.2 38.6 26.4 27.3 36.3 28.6 30.3
Tilde tilde-isolated 22.6 26.6 18.9 16.8 27.4 21.8 24.2| 30.8 38.0 25.8 26.7 35.7 27.9 30.4
UTFPR utfpr-tree 114132 7.8 104 17.5 99 9.8 11.9 10.5 6.8 11.7 18.2 10.1 13.9
UTFPR uftpr-regression 21.8 27.2 18.5 18.6 24.9 19.2 22.1| 22.2 25.0 16.7 19.1 28.8 19.7 24.1
UTFPR utfpr-forest 6.6 65 29 42115 59 83| 62 47 21 35123 50 93
Vicomtech |vicomtech 26.4 32.3 22.6 22.6 29.0 24.3 27.4| 30.4 37.1 26.4 26.8 34.5 27.7 29.9
Vicomtech | vicomtech-ngsat 25.6 31.2 21.8 20.7 29.1 23.5 27.6| 24.9 27.2 22.4 23.1 26.9 22.9 26.8

Table 6: Detailed results for NMT performance. BLEU scores (case-insensitive) are reported on all the 6
test sets. The best performance on a test set is reported in bright green, scores within 0.5 BLEU points

off the best in light green, and scores within 1 BLEU point off the best in light yellow.
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Neural Machine Translation, Average of Test Sets
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Figure 1: Additional corpus sizes, with breakdown by individual test set for some high-performing sub-
missions. The charts plot BLEU scores against the size of the subselected corpus (in millions of words).

The curves peak around 100 million words.
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Statistical Machine Translation, Average of Test Sets
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Figure 2: Version of Figure 1 for statistical machine translation systems built from the subselected data.
Note that the curves are flatter, and the several systems score in a narrow band of 1 BLEU point across a
wide range of corpus sizes (30-200 million words), indicated in grey.

e sentence pairs where names, numbers, email
addresses, URLs do not match between both
sides

e sentence pairs that are too similar, indicating
simple copying instead of translating

e sentences where language identifier do not
detect the required language

Scoring functions. Sentence pairs that pass the
pre-filtering stage are assessed with scoring func-
tions which provide scores that hopefully correlate
with quality of sentence pairs. Participants used a
variety of such scoring functions, including

e n-gram or neural language models on clean
data

e language models trained on the provided raw
data as contrast

e neural translation models

e bag-of-words lexical translation probabilities

Note that the raw scores provided by these mod-
els may be also refined in several ways. For in-
stance, we may desire that the language model per-
plexities of a German sentence and its paired En-
glish sentence are similar. Or, we may contrast
the translation model score for a sentence and its
given paired sentence with the translation model
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score for the sentence and its best translation ac-
cording to the model.

Learning weights for scoring functions. Given
a large number of scoring functions, simply av-
eraging their resulting scores may be inadequate.
Learning weights to optimize machine translation
system quality is computationally intractable due
to the high cost of training these systems to eval-
uate different weight settings. A few participants
used instead a classifier that learns how to distin-
guish between good and bad sentence pairs. Good
sentence pairs are selected from existing high-
quality parallel corpora, while bad sentence pairs
are either synthesized by scrambling good sen-
tence pairs or by using the raw crawled data.

Some participants made a distinction between
unsupervised methods that did not use existing
parallel corpora to train parts of the system, and
supervise methods that did. Unsupervised meth-
ods have the advantage that they can be readily
deployed for language pairs for which no seed par-
allel corpora exist.
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