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Abstract

This paper describes the submission of Hunter
Neural Machine Translation (NMT) to the
WMT’18 Biomedical translation task from
English to French. The discrepancy between
training and test data distribution brings a chal-
lenge to translate text in new domains. Beyond
the previous work of combining in-domain
with out-of-domain models, we found accu-
racy and efficiency gain in combining differ-
ent in-domain models. We conduct extensive
experiments on NMT with transfer learning.
We train on different in-domain Biomedical
datasets one after another. That means pa-
rameters of the previous training serve as the
initialization of the next one. Together with
a pre-trained out-of-domain News model, we
enhanced translation quality with 3.73 BLEU
points over the baseline. Furthermore, we ap-
plied ensemble learning on training models of
intermediate epochs and achieved an improve-
ment of 4.02 BLEU points over the baseline.
Overall, our system is 11.29 BLEU points
above the best system of last year on the EDP
2017 test set.

1 Introduction

Data-driven machine translation models assume
the training data and test data have the same distri-
bution and feature space (Koehn, 2009), which is
rare in real-world applications (Olive et al., 2011).
In statistical machine translation, a standard solu-
tion is to apply domain adaptation (Xu et al., 2007;
Foster and Kuhn, 2007; Chu and Wang, 2018). For
example, interpolating phrase or word probabili-
ties in a sentence learned on in-domain and out-
of-domain data and then computing their product.
In NMT, we apply ensemble learning instead of
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Training Bio’18 News’14 Bio’14
SR (M ) 2.8 41 19
SP (M ) 2.5 39 16
VR (B) 61M/69M 1.1/1.3 0.4/0.5
V (K) 67/82 64/74 44/44

Table 1: Raw and preprocessed data statistics for
the three datasets used in the experiments. SR is
the sentences in the raw data, SP is the sentences in
preprocessed data, VR is the running words and V is
the vocabulary size. Running words & Vocabulary are
for both source and target represented as source/target

interpolation. Moreover, we initialize neural net-
works with parameters trained with out-of-domain
data. Studies show that this approach results in
fast training and higher accuracy, such as in (Lu-
ong and Manning, 2015; Zoph et al., 2016; Freitag
and Al-Onaizan, 2016).

These methods focus on combining an in-
domain model with an out-of-domain model.
Nonetheless, often, the training data is a mixture
of multiple in-domain corpora and out-of-domain
corpora. If one concatenates all the in-domain cor-
pora to train a model, then training is more expen-
sive for the memory and time. Furthermore, the
distribution of one corpus may be closer than the
others to the test set. Thus, the statistics of the
closer corpus may vanish in the merged corpus.

The WMT’18 Biomedical translation task is a
typical scenario. There are two sets of in-domain
data: the Biomedical training set of WMT’18
(with 2.8M sentences) and WMT’14 (19 M), be-
sides an out-of-domain training set on News (41
M), see Table 1. To separately train on WMT’18
and WMT’14 Biomedical data, a new challenge
arises:

How to efficiently combine the training on dif-
ferent in-domain training sets?

To answer this question, this work presents an
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empirical study of efficient training on multiple
in-domain and out-of-domain datasets. We ap-
plied transfer learning by training NMT systems
with different datasets one after another carrying
on the previous parameters. More precisely, we
first initialize the NMT with the existing out-of-
domain model trained on the out-of-domain News
data. Then, we train the NMT with the in-domain
Biomedical dataset of 2018. Afterward, we take
the newly estimated parameters as the initializa-
tion and further train the NMT on the in-domain
Biomedical dataset of 2014. In this way, a pre-
vious model’s output initializes the parameters of
the next model, so that we train on every single
data set at a time instead all at once.

We further experimented with ensemble learn-
ing. We saved the model (checkpoint) after every
epoch during training. Once training finishes, we
performed checkpoint ensembling by picking var-
ious combinations of checkpoint outputs from the
training on the last dataset.

We conduct our experiments on Biomedical
translation task of WMT’18. We observe a signif-
icant accuracy improvement of 3.73 BLEU points
for single models and 4.02 BLEU points for en-
sembles over our baseline trained with one in-
domain dataset. While some of these improve-
ments are due to differences in training data, pre-
processing and hyper-parameters, most of the in-
crease is due to the use of different data sets for
initialization and subsequent training.

2 Related Work

In domain adaptation we aim at learning a model
from a source data distribution which performs
well on a different (but related) target data dis-
tribution. In machine translation domain adapta-
tion arises when there is a large amount of out-
of-domain data and a small amount of in-domain
data. One technique to solve this issue is to in-
crease the in-domain data size using different data
selection methods (Moore and Lewis, 2010; Axel-
rod et al., 2011, 2012; Duh et al., 2013). They use
in-domain language models to select in-domain
data based on cross-entropy for SMT systems. (Xu
et al., 2007; Foster and Kuhn, 2007) use a com-
bination of feature weights and language model
adaptation to build a domain-specific translation
system. (Daumé III and Jagarlamudi, 2011) mine
in-domain rare word translations using a compa-
rable corpora in order to minimize the Out-of-

Vocabulary (OOV) words. We aim to improve
NMT accuracy and training efficiency by training
on different corpora sequentially. Therefore, our
method does not focus on selecting, mining, or in-
terpolating in-domain data.

Transfer learning (Torrey and Shavlik, 2009;
Pan and Yang, 2010) is the process where the
model is trained by transferring the knowledge
learned from an existing model. Domain adap-
tation also falls under this method. (Zoph et al.,
2016) describe training a parent model in one lan-
guage pair (out-of-domain data) which then can
be used as an initialized child model for training
another language pair (in-domain data). However
in our work we train for the same language pair
throughout the experiment. Another difference is
that we apply transfer learning to train on two in-
domain datasets one after the other.

(Luong and Manning, 2015) adapts an already
existing NMT system to a new domain by further
training on the in-domain data only. (Freitag and
Al-Onaizan, 2016) in addition use checkpoint en-
sembling (Sennrich et al., 2016a; Koehn, 2017)
to balance the performance on the in-domain data
and out-of-domain data. In this paper, our goal
is not to adapt from out-of-domain to in-domain
data. We aim to empirically investigate train-
ing on multiple in-domain datasets to improve
in-domain performance, which has not been dis-
cussed in above previous work. We show that
during time-sensitive system development, train-
ing on in-domain datasets one after another has
its pragmatical use. It significantly improves the
translation accuracy over the training on a single
dataset, i.e. 3.73 BLEU points, and is also more
efficient than training on all in-domain datasets at
once.

3 Background

NMT is an approach to machine translation us-
ing a neural network which takes as an input a
source sentence (x1, .., xt, .., xI) and generates its
translation (y1, .., yt′ , .., yI′), where xt and yt′ are
source and target words respectively. The dom-
inant approach to NMT till recent times encodes
the input sequence and subsequently generates a
variable length translated sequence using recurrent
neural networks (RNN) (Bahdanau et al., 2014;
Sutskever et al., 2014; Cho et al., 2014).

We use the sequence to sequence learning ar-
chitecture by (Gehring et al., 2017), which uses
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convolutional neural networks (CNNs) instead of
RNNs. This model has three components, namely,
encoder, decoder and an attention mechanism.

The encoder combines a short sequence of
neighboring words into a single representation.
Convolutions are carried out consecutively in mul-
tiple layers to get the final representation of each
word. For each input word to the encoder, the
state at each convolutional layer is informed by
the corresponding state in the previous layer and
its neighbors determined by a fixed window. Even
with a few layers, the final representation of a
word generated by the encoder may only be in-
formed by partial sentence context.

There are significant computational advantages
to this paradigm. All words at one depth can
be processed in parallel, even combined into one
massive tensor operation that can be efficiently
parallelized on a GPU.

The decoder of the CNN based NMT model cal-
culates the decoder state conditioning on the se-
quence of the k most recent previous words. The
states of the decoder are computed in a sequence
of convolutional layers and depend only on the in-
put context, with no dependence on the previous
decoder state. The attention mechanism in CNN
based architecture is essentially unchanged from
the RNN based model.

4 Transfer Learning

A domain D consists of a feature space X and
a marginal probability distribution P (X) where
X ∈ X is a training sample. If two domains
are different then they must have different feature
spaces or different marginal probabilities. Trans-
fer learning is defined as follows:

Definition 1. Given a source domain DS and a
learning task TS , transfer learning aims to help im-
prove the learning of the target predictive function
fT (·) in DT using the knowledge in DS and TS ,
where DS 6= DT , or TS 6= TT .

In the above definition, a domain is a pair D =
{X , P (X)}. Thus the condition DS 6= DT im-
plies that either XS 6= XT or PS(X) 6= PT (X).
One category of transfer learning is transductive
transfer learning where the source and the target
tasks are the same but the domain is different. This
can be further categorized into two cases. For the
machine translation scenario, these are that either
the feature spaces between domains are different,
XS 6= XT (e.g., News and Biomedical), or their

marginal distributions are different, P (XS) 6=
P (XT ) (e.g., Biomedical’14 and Biomedical’18).

We apply transfer learning to learn the target
predictive function fT (·) in both the above cases.
We use the CNN based architecture described in
Section 3 to train the NMT model parameters.
First we train for the case when the the domain fea-
ture spaces are different, i.e., XS 6= XT . We con-
sider XS as News data and XT as Biomedical’18
data, since they represent two different domains.

For this training, we re-use a pre-trained system
(Gehring et al., 2017) on News corpus and con-
tinue training on Biomedical’18 corpus. We re-use
a pre-trained system because the training on News
corpus requires a large training time1. For training
the CNN based NMT, we only use the vocabulary
of Biomedical’18 for simplicity.

We then apply transfer learning for the second
case: when the marginal distributions of XS and
XT are different (P (XS) 6= P (XT )). Now we
can consider XS as Biomedical’18 data and XT

as Biomedical’14 data. This is because they are
in the same domain with different marginal distri-
butions. We continue training the model learned
on the Biomedical’18 data further with Biomedi-
cal’14 data. Again, we just use the vocabulary of
the latter data for training.

The use of transfer learning significantly in-
creases the translation quality (see Figure 1). The
BLEU score obtained using transfer learning from
News to Biomedical’18 data is shown in the mid-
dle part of the plot (Bio’18). The BLEU curve
reaches a peak of 30.97% in BLEU score in this
part of transfer learning.

Furthermore, upon using Biomedical’14 data,
we get additional improvement, as shown in the
right side of the plot (Bio’14). We get the highest
peak of 34.83% in BLEU score. The learned pa-
rameters from one set of data are transferred while
training on another set and enhance the translation
quality.

During training, we evaluate the performance of
the model after every epoch using a development
set from the Biomedical domain. Our system is
prone to over-fitting as the Biomedical (2014 and
2018) training data sets that we use are signifi-
cantly smaller (see Table 1) as compared to News.
Generally over-fitting means that the model per-
forms excellent on the training data, but worse on

137 days using 8 GPUs on WMT’ 18 EN-FR (Gehring
et al., 2017)
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Figure 1: BLEU[%] during transfer learning The results are calculated on EDP’17 test data. The x-axis shows
the epoch number during training.

Figure 2: Combining predictions from an ensemble of
models (Koehn, 2017)

any other unseen data. To overcome this problem,
we use ensemble learning.

More concretely, we save the models (check-
points) after every epoch of training. We use
the predictions of multiple checkpoints instead of
just one checkpoint. We perform this ensemble
of models for different epochs, called checkpoint
ensembling, as follows: Each model defined by
a checkpoint generates a probability distribution
over target vocabulary. We average these distri-
butions to obtain a combined probability distribu-
tion. Then we use the combined distribution to
predict the output word. See Figure 2 for an illus-
tration. Checkpoint ensembling is computation-
ally less expensive than multi-run ensembling, an-
other typical approach for ensembling NMT mod-
els. In multi-run ensembling, each system is built
in a completely different training run. In check-
point ensembling, we get all the checkpoints from
a single run.

5 Experiments

This section describes the datasets, tools, and set-
tings used for the Biomedical translation task.

Data Set Dev Data Test Data
Kh Kh+HIML EDP’17

SR 500 2011 500
SP 500 2011 499

VR (K) 11/13 37/46 13/15
V (K) 3/3 5/6 3/3
OOV 154/177 329/499 271/366

Table 2: Development and test data stats. Kh refers to
the Khresmoi development data. SR is the sentences in
the raw data, SP is the sentences in preprocessed data,
VR is the running words, V is the vocabulary size and
OOV is the unique Out-Of-Vocabulary words. Run-
ning words, Vocabulary & Out-Of-Vocabulary words
are represented as source/target.

5.1 Datasets

We used the WMT’18 Biomedical shared task
English-French (EN-FR) data for training. In this
paper, this data is the UFAL medical corpus2.
We also used WMT’14 Biomedical EN-FR data
(PatTR3 only) as additional in-domain data. For
out-of-domain training, we used WMT’14 News
EN-FR training data. We validated each train-
ing epoch on Khresmoi and HIML development
datasets. We use the WMT’17 EDP (Yepes et al.,
2017) as test data to evaluate. Statistics for the de-
velopment and test data sets is mentioned in Table
1 and Table 2.

5.2 Preprocessing

We tokenized and true-cased the training, devel-
opment and test data using the script provided
by Moses.4 We only used sentences no longer
than 80 words (for training data only). Then we
learned byte pair encoding (BPE) by combining

2https://ufal.mff.cuni.cz/ufal medical corpus
3http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
4https://github.com/moses-smt/mosesdecoder
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the WMT’18 Biomedical EN and FR training cor-
pus. We used a script from (Sennrich et al., 2016b)
with 89, 500 merge operations. This gave a dictio-
nary size of 63.6K for EN and 74.1K for FR. We
also applied BPE to WMT’14 Biomedical data re-
sulting in dictionary sizes 67K and 81.9K for EN
and FR respectively. Our best model uses the latter
dictionaries for translation.

5.3 Training Details

To train our systems we used the open source
toolkit Fairseq5 which provides an implementation
of the CNN based NMT model (Gehring et al.,
2017). We trained three different sets of mod-
els: (1) training on WMT’18 Biomedical data
only, (2) training on the WMT’14 News, fol-
lowed by training on WMT’18 Biomedical data,
and (3) training on the WMT’14 News, then train-
ing on WMT’18 Biomedical and then training on
WMT’14 Biomedical. Apart from this we also
trained using different development sets which in-
clude Khresmoi and Khresmoi+HIML.

For the training of all systems, we used a learn-
ing rate of 0.25 and dropout of 0.2. We fixed the
maximum batch size to be 4000 tokens. On a Tesla
V100 with 16 GB RAM, it took about 40 hours for
training on WMT’18 Biomedical till convergence
and 500 hours for training on WMT’14 Biomedi-
cal for 25 epochs.

Another possible experiment can be to combine
the two in-domain datasets and then train. This
experiment however takes 22 days for training of
25 epochs as compared to 1.7 days for completely
training on WMT’18 Biomedical data. There-
fore we trained on the WMT’18 Biomedical data
till convergence and subsequently trained on the
larger WMT’14 Biomedical data for some epochs.
Additionally we also saved on the training time
by using a pre-trained model on WMT’14 News
data to initialize the system parameters. Details
of training time (per epoch) for each dataset are
mentioned in Table 3. Combining datasets is also
memory intensive as compared to training on sep-
arate data.

5.4 Decoding Details

For translation, we used either the best epoch
(which gave the minimum loss on the development
data) or an ensemble of different epochs during the
training process. The Fairseq tool provides a sim-

5https://github.com/pytorch/fairseq

Data Set Training Time
per Epoch (hrs)

News’14 41
Bio’18 2.5
Bio’14 19

Bio’18 + Bio’14 21.5

Table 3: Training time for each dataset. Training
time is for a single epoch in hours.

ple method to use specific epoch(s) for translation.
We removed BPE before evaluation. We tuned the
decoding beam size and used a beam size of 12 for
all translations. The best model settings were then
used to translate the WMT’18 test datasets (EDP
& Medline).

6 Results

Table 4 shows BLEU scores for different ex-
periments with and without ensemble. The ar-
row shows the flow of training the translation
model, for example, “news14→ bio18→ bio14”
means the system was first trained on WMT’14
News data, then on WMT’18 Biomedical data
and finally on WMT’14 Biomedical data. The
single model results are obtained using the best
checkpoints (the best checkpoint is the one which
gave minimum loss on the development data) for
each experiment and the ensemble results are ob-
tained using the best ensemble of multiple check-
points. We evaluate the translations using the
multi-bleu.pl script from Moses.

For the baseline method (Exp 1) we trained only
using WMT’18 Biomedical data. The single best
model gave 31.10% in BLEU score. Ensemble
of different checkpoints did not improve the re-
sults, therefore it has the same BLEU score as sin-
gle model. In Exp 2 we used a pre-trained model
on the WMT’14 News and continued training on
WMT’18 Biomedical data. The single model gave
the BLEU score of 30.97% which is less than Exp
1, but ensembling improved the BLEU score to
31.18%. On further training on another in-domain
WMT’14 Biomedical data (Exp 3), the single best
model greatly improves the performance with a
BLEU score of 34.83%. Ensemble of different
checkpoints improves this further to 35.12%. This
is an improvement of 3.73 BLEU points for the
single model and 4.02 BLEU points from the base-
line experiment (Exp 1). The best model uses
checkpoints 2, 4 and 24.

The best system for WMT’17 (Exp a) on EN-
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No. Experiment BLEU [%]
Single Ensemble

a WMT’17 best system 27.04∗ –
1 bio18 (baseline) 31.10 31.10

2 news14→ bio18 30.97 31.18

3
news14→ bio18
→ bio14

34.83 35.12 , 38.33∗

Table 4: BLEU scores for different models on EDP’17 test data. Single is the single model which gave minimum
loss on the Khresmoi development set. Results with (*) are calculated using multi-eval tool. All other results are
calculated using multi-bleu tool.

No. Experiment Dev Set BLEU [%]

1
news14
→ bio18

Khresmoi 30.97

2
news14
→ bio18

Khresmoi
+HIML

29.23

Table 5: Results of different development sets for
tuning all the models. BLEU scores are calculated
on EDP’17 test data.

Checkpoint Number
BLEU[%]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

• • 30.38

• • • • 30.93

• • • 31.18
• • • • 30.98

• • • • • 30.86

• • • • • • 30.38

• • • • • • • 30.90

• • • • • • • • 31.05

Table 6: BLEU scores for different checkpoint en-
sembles for Exp 2 (Table 4). Cells with dots in each
row show checkpoints for ensemble. Checkpoint 12
gave the minimum loss on the development data.

FR EDP test data gave 27.04% in BLEU score us-
ing mteval-v13a.pl script from Moses. Us-
ing the same script our best model (Exp 3 in Table
4) gave 38.33% in BLEU score. This is an im-
provement of 11.29 BLEU points.

We also tested with using different development
sets for tuning the model. The results are in Table.
5. We get better results when using Khresmoi de-
velopment data as compared to a combined Khres-
moi and HIML development data.

Apart from this we also carried out ensemble
experiments to compare which checkpoint combi-
nation gives the best result. Only checkpoints for
Exp 2 in Table 4 are considered. Among the 14
checkpoints output during training process, check-
point 12 gave the minimum loss on the develop-
ment data. We tried a several checkpoint combi-
nations of these 14 checkpoints, some of these are
mentioned in Table 6. The best checkpoint combi-
nation is 5, 10 and 12.

7 Conclusion

We studied training on different in-domain
datasets and found significant improvement
by consecutively training on an out-of-domain
dataset (WMT’14 News) and multiple in-domain
datasets (WMT’18 Biomedical and then WMT’14
Biomedical). We successfully applied transfer
learning by initializing parameters of NMT with a
previous model. Together with ensemble learning,
we achieved 4.02 BLEU points enhancement over
our baseline. Overall, our system is 11.29 BLEU
points better than the best WMT’17 system.
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