
Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 689–709
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64078

Findings of the WMT 2018 Shared Task on Quality Estimation
Lucia Specia and Frédéric Blain
Department of Computer Science

University of Sheffield, UK
{l.specia,f.blain}@sheffield.ac.uk

Varvara Logacheva
Neural Networks and Deep Learning Lab

MIPT, Moscow, Russia
logacheva.vk@mipt.ru

Ramón F. Astudillo
L2F, INESC-ID-Lisboa

Lisbon, Portugal
ramon@astudillo.com
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Abstract

We report the results of the WMT18 shared
task on Quality Estimation, i.e. the task of
predicting the quality of the output of ma-
chine translation systems at various granular-
ity levels: word, phrase, sentence and doc-
ument. This year we include four language
pairs, three text domains, and translations pro-
duced by both statistical and neural machine
translation systems. Participating teams from
ten institutions submitted a variety of systems
to different task variants and language pairs.

1 Introduction

This shared task builds on its previous six edi-
tions to further examine automatic methods for es-
timating the quality of machine translation (MT)
output at run-time, without the use of reference
translations. It includes the (sub)tasks of word-
level, phrase-level, sentence-level and document-
level estimation. In addition to advancing the state
of the art at all prediction levels, our goals include:

• To study the performance of quality estima-
tion approaches on the output of neural MT
systems. We do so by providing datasets for
two language pairs where source segments
were translated by both statistical phrase-
based and neural MT systems.

• To study the predictability of missing words
in the MT output. To do so, for the first time
we provide data annotated for such errors at
training time.

• To study the predictability of source words
that lead to errors in the MT output. To do so,
for the first time we provide source segments
annotated for such errors at the word level.

• To study the effectiveness of manually as-
signed labels for phrases. For that we provide

a dataset where each phrase was annotated by
human translators.

• To investigate the utility of detailed informa-
tion logged during post-editing. We do so
by providing post-editing time, keystrokes, as
well as post-editor ID.

• To study quality prediction for documents
from errors annotated at word-level with
added severity judgements. This is done us-
ing a new corpus manually annotated with
a fine-grained error taxonomy, from which
document-level scores are derived.

This year’s shared task provides new training
and test datasets for all tasks, and allows partici-
pants to explore any additional data and resources
deemed relevant. Tasks make use of large datasets
produced either from post-editions or annotations
by professional translators, or from direct human
annotations. The following text domains are avail-
able for different languages and tasks: informa-
tion technology (IT), life sciences, and product ti-
tle and descriptions on sports and outdoor activ-
ities. In-house statistical and neural MT systems
were built to produce translations for the two first
domains, while an online system was used for the
third domain.

The four tasks are defined as follows: Task 1
aims at predicting post-editing effort at sentence
level (Section 5); Task 2 aims at predicting words
that need editing, as well as missing words and
incorrect source words (Section 6); Task 3 aims
at predicting phrases that need editing, as well as
missing phrases and incorrect source phrases (Sec-
tion 7); and Task 4 (Section 8) aims at predicting
a score for an entire document as a function of the
proportion of incorrect words in such a document,
weighted by the severity of the different errors.
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Five datasets and language pairs are used
for different tasks (Section 4): English-German
(Tasks 1, 2) and English-Czech (Tasks 1, 2) on
the IT domain, English-Latvian (Tasks 1, 2) and
German-English (Tasks 1, 2, 3), both on the life
sciences domain, English-French (Task 4) with
product titles and descriptions within the sports
and outdoor activities domain.

Participants are provided with a baseline set of
features for each task, and a software package to
extract these and other quality estimation features,
and perform model learning (Section 2). Partici-
pants (Section 3) could submit up to two systems
for each task and language pair. A discussion on
the main goals and findings from this year’s task
is given in Section 9.

2 Baseline systems

Sentence-level baseline system: For Task 1,
QUEST++1 (Specia et al., 2015) was used to ex-
tract 17 MT system-independent features from the
source and translation (target) files and parallel
corpora:

• Number of tokens in the source and target
sentences.
• Average source token length.
• Average number of occurrences of the target

word within the target sentence.
• Number of punctuation marks in source and

target sentences.
• Language model (LM) probability of source

and target sentences based on models built
using the source or target sides of the parallel
corpus used to train the SMT system.
• Average number of translations per source

word in the sentence as given by the IBM
model 1 extracted using the SMT parallel
corpus, and thresholded such that P (t|s) >
0.2 or P (t|s) > 0.01.
• Percentage of unigrams, bigrams and tri-

grams in frequency quartiles 1 (lower fre-
quency words) and 4 (higher frequency
words) in the source language extracted from
the source side of the SMT parallel corpus.
• Percentage of unigrams in the source sen-

tence seen in the source side of the SMT par-
allel corps.

These features were used to train a Support Vec-
tor Regression (SVR) algorithm using a Radial

1https://github.com/ghpaetzold/
questplusplus

Basis Function (RBF) kernel within the SCIKIT-
LEARN toolkit.2 The γ, ε and C parameters were
optimised via grid search with 5-fold cross valida-
tion on the training set, resulting in γ=0.01, ε =
0.0825, C = 20. This baseline system has been
consistently used as the baseline system for all
editions of the sentence-level task (Callison-Burch
et al., 2012; Bojar et al., 2013, 2014, 2015, 2016,
2017), and has proved strong enough for predict-
ing various forms of post-editing effort across a
range of language pairs and text domains for sta-
tistical MT systems. This year it is also bench-
marked on neural MT outputs.

Word-level baseline system: For Task 2, the
baseline features were extracted with the MAR-
MOT tool (Logacheva et al., 2016). These are 28
features that have been deemed the most informa-
tive in previous research on word-level QE, mostly
inspired by (Luong et al., 2014). This is the same
baseline system used in WMT17:

• Word count in the source and target sen-
tences, and source and target token count ra-
tio. Although these features are sentence-
level (i.e. their values will be the same for all
words in a sentence), the length of a sentence
might influence the probability of a word be-
ing wrong.
• Target token, its left and right contexts of one

word.
• Source word aligned to the target token, its

left and right contexts of one word. The
alignments were given by the SMT system
that produced the automatic translations.
• Boolean dictionary features: target token is

a stop word, a punctuation mark, a proper
noun, or a number.
• Target language model features:

– The order of the highest order ngram
which starts and end with the target to-
ken.

– The order of the highest order ngram
which starts and ends with the source to-
ken.

– The part-of-speech (POS) tags of the tar-
get and source tokens.

– Backoff behaviour of the ngrams
(ti−2, ti−1, ti), (ti−1, ti, ti+1),
(ti, ti+1, ti+2), where ti is the target

2http://scikit-learn.org/

690



token (backoff behaviour is computed
as described by (2011)).

In addition to that, six new features were in-
cluded which contain combinations of other fea-
tures, and which proved useful in (Kreutzer et al.,
2015; Martins et al., 2016):

• Target word + left context.
• Target word + right context.
• Target word + aligned source word.
• POS of target word + POS of aligned source

word.
• Target word + left context + source word.
• Target word + right context + source word.

The baseline system models the task as a
sequence prediction problem using the Linear-
Chain Conditional Random Fields (CRF) algo-
rithm within the CRFSuite tool.3 The model was
trained using passive-aggressive optimisation al-
gorithm.

We note that this baseline system was only used
to predict OK/BAD classes for existing words in
the MT output. No baseline system was provided
for predicting missing words or erroneous source
words.

Phrase-level baseline system: The phrase-level
system is identical to the one used in last year’s
shared task. The phrase-level features were also
extracted with MARMOT, but they are different
from the word-level features. They are based on
the sentence-level features in QUEST++.4 These
are the so-called “black-box” features – features
that do not use the internal information from the
MT system. The baseline uses the following 72
features:

• Source phrase frequency features:

– average frequency of ngrams (unigrams,
bigrams, trigrams) in different quartiles
of frequency (the low and high fre-
quency ngrams) in the source side of the
SMT parallel corpus.

– percentage of distinct source ngrams
(unigrams, bigrams, trigrams) seen in
the source side of the SMT parallel cor-
pus.

3http://www.chokkan.org/software/
crfsuite/

4http://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox

• Translation probability features:

– average number of translations per
source word in the phrase as given
by the IBM model 1 extracted using
the SMT parallel corpus (with different
translation probability thresholds: 0.01,
0.05, 0.1, 0.2, 0.5).

– average number of translations per
source word in the phrase as given
by the IBM model 1 extracted using
the SMT parallel corpus (with different
translation probability thresholds: 0.01,
0.05, 0.1, 0.2, 0.5) weighted by the fre-
quency of each word in the source side
of the parallel SMT corpus.

• Punctuation features:

– difference between numbers of various
punctuation marks (periods, commas,
colons, semicolons, question and excla-
mation marks) in the source and the tar-
get phrases.

– difference between numbers of various
punctuation marks normalised by the
length of the target phrase.

– percentage of punctuation marks in the
target or source phrases.

• Language model features:

– log probability of the source or target
phrases based on models built using the
source or target sides of the parallel cor-
pus used to train the SMT system.

– perplexity of the source and the target
phrases using the same models as above.

• Phrase statistics:

– lengths of the source or target phrases.
– ratio between the source and target

phrase lengths.
– average length of tokens in source or tar-

get phrases.
– average occurrence of target word

within the target phrase.

• Alignment features:

– number of unaligned target words, us-
ing the word alignment provided by the
SMT decoder.

– number of target words aligned to more
than one source word.
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– average number of alignments per word
in the target phrase.

• Part-of-speech features:

– percentage of content words in the
source or target phrases.

– percentage of words of a particular part
of speech tag (verb, noun, pronoun) in
the source or target phrases.

– ratio of numbers of words of a particu-
lar part of speech (verb, noun, pronoun)
between the source and target phrases.

– percentage of numbers and alphanu-
meric tokens in the source or target
phrases.

– ratio between the percentage of numbers
and alphanumeric tokens in the source
and target phrases.

Analogously to the baseline word-level system,
we treat phrase-level QE as a sequence labelling
task, and model it using CRF from the CRFSuite
toolkit and the passive-aggressive optimisation al-
gorithm.

Once more, this baseline system was only used
to predict OK/BAD classes for existing phrases in
the MT output. No baseline system was provided
for predicting missing phrases or erroneous source
phrases.

3 Participants

Table 1 lists all participating teams submitting sys-
tems to any of the tasks. Each team was allowed
up to two submissions for each task variant and
language pair. In the descriptions below, participa-
tion in specific tasks is denoted by a task identifier
(T1 = Task 1, T2 = Task 2, T3 = Task 3, T4 = Task
4).

CMU-LTI (T2):

The CMU-LTI team proposes a Contextual
Encoding model for QE. The model consists
in three major parts that encode the local
and global context information for each tar-
get word. The first part uses an embedding
layer to represent words and their POS tags
in both languages. The second part leverages
a one-dimensional convolution layer to inte-
grate local context information for each target
word. The third part applies a stack of feed-
forward and recurrent neural networks to fur-
ther encode the global context in the sentence

before making the predictions. Syntactic fea-
tures, such as ngrams, are then integrated
to the final feed-forward layer in the neu-
ral model. This model achieves competitive
results on the English-Czech and English-
Latvian word-level QE task.

JU-USAAR (T2):

JU-USAAR presents two approaches to
word-level QE: (i) a Bag-of-Words (BoW)
model, and (ii) a Paragraph Vector (Doc2Vec)
model (Le and Mikolov, 2014). In the
BoW model, bag-of-words are prepared from
source sentences for each target word appear-
ing in both the MT and PE output in the train-
ing data. For every target word appearing in
the MT output in the development set, the
cosine similarity between the corresponding
source sentence and the bag-of-words for the
same target word is computed. From this re-
sult, a threshold (for the target word) is de-
fined above which the word is retained (i.e.,
considered ‘OK’). In the Doc2Vec-based ap-
proach, for each target word appearing in
both MT and PE output in the training data,
two document vectors are prepared from (i)
the corresponding source sentences and (ii)
the bag-of-words (as in the BoW model) of
the target word. Next, the similarity between
these two document vectors for every target
word is computed. From the Doc2Vec sim-
ilarity score and the corresponding PE deci-
sion (i.e., whether or not the target word is
retained in the PE in the training dataset), a
system level threshold is defined. For the test
set sentences, if the Doc2Vec similarity score
for a target word exceeds this threshold value,
then the target word labelled as ‘OK’, other-
wise it is labelled as ‘BAD’.

MEQ (T1)

The Vicomtech team submitted two ap-
proaches. uMQE is an unsupervised mini-
malist approach based on two simple mea-
sures of accuracy and fluency, respectively.
Accuracy is computed via overlapping lexical
translation bags of words, with a set expan-
sion mechanism based on longest common
prefixes and surface-defined named entities.
Fluency is computed by taking the inverse of
cross-entropy, according to an in-domain lan-
guage model. Both measures are combined
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ID Participating team
CMU-LTI Carnegie Melon University, US (Hu et al., 2018)

JU-USAAR Jadavpur University, India & University of Saarland, Germany (Basu et al., 2018)
MQE Vicomtech, Spain (Etchegoyhen et al., 2018)

QEbrain Alibaba Group Inc, US (Wang et al., 2018)
RTM Referential Translation Machines, Turkey (Biçici, 2018)

SHEF University of Sheffield, UK (Ive et al., 2018b)
TSKQE University of Hamburg (Duma and Menzel, 2018)

UAlacant University of Alacant, Spain (Sánchez-Martı́ı́nez et al., 2018)
UNQE Jiangxi Normal University, China
UTartu University of Tartu, Estonia (Yankovskaya et al., 2018)

Table 1: Participants in the WMT18 Quality Estimation shared task.

via simple arithmetic means on rescaled val-
ues, i.e., no machine learning is used. Since
it is unsupervised, the method can only be
meaningfully evaluated on the ranking task.
sMQE uses the same two features as uMQE,
but with supervision. A Support Vector Re-
gressor based on these two features is trained
on the available data and used to predict QE
scores.

QEbrain (T1, T2):

QE brain uses a conditional target language
model as a robust feature extractor with a
novel bidirectional transformer which is pre-
trained on a large parallel corpus filtered to
contain “in-domain like” sentences. For QE
inference, the feature extraction model can
produce not only the high-level joint latent
semantic representation between the source
and the machine translation, but real-valued
measurements of possible erroneous tokens
based on the prior knowledge learned from
the parallel data. More specifically, it uses
the multi-head self-attention mechanism and
transformer neural networks (Vaswani et al.,
2017) to build the language model. It con-
tains one transformer encoder for the source
and a bidirectional transformer encoder for
the target. After the feature extraction model
is trained, the features are extracted and com-
bined with human-crafted features from the
QE baseline system and fed into a Bi-LSTM
predictive model for QE. A greedy ensemble
selection method is used to decrease the in-
dividual model errors and increase model di-
versity. The bi-LSTM QE model is trained
on the official QE data plus artificially gener-
ated data and fine-tuned with only the official
WMT18 QE data.

RTM (T1, T2, T3, T4):

These submissions build on the previ-
ous year’s Referential Translation Machine
(RTM) approach (Biçici, 2017). RTMs pre-
dict data translation between the instances in
the training set and the test set using inter-
pretants, data close to the task instances. In-
terpretants provide context for the prediction
task and are used during the derivation of the
features measuring the closeness of the test
sentences to the training data, the difficulty
of translating them, and to identify transla-
tion acts between any two data sets for build-
ing prediction models. Task-specific qual-
ity prediction RTM models are built using
the WMT News translation task corpora, tak-
ing MT models as a black-box and predict-
ing translation scores independently on the
MT model. Multiple machine learning tech-
niques are used and averaged based on their
training set performance for label prediction.
For sequence classification tasks (T2 and T3),
Global Linear Models with dynamic learning
(Bicici, 2013) are used.

SHEF (T1, T2, T3, T4):

SHEF submitted two systems per task vari-
ant: SHEF-PT and SHEF-bRNN. SHEF-
PT is based on a re-implementation of the
POSTECH system of (Kim et al., 2017),
SHEF-bRNN uses a bidirectional recurrent
neural network (bRNN) (Ive et al., 2018a).
PT systems are pre-trained using in-domain
corpora provided by the organisers. bRNN
systems uses two encoders to learn repre-
sentations of <source, MT> sentence pairs.
These representations are used directly to
make word-level predictions. A weighted
sum over word representations as defined
by an attention mechanism is used to make
sentence-level predictions. For phrase-level,
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a standard attention-based neural MT archi-
tecture is used. Different parts of the source
sentence are attended to produce MT word
vectors. Phrase-level predictions are based
on representations computed as the sum of
their word vectors. For predicting source
tags, the source and MT inputs to the mod-
els are swapped. The document-level ar-
chitecture wraps the sentence-level PT and
bRNN architectures. PT systems are pre-
trained using either additional in-domain or
out-of-domain Europarl data. For the multi-
task learning system (SHEF-mtl), weights
of sentence-level modules are pre-trained to
predict sentence MQM scores.

TSKQE (T1):

The TSKQE submissions represent an exten-
sion over the previous UHH-STK submis-
sions to the WMT17 QE shared task, which
combine the power of sequence and tree ker-
nels applied on source segments, candidate
translation and back-translations of the MT
output into the source language. In addi-
tion, in order to predict the HTER scores,
one of the current submissions also explores
pseudo-references, which were obtained by
translating the source sentences into the tar-
get language using an online MT system.
The sequence kernels were applied on the to-
kenised data, while tree kernels were applied
to dependency trees.

UAlacant (T1, T2):

The UAlacant submissions use phrase tables
from OPUS5 and a two hidden layer feed-
forward neural network for word-level MT
QE. Phrase tables are used to extract fea-
tures for each word and gap in the machine-
translated segment for which quality is esti-
mated. These features are then used together
with the baseline features for predicting the
need of a deletion or an insertion. The neural
network takes as input not only the features
for the word and the gap on which a deci-
sion is to be made, but also the features of
the surrounding gaps and words in a sliding-
window fashion within a context window of
size three. The predictions made at the word
level allow to obtain an approximate HTER

5http://opus.nlpl.eu/

score which is used for the submissions to the
sentence-level task.

UNQE (T1):

The UNQE submissions employ the uni-
fied neural network architecture (UNQE) for
sentence-level QE tasks (Li et al., 2018).
The approach combines a bidirectional RNN
encoder-decoder with attention mechanism
sub-network and an RNN into a single large
neural network, which extracts the quality
vectors of the translation outputs through
the bidirectional RNN encoder-decoder, and
predicts the HTER value of the transla-
tion output by RNN. The input text goes
through tokenisation, true casing and sub-
word unit segmentation. The models are pre-
trained with a large parallel bilingual cor-
pus and fine-tuned with the training data of
the sentence-level QE share task. The re-
sults submitted are averages of the predicted
HTER scores under different dimension set-
tings.

UTartu (T1):

UTartu proposes two methods for the
sentence-level task. The first method uses at-
tention weights of a neural MT system ap-
plied to each sentence pair to compute the
probability of the output sentence under the
model (forced-decoding). The confidence of
the model is computed via metrics of av-
erage entropy of the attention weights per
each input/output token. The second method
computes the bleu2vec metric, which ex-
tends BLEU with token or n-gram embed-
dings, but here the metric is made cross-
lingual by means of an unsupervised cross-
lingual mapping between the source and
target language embedding spaces. Three
versions of the resulting metric are used:
one based on 3-grams, one with tokens
(unigrams) and one with byte-pair encoded
sub-words (also unigrams). Both submis-
sions use the 17 standard black-box features
implemented in QuEst. QuEst+Attention
combines them with the first approach and
QuEst+Att+CrEmb3 combines QuEst and
both approaches together.
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4 Datasets

This year we further expand the datasets used in
WMT17 by adding: more instances (see Table 2),
more languages (four language pairs), more MT
architectures (neural and statistical MT), and dif-
ferent types of annotation (manual and extracted
from manual post-editing). In addition, new data
was collected and provided for Task 4, on a fifth
language pair and third text domain.

4.1 Tasks 1 and 2

The initial data was collected as part of the QT21
project6 and is fully described in (Specia et al.,
2017). However, for all language pairs and MT
system types, we filtered this data to remove most
cases with no edits performed. A skewed distri-
bution towards good quality translations has been
shown to be a problem in previous years, and is
even more critical with NMT outputs, where up to
about half of the MT sentences require no post-
editing at all. We kept only a small proportion of
HTER=0 sentences in training, development and
test sets.

The structure used for the data has been the
same since WMT15. Each data instance consists
of (i) a source sentence, (ii) its automatic trans-
lation into the target language, (iii) the manually
post-edited version of the automatic translation,
(iv) one or more post-editing effort scores as la-
bels. Professional post-edits are used to extract
labels for the two different levels of granularity
(word and sentence). Table 2 shows the various
resulting datasets for English-German (EN-DE),
German-English (DE-EN), English-Latvian (EN-
LV) and English-Czech (EN-CS), for both statisti-
cal (SMT) and neural (NMT) outputs.

English-German and English-Czech sentences
are from the IT domain and were translated by
an in-house phrase-based SMT system, and in ad-
dition by an in-house encoder-decoder attention-
based NMT system for English-German. We note
that the original dataset sizes for these languages
was 30,000 sentences in total for English-German
(per MT system type), and 45,000 for English-
Czech. The large reduction in the NMT version of
the English-German data indicates the high qual-
ity of the NMT system used to produce these sen-
tences: a large number of sentences was filtered
out for having undergone no edits by translators.

6http://www.qt21.eu/

German-English and English-Latvian sentences
are from the life sciences (pharmaceutical) do-
main and were translated by an in-house phrase-
based SMT system, and in addition by an in-house
encoder-decoder attention-based NMT system for
English-Latvian. The original sentence numbers
for these languages were 45,000 and 20,738, re-
spectively (per MT system type).

4.2 Task 3

This task uses a subset of the German-English
SMT data from Task 1 (5,921 sentences for train-
ing, 1,000 for development and 543 for test) where
each phrase (as produced by the SMT decoder)
has been annotated (as a phrase) by humans with
four labels (see Section 7). This subset was se-
lected after post-editing by filtering out transla-
tions with HTER=0 and with a HTER=0.30 and
above, and then randomly selecting a subset large
enough while fitting the annotation budget. The
latter criterion was used to rule out sentences with
too many errors, since these are generally too hard
or impossible to annotate for errors by humans.

We used BRAT7 to perform the phrase la-
belling. The annotator – a professional transla-
tor – was given the translations to annotate, along
with their respective source sentence. We pro-
vided them with a preset environment where all
translations were pre-labelled at phrase-level be-
forehand as OK. The annotator’s task was then to
change the labels of the incorrect phrases. The
labelling was done following a ‘pessimistic’ ap-
proach, where we requested the annotator to only
consider a phrase to be OK if all its words were
OK. This task has two variants, as we describe
later: Task3a, where a phrase annotation is prop-
agate to all of its words and the task is framed as
a word-level prediction task; and Task3b, where
prediction is done at the phrase level. Table 3
shows the statistics of the resulting datasets for
these variants of the task.

Since the data used for this task is a subset of
the dataset of that used for Task 1, we selected as
test sentences also a subset of the test set for Task
1.

4.3 Task 4

The document-level task data consists of short
product descriptions translated from English to
French, extracted from the Amazon Product Re-

7https://brat.nlplab.org/
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Train. Dev. Test
Language pair # Sentences # Words # Sentences # Words # Sentences # Words
DE-EN 25,963 493,010 1,000 18,817 1,254 23,522
EN-DE-SMT 26,273 442,074 1,000 16,565 1,926 32,151
EN-DE-NMT 13,442 234,725 1,000 17,669 1,023 17,649
EN-LV-SMT 11,251 225,347 1,000 20,588 1,315 26,661
EN-LV-NMT 12,936 258,125 1,000 19,791 1,448 28,945
EN-CS 40,254 728,815 1,000 18,315 1,920 34,606

Table 2: Statistics of the datasets used for Tasks 1 and 2: Total number of (source) sentences and words (after
tokenisation) for training, development and test for each language pair and MT system type.

Task3a # Sentences # Words # BAD

Train. 5,921 126,508 35,532
Dev. 1,000 28,710 6,153
Test 543 7,464 3,089
Task3b # Sentences # Phrases # BAD

Train. 5,921 50,834 10,451
Dev. 1,000 8,566 1,795
Test 543 4,391 868

Table 3: Statistics of the data used for Task 3. Num-
ber of sentences, phrases, words and BAD labels for
training, development and test.

# Documents # Sentences # Words
Train. 1,000 6,003 129,099
Dev. 200 1,301 28,071
Test 269 1,652 39,049

Table 4: Statistics of the data used for Task 4. Number
of documents, sentences and (target) words for train-
ing, development and test.

views dataset (McAuley et al., 2015; He and
McAuley, 2016).8 More specifically, the data is
a selection of Sports and Outdoors product titles
and descriptions in English which has been ma-
chine translated into French using a state of the
art online neural MT system. The most popular
products (those with more reviews) were chosen.
This data poses interesting challenges for machine
translation: titles and descriptions are often short
and not always a complete sentence. Spans cover-
ing one or more tokens were annotated with error
labels following fine-grained error taxonomy, as
described in more detail in Section 8. The dataset
statistics are presented in Table 4. This is the
largest ever released collection with word-level er-
rors manually annotated.

8http://jmcauley.ucsd.edu/data/amazon/
.

5 Task 1: Predicting sentence-level
quality

This task consists in scoring (and ranking) transla-
tion sentences according to the proportion of their
words that need to be fixed. HTER is used as
quality score, i.e. the minimum edit distance be-
tween the machine translation and its manually
post-edited version.

Labels Three labels were available: percentage
of edits need to be fixed (HTER) (primary label),
post-editing time in seconds, and counts of vari-
ous types of keystrokes. The PET tool (Aziz et al.,
2012)9 was used to collect various types of in-
formation during post-editing. HTER labels were
computed using the TERCOM tool10 with default
settings (tokenised, case insensitive, exact match-
ing only), with scores capped to 1.

Evaluation Evaluation was performed against
the true HTER label and/or ranking, using the fol-
lowing metrics:

• Scoring: Pearson’s r correlation score (pri-
mary metric, official score for ranking system
submissions), Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE).

• Ranking: Spearman’s ρ rank correlation.

Statistical significance on Pearson r was com-
puted using the William’s test.11

Results For Task 1, Tables 5, 6, 7 and 8 sum-
marise the results for English–German, German–
English, English–Latvian and English-Czech, re-
spectively, ranking participating systems best to
worst using Pearson’s r correlation as primary key.

9https://github.com/ghpaetzold/PET
10https://github.com/jhclark/tercom
11https://github.com/ygraham/mt-qe-eval
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Spearman’s ρ correlation scores should be used to
rank systems for the ranking variant of the evalua-
tion.

The top two systems for this task, the QEBrain
model and UNQE models, show a large perfor-
mance gap with respect to the rest of the sys-
tems, for both SMT and NMT data. It is inter-
esting to note that both systems outperform the
SHEF-PT system by a large margin. SHEF-PT is a
reimplementation of the POSTECH system, which
showed the top performance in 2017.

6 Task 2: Predicting word-level quality

This task evaluates the extent to which we can de-
tect word-level errors in MT output. Often the
overall quality of a translated segment is signifi-
cantly harmed by specific errors in a small num-
ber of words. As in previous years, each token
of the target sentence is labeled as OK/BAD based
on an available post-edited sentence. In addition to
this, this year we also took into consideration word
omission errors and the detection of words in the
source related to target side errors. These types of
errors become particularly relevant in the context
of NMT systems. The code to produce this new set
of tags from any prior WMT corpora is available
for download.12

Target word labels As in previous years, the
binary labels for each target token (OK and
BAD) were derived automatically by aligning each
machine translated sentence with its post-edited
counterpart sentence. The alignment at token-
level was performed using the TERCOM tool. De-
fault settings were used and shifts were disabled.
Target tokens originating from insertion or substi-
tution errors were labeled as BAD. All other to-
kens were labeled as OK.

Gap and source word labels To annotate dele-
tion errors, gap ‘tokens’ between each word and
at the beginning of each target sentence were in-
troduced. These gaps tokens were labeled as BAD
in the presence of one or more deletion errors and
OK otherwise. To annotate the source words re-
lated to insertion or substitution errors in the ma-
chine translated sentence, the IBM Model 2 align-
ments from fastalign (Dyer et al., 2013) were used.
Each token in the source sentence was aligned to
the post-edited sentence. For each token in the

12https://github.com/Unbabel/
word-level-qe-corpus-builder

post-edited sentence deleted or substituted in the
machine translated text, the corresponding aligned
source tokens were labeled as BAD. In this way,
deletion errors also result in BAD tokens in the
source, related to the missing words. All other
words were labeled as OK.

Evaluation Analogously to last year’s task, the
primary evaluation metric is the multiplication of
F1-scores for the OK and BAD classes, denoted
as F1-Mult. The same metric was applied to gap
and source token labels. We also report F1-scores
for individual classes for completeness. We test
the significance of the results using randomisa-
tion tests (Yeh, 2000) with Bonferroni correction
(Abdi, 2007).

Results The results for Task 2 are summarised
in Tables 9, 10, 11 and 12, ordered by the F1-mult
metric.

The number of submissions per language pair
was different, which limits any conclusions that
can be made with respect to general rankings
of systems. The English-German and German-
English tasks – Tables 9, 10 – had the most sys-
tems participating. As in previous years, results in
Task1 and Task2 are correlated. In this case the
same system, QEBrain, wins both tasks for these
language pairs. Since some of the other systems
for Task 1 where specific for sentence-level pre-
diction, the next system in the ranking is SHEF-
PT, which lags behind by a margin slightly smaller
than in Task 1. Another interesting result for this
year is the differences between SMT and NMT
datasets. For English-German, there is a clear drop
in performance from SMT to NMT. This can be
due to changes in the type of errors, or size of
training sets, as we discuss in Section 9.

Regarding the novel task variants of detection
of gaps and source words that lead to errors, only
a few teams submitted systems. The performance
for these tasks is lower, but correlated with the
performance of the main word-level task – predic-
tion of target word errors. It is worth noting that
the QEBrain system obtains notable performance
for gap error detection, almost doubling the per-
formance of other (few) participating systems for
SMT data.

The English-Latvian and English-Czech tasks
had a lower number of participants, potentially due
to the lower number of resources to pre-process
data and pre-train models. It is interesting to note
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Model Pearson r MAE RMSE Spearman ρ
SMT DATASET

• QEBrain DoubleBi w/ BPE+word-tok (ensemble) 0.74 0.09 0.14 0.75
QEBrain DoubleBi w/ BPE-tok 0.73 0.10 0.14 0.75
UNQE 0.70 0.10 0.14 0.72
TSKQE2 0.49 0.13 0.17 0.00
SHEF-PT 0.49 0.13 0.17 0.51
TSKQE1 0.48 0.13 0.17 0.00
UTartu/QuEst+Attention 0.43 0.14 0.17 0.42
UTartu/QuEst+Att+CrEmb3 0.42 0.14 0.17 0.42
sMQE 0.40 0.19 0.22 0.40
RTM MIX7 0.39 0.14 0.18 0.40
RTM MIX6 0.39 0.14 0.18 0.40
SHEF-bRNN 0.37 0.14 0.18 0.38
BASELINE 0.37 0.14 0.18 0.38
uMQE – – – 0.38
UAlacant** 0.39 0.18 0.23 0.39

NMT DATASET

• UNQE 0.51 0.11 0.17 0.61
• QEBrain DoubleBi w/ BPE+word-tok (ensemble) 0.50 0.11 0.17 0.60
• QEBrain DoubleBi w/ word-tok 0.50 0.11 0.17 0.60
TSKQE1 0.42 0.14 0.18 0.00
TSKQE2 0.41 0.14 0.18 0.00
SHEF-bRNN 0.38 0.13 0.18 0.48
SHEF-PT 0.38 0.13 0.18 0.47
UTartu/QuEst+Attention 0.37 0.13 0.18 0.44
sMQE 0.37 0.21 0.24 0.44
UTartu/QuEst+Att+CrEmb3 0.37 0.13 0.18 0.44
BASELINE 0.29 0.13 0.19 0.42
uMQE – – – 0.40
UAlacant** 0.23 0.21 0.26 0.24
RTM MIX5** 0.47 0.12 0.17 0.55

Table 5: Official results of the WMT18 Quality Estimation Task 1 for the English–German dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.

Model Pearson r MAE RMSE Spearman ρ
• UNQE 0.77 0.09 0.13 0.73
• QEBrain DoubleBi w/ BPE+word-tok (ensemble) 0.76 0.10 0.13 0.73
• QEBrain DoubleBi w/ word-tok 0.75 0.10 0.14 0.72
sMQE 0.65 0.12 0.15 0.60
UTartu/QuEst+Att+CrEmb3 0.57 0.14 0.18 0.47
SHEF-PT 0.55 0.13 0.17 0.50
UTartu/QuEst+Attention 0.55 0.14 0.17 0.47
SHEF-bRNN 0.48 0.14 0.19 0.44
BASELINE 0.33 0.15 0.19 0.32
UAlacant** 0.63 0.12 0.17 0.60
RTM MIX5** 0.54 0.13 0.17 0.49

Table 6: Official results of the WMT18 Quality Estimation Task 1 for the German–English dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.
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Model Pearson r MAE RMSE Spearman ρ
SMT DATASET

• UNQE 0.62 0.12 0.16 0.58
sMQE 0.46 0.13 0.18 0.41
UTartu/QuEst+Att+CrEmb3 0.40 0.16 0.20 0.32
UTartu/QuEst+Attention 0.40 0.15 0.19 0.32
SHEF-bRNN 0.40 0.14 0.19 0.33
SHEF-PT 0.38 0.14 0.19 0.33
BASELINE 0.35 0.16 0.19 0.35
uMQE – – – 0.40
UAlacant** 0.36 0.20 0.26 0.34
RTM MIX** 0.35 0.14 0.19 0.28

NMT DATASET

• UNQE 0.68 0.13 0.17 0.67
sMQE 0.58 0.15 0.19 0.57
UTartu/QuEst+Att+CrEmb3 0.54 0.16 0.20 0.50
UTartu/QuEst+Attention 0.53 0.16 0.20 0.49
SHEF-PT 0.46 0.17 0.22 0.45
BASELINE 0.44 0.16 0.22 0.46
SHEF-bRNN 0.42 0.17 0.22 0.41
uMQE – – – 0.54
UAlacant** 0.56 0.17 0.22 0.55
RTM MIX** 0.54 0.16 0.20 0.50

Table 7: Official results of the WMT18 Quality Estimation Task 1 for the English–Latvian dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.

Model Pearson r MAE RMSE Spearman ρ
• UNQE 0.69 0.12 0.17 0.71
SHEF-PT 0.53 0.15 0.19 0.54
SHEF-bRNN 0.50 0.16 0.20 0.51
UTartu/QuEst+Attention 0.45 0.16 0.20 0.46
UTartu/QuEst+Att+CrEmb3 0.41 0.17 0.21 0.40
BASELINE 0.39 0.17 0.21 0.41
sMQE 0.39 0.16 0.21 0.42
uMQE – – – 0.42
UAlacant** 0.44 0.18 0.23 0.46
RTM MIX** 0.52 0.15 0.20 0.53

Table 8: Official results of the WMT18 Quality Estimation Task 1 for the English–Czech dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.

the general low performance of systems on the
English-Latvian NMT data: all systems are tied
with the baseline in terms of F1-mult. The reim-
plementation of the POSTECH system shows poor
results on the NMT dataset, in this case it is unable
to outperform the baseline. Results for English-
Czech are very similar across systems.

7 Task 3: Predicting phrase-level quality

This level of granularity was first introduced in the
shared task at WMT16. The goal is to predict MT
quality at the level of phrases. In the 2016 edition,
the data annotation was done automatically based
on post-edits, as in Task 2, but this year humans
directly labelled each phrase in context.
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Labels We used the phrase segmentation pro-
duced by the SMT decoder which generated the
translations for the dataset. The phrases were
annotated for errors using four classes: ’OK’,
’BAD’ – the phrase contain one or more errors,
’BAD word order’ – the phrase is in an incorrect
position in the sentence, and ’BAD omission’ – a
word is missing before/after a phrase. This task
in further subdivided in two subtasks: word-level
prediction (Task3a), and phrase-level prediction
(Task3b).

The data for Task3a propagates the annotation
of each phrase to its words, and thus uses word-
level segmentation for both source and machine-
translated sentences, such that the task can be ad-
dressed as a word-level prediction task. In other
words, all tokens in the target sentence are labelled
according to the label of the phrase they belong
to. Therefore, if the phrase is annotated as either
’OK’, ’BAD’ or ’BAD word order’, all tokens
(and gap tokens) within that phrase are labelled as
either ’OK’, ’BAD’ or ’BAD word order’. To an-
notate omission errors, a gap token is inserted after
each token and at the start of the sentence.

The data for Task3b has phrase-level segmen-
tation with the labels assigned by the human an-
notator to each phrase. A gap token is inserted
after each phrase and at the start of the sen-
tence. The gap is labelled as follows: ’OK’ or
’BAD omission’, where the latter indicates that
one or more words are missing.

Evaluation Similarly to Task 2, our primary
metric for predictions at word-level (Task3a) is
the multiplication of the F1 scores of the OK and
BAD classes, F1-Mult, while for predictions at
phrase-level (Task3b), our primary metric is the
phrase-level version of F1-Mult. The same met-
rics were applied to gap and source token labels
for both sub-tasks, along with F1 scores for indi-
vidual classes for completeness. We also report
F1 score for BAD word order labels on the target
tokens for Task3b. We computed statistical sig-
nificance of the results using randomised test with
Bonferroni correction, as in Task 2.

Results The results of the phrase-level task are
given in Tables 13 (Task3a) and 14 (Task3b), or-
dered by the F1-Mult metric.

Comparing the results for Task3a with the re-
sults on German-English for Task 2 (Table 10), it
can be observed a general degradation of the F1

score on the BAD class, including for the base-
line system. We attribute this phenomenon to the
way the data for this task was created: for Task 2,
the token labels were produced from post-editing,
where each word was labelled independently from
each others; while for this task, the token labels
are deduced from a labelling at more coarse level
(phrase), i.e. where words were not considered
as individual tokens. Consequently, words that
would be considered as correct during post-editing
are here labelled as BAD, like to BAD phrase they
belong to. The only two official submissions to
this subtask (SHEF-PT and SHEF-bRNN) slightly
outperform the baseline system, nevertheless with-
out a statistically significant difference.

For the phrase-level predictions, the baseline
system remains ahead by a significant margin
of the only two official submissions, both from
the University of Sheffield (SHEF-ATT-SUM and
SHEF-PT). The overall performance in predicting
phrases that are in incorrect position in a sentence
(i.e. BAD word order) shows that this problem re-
mains a very challenging task, as none of the sub-
missions were able to obtain competitive F1 score.

8 Task 4: Predicting document-level QE

This task consists in estimating a document-level
quality score according to the amount of minor,
major, and critical errors present in the translation.
The predictions are compared to a ground-truth
obtained from annotations produced by crowd-
sourced human translators from Unbabel.13

Labels The data was annotated for errors at the
word level using a fine-grained error taxonomy –
Multidimensional Quality Metrics (MQM) (Lom-
mel et al., 2014) – similar to the one used in
(Sanchez-Torron and Koehn, 2016). MQM is
composed of three major branches: accuracy (the
translation does not accurately reflect the source
text), fluency (the translation affects the reading
of the text) and style (the translation has stylistic
problems, like the use of a wrong register). These
branches include more specific issues lower in the
hierarchy. Besides the identification of an error
and its classification according to this typology
(by applying a specific tag), the errors receive a
severity scale that reflects the impact of each er-
ror on the overall meaning, style, and fluency of
the translation. An error can be minor (if it does

13http://www.unbabel.com.
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not lead to a loss of meaning and it doesn’t con-
fuse or mislead the user), major (if it changes the
meaning) or critical (if it changes the meaning and
carry any type of implication, or could be seen as
offensive).

Document-level scores were then generated
from the word-level errors and their severity us-
ing the method described in Sanchez-Torron and
Koehn (2016, footnote 6). Namely, denoting by
n the number of words in the document, and by
nmin, nmaj, and ncri the number of annotated mi-
nor, major, and critical errors, the final quality
scores were computed as:

MQM Score = 1− nmin + 5nmaj + 10ncri
n

(1)

Note that MQM values can be negative if the total
severity exceeds the number of words.

Evaluation Submissions are evaluated as in
Task 1 (see Section 5), in terms of Pearson’s corre-
lation r between the true and predicted document-
level scores.

Results The results of the document-level task
are shown in Table 15. Due to the different nu-
meric range, only the Pearson correlation scores
are comparable to those of Task1. Comparing with
the results for Task 1, it can be observed that the
baseline system already obtains very high correla-
tion. The neural model SHEF-PT-indomain out-
performs the baseline by a modest margin, com-
pared to the results obtained in Task 1.

Model Pearson r MAE
• SHEF-PT-indomain 0.53 0.56
BASELINE 0.51 0.56
SHEF-mtl-bRNN 0.47 0.56
SHEF-mtl-PT-
indomain**

0.52 0.57

RTM MIX1** 0.11 0.58

Table 15: Official results of the WMT18 Quality Es-
timation Task 4 for the English–French dataset. The
winning submission is indicated by a •. Baseline sys-
tem is in grey, and ** indicates late submissions that
were not considered for the official ranking of partici-
pating systems.

9 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Performance of QE approaches on the out-
put of neural MT systems. As previously men-
tioned, some of the data used for Tasks 1 and
2 is translated by both an SMT and an NMT
system: the English-German and English-Latvian
data. In Task 1, for English-German, the numbers
of translations in the QE training data from the
two systems are very different (26, 273 for SMT
and 13, 442 for NMT) and thus no direct com-
parison can be made. This shows that the NMT
system was of much higher quality than the SMT
one, producing many more sentences that led to
HTER=0. Of the sentences that remained, the
average NMT quality in the training data is still
higher: HTER=0.154 versus 0.253 for SMT. From
the results, the top systems do considerably better
on the SMT data (r=0.74 for SMT vs r=0.51 for
NMT translations). This difference is also notice-
able for the baseline system (r=0.37 for SMT vs
r=0.29 for NMT translations). This could how-
ever be because of the difference in number of
samples and/or significant differences in distribu-
tions of HTER scores in the two datasets. It is
worth pointing out that the winning submissions
are the same for both SMT and NMT transla-
tion: QEBrain and UNQE. In fact, QE system are
ranked very similarly for the two types of transla-
tion.

For English-Latvian, the number of NMT and
SMT QE training sentences is similar (12, 936 for
NMT and 11, 251 for SMT). Their average HTER
scores is also more comparable: 0.278 for NMT
and 0.215 for SMT. The difference in QE sys-
tem performance for this language pair is not as
marked, but the trend is inverted when compared
to English-German: QE systems do better on
the NMT data (the top systems, UNQE, achieves
r=0.62 for SMT vs r=0.68 for NMT translations,
while the baseline achieves r=0.44 for SMT vs
r=0.35 for NMT translations), This could be be-
cause of the lower differences in the distribution of
HTER scores in both sets. The ranking of QE sys-
tems is exactly the same for both SMT and NMT
translations.

In both cases, it is important to note that even
though the initial datasets contained exactly the
same source sentences for SMT and NMT, the
sentences in the two final versions of the datasets
for each language are not all the same, i.e. some
NMT sentences may have gotten filtered for hav-
ing HTER=0 while their SMT counterparts did
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not, and vice-versa. The main finding is that
QE models seem to be robust to different types
of translation, since their rankings are the same
across datasets.

For Task 2, the trend is similar: QE sys-
tems for English-German also perform better on
SMT translations than on NMT translations (F1-
Mult=0.62 for SMT vs F1-Mult=0.44 for NMT),
and the inverse is observed for English-Latvian
(F1-Mult=0.36 for SMT vs F1-Mult=0.43 for
NMT). The ranking of QE systems for the two
types of translations differs more than for Task 1,
especially for English-Latvian.

Task 4 uses NMT output only and it is hard to
make any conclusions about whether the perfor-
mance of the systems is good enough because this
is the first time this task is organised. Generally
speaking, this task proved hard, with the baseline
system performing as well or better than the other
submissions.

Predictability of missing words in the MT out-
put. Only a subset of the systems that partici-
pated in Task 2 submitted results for missing word
detection. From the results obtained it seems clear
that while this task is more difficult than target
word error detection, high scores could be attained
for the SMT data. Due to the small number of sub-
mitted systems, it is unclear whether or not gap
detection is more difficult for NMT data.

Predictability of source words that lead to er-
rors in the MT output. Only a small set of
teams submitted predictions for source words.
From the submitted results, it can be observed that
prediction of source words related to errors is a
harder problem than detecting errors in the target
language. This may be due to the fact that there
may be more ambiguity with regards to which
words should be related to errors in the target. In
other words, in some cases a source word in a
given context leads to incorrect translations, while
in other cases the same source word in the same
context will not lead to errors.

Effectiveness of manually assigned labels for
phrases. With only one official (and one late)
submission to the phrase-level QE task this year,
it is hard to conclude whether having manual la-
bels makes the task harder (although the baseline
system performs as well as in the last edition), or
whether the reason lies in the design of the neural
models, which may not be suitable for this task.

Quality prediction for documents from errors
annotated at word-level with added severity
judgements. Since this is a new task and not
many systems were submitted. Results show how-
ever that it is possible to attain Pearson correlation
scores that are comparable with those of sentence-
level post-editing effort prediction. The perfor-
mance gap between the neural model and the SVM
baseline is smaller than in Task 1, which may be
an indication for further potential gains using new
deep learning architectures tailored for document-
level.

Utility of additional evidence To investigate
the utility of detailed information logged dur-
ing post-editing, we offered to participants
other sources of information: post-editing time,
keystrokes, and actual edits. Surprisingly, no par-
ticipating system requested these additional labels,
and therefore this remains an open question.

10 Conclusions

This year’s edition of the QE shared task was the
largest ever organised in many respects: number
of tasks, number of languages, variety of tasks
(three granularity levels), types of annotation (de-
rived from post-editing or manual, source or tar-
get), and number of samples annotated.

Over the years, we have attempted to find a
balance between keeping the shared task as close
as possible to previous editions – so as to make
some form of comparison across years possible –
and proposing new tasks and new interesting chal-
lenges – so as to keep up to date with new de-
velopments in the field, such as neural machine
translations. We believe the current set of tasks
covers a broad enough range of challenges that are
far from solved, such as improving performance
given smaller sets of instances, predicting source
words that lead to errors, predicting gaps, use of
additional evidence from post-editing, etc.

In order to allow for future benchmarking on
a ’blind’ basis without access to the gold stan-
dard labels, we have set up CodaLab competitions
that will remain open after this shared task. Any
team can register and submit any number of sys-
tems (limited to five submissions per day per task
and language pair) and get immediate feedback
through the official evaluation metrics, as well as
comparison to top submissions from other teams
(on the leaderboard). Each team’s best submis-
sion per task and language pair will feature on the
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leaderboard. The submission pages for each task
are as follows, where languages and task variants
are frames as ‘phases’:

• Sentence level: https://
competitions.codalab.org/
competitions/19316

• Word level: https://competitions.
codalab.org/competitions/19306

• Phrase level: https://competitions.
codalab.org/competitions/19308

• Document level: https://
competitions.codalab.org/
competitions/19309
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