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Abstract

We present the LMU Munich machine transla-
tion systems for the English–German language
pair. We have built neural machine transla-
tion systems for both translation directions
(English→German and German→English)
and for two different domains (the biomedical
domain and the news domain). The systems
were used for our participation in the WMT18
biomedical translation task and in the shared
task on machine translation of news.1,2

The main focus of our recent system devel-
opment efforts has been on achieving im-
provements in the biomedical domain over last
year’s strong biomedical translation engine for
English→German (Huck et al., 2017a). Con-
siderable progress has been made in the latter
task, which we report on in this paper.

1 Introduction

Domain adaptation is one emphasis of the machine
translation research conducted at the Center for In-
formation and Language Processing at LMU Mu-
nich. Within the scope of our participation in the
EU-funded HimL project (Haddow et al., 2017),3

we were recently working on advancing the qual-
ity of machine translation for medical texts. The
types of medical texts that we consider range from
health information leaflets to professional biomed-
ical research articles.

Some of our latest research towards medical do-
main adapation of neural translation systems is
inspired by the “fine-tuning” approach in combi-
nation with high-quality in-domain data. Specifi-
cally, we conducted successive optimization runs
to domain-adapt a neural translation model. The

1http://www.statmt.org/wmt18/
biomedical-translation-task.html

2http://www.statmt.org/wmt18/
translation-task.html

3http://www.himl.eu

model was eventually deployed as the core com-
ponent of the final English→German HimL trans-
lation engine in year 3 of the project (Y3).

In this paper, we give a brief technical overview
of the HimL Y3 engine’s neural translation model
for English→German. We will show by how
much the translation quality of medical texts im-
proves compared to our previous year’s WMT17
biomedical task submission (Huck et al., 2017a).
We then proceed to compare with a Transformer
model (Vaswani et al., 2017) that we have trained
after the end of the HimL project. We find that
the Transformer model performs even better than
the HimL Y3 engine, which was based on Ne-
matus (Sennrich et al., 2017) with a single hid-
den layer. The good result encouraged us to try
out the Transformer in the other translation direc-
tion, German→English. We will also report the
German→English results.

In addition to the English–German biomedi-
cal task, LMU Munich has participated in the
WMT18 English–German news translation task
(Bojar et al., 2018) in both translation directions.
Our (supervised) news task systems are shortly de-
scribed towards the end of the paper.4

2 Domain Adaptation

Medical texts differ in their style and in their top-
ics from the typical content of many widely used
training corpora, such as the parallel Europarl cor-
pus (Koehn, 2005) or most of the large mono-
lingual corpora that are distributed for the WMT
shared task on machine translation of news (Bo-
jar et al., 2018, 2017a, 2016, 2015). Medical
documents also often contain a large amount of
domain-specific technical terms in their vocabu-
lary. Furthermore, sense shifts of words (away

4LMU’s unsupervised machine translation system for the
news task is described in a separate paper (Stojanovski et al.,
2018).
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from their respective meaning in out-of-domain
corpora) are common (Carpuat et al., 2013; Irvine
et al., 2013).

Domain adaptation of conventional phrase-
based machine translation systems is a well-
explored research area. Several different effec-
tive solutions which may be used in order to
domain-adapt a phrase-based system have been
proposed in the literature. (Inter alia, cf. Huck
et al. (2015) for a few interesting empirical re-
sults and a list of some major bibliographic refer-
ences.) Machine translation in academic research
labs and also in industry is however going through
a paradigm shift away from phrase-based tech-
nology and on towards artificial neural network
models. Neural machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014) is the new
state of the art for basically all medium- to high-
resource language pairs since around two to three
years. The paradigm shift poses new challenges in
domain adaptation, since most known techniques
are rather specific to the phrase-based translation
model and therefore cannot be readily applied to
neural systems.

Domain adaptation of neural translation sys-
tems is a fresh and active field of scientific in-
quiry. The most wide-spread practical solution at
present is referred to as “fine-tuning”. A base-
line model is pre-trained by optimizing the neural
model parameters on some large general corpus.
Subsequently, training is simply continued on an
in-domain corpus, usually with a smaller learning
rate—i.e., in this second optimization run the pa-
rameters are initialized with the trained model pa-
rameters from the previous optimization. A cru-
cial aspect is the availability of high-quality in-
domain training data, or alternatively, the collec-
tion thereof. If a general-domain or out-of-domain
neural model from a first optimization run already
exists, then fine-tuning allows for quick adjust-
ment of the model to a specific domain by means
of a short continued optimization on an in-domain
corpus, most often with less data than in the first
run.

3 Neural Network Architectures

3.1 GRU Encoder-Decoder

We utilize the Nematus implementation (Sen-
nrich et al., 2017) to build encoder-decoder NMT
systems with attention and gated recurrent units
(GRUs). Our architecture is flat, it has only one

single hidden layer. We configure dimensions of
500 for the embeddings and 1024 for the hidden
layer. We train with the Adam optimizer (Kingma
and Ba, 2015), a learning rate of 0.0001, batch size
of 50, and dropout with probability 0.2 applied to
the hidden layer, but not to source, target, and em-
beddings. We validate every 10 000 updates and
do early stopping when the validation cost has not
decreased over ten consecutive control points.

3.2 Transformer
We use the Sockeye implementation of the
Transformer (Hieber et al., 2017). For the
German→English translation direction we
train small Transformer models and for
English→German big models as outlined in
Vaswani et al. (2017). All models have six
encoder and decoder layers. The size of the layers
and the embeddings is 512 for the small models
and 1024 for the big ones. The dimensionality
of the feed-forward networks is 2048 (small) and
4096 (big). We use 8 attention heads for the small
and 16 for the big models. The models are trained
with the Adam optimizer with an initial learning
rate of 0.0002. The learning rate is reduced by a
factor of 0.7 if not improved for eight checkpoints.
We checkpoint the models each 3 000 updates and
do early stopping if perplexity has not improved
for 32 checkpoints. We apply dropout of 0.1 as
used by Vaswani et al. (2017). Additionally, we
use label smoothing with a value of 0.1. We also
tie the target and output embeddings. All models
are trained with a word-level batch size of 4096.

4 Preprocessing

A linguistically informed, cascaded word segmen-
tation technique is applied to the German side of
the training data (Huck et al., 2017b). With a
linguistically more sound word segmentation, we
expect advantages over plain BPE segmentation
in three important aspects: vocabulary reduction,
reduction of data sparsity, and open vocabulary
translation. The NMT system can learn linguis-
tic word formation processes from the segmented
data.

We cascade three different word splitting meth-
ods on the German side:

1. First we apply a suffix splitter that sepa-
rates common German morphological suf-
fixes from the word stems. Our suffix split-
ter is a modification of the German Snow-
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ball stemming algorithm that separtates suf-
fixes from the word stem, rather than strip-
ping them.

2. Next we apply the empirical compound split-
ter as described by Koehn and Knight (2003).

3. We finally apply the Byte Pair Encoding
(BPE) technique (Sennrich et al., 2016b) on
top of the suffix-split and compound-split
data in order to further reduce the vocabulary
size.

Special marker symbols allow us to revert the
segmentation in postprocessing when German is
the target language.

Our linguistically informed word segmentation
was already used on the target language side
for LMU’s participation in the WMT17 shared
task on machine translation of news (Huck et al.,
2017a). At WMT17, LMU’s primary submission
was ranked first in the human evaluation (Bojar
et al., 2017a). We presume that the high human
rating of LMU’s WMT17 submission can mostly
be attributed to our efforts toward better word seg-
mentation. We anticipate similar benefits in the
medical domain. Dedicated methods that tackle
rich target-side morphology have also shown good
results in phrase-based translation systems previ-
ously (Huck et al., 2017c). Future work on neu-
ral machine translation could for instance follow
a two-step prediction paradigm (Conforti et al.,
2018), or improve over our current version of lin-
guistically informed word segmentation by means
of a better linguistic analysis (Weissweiler and
Fraser, 2017).

In the present work, the linguistically informed
word segmentation is not only employed on the
target side for English→German machine transla-
tion, but in German→English systems also on the
source language side.

The English language side is always simply
BPE-segmented.

We learn the compound split model and the BPE
merge operations from Europarl and use this word
segmentation and vocabulary for all corpora.

5 Systems: Medical Translation

5.1 English→German HimL Y3 System

The English→German HimL Y3 engine is based
on a shallow GRU encoder-decoder model built
with Nematus (Section 3.1). We apply an incre-
mental training regime that is inspired by “fine-

tuning” (Section 2). First, we train a model on par-
allel corpora from the WMT news task. We then
successively refine the model and adapt it to the
medical domain. Consecutive optimization runs
are initialized with the respective previous model
parameters. For each refinement step, we replace
the training data, first with larger corpora, then
with corpora that better match the domain.

The HimL tuning sets are used for valida-
tion, and we test separately on the Cochrane and
NHS24 parts of the HimL devtest set.5 The
translation quality (in case-sensitive BLEU (Pa-
pineni et al., 2002)) of different system setups
after several development stages is presented in
the top section of Table 1. WMT_parallel de-
notes the Europarl, News Commentary, and Com-
mon Crawl parallel training data as provided for
WMT17 by the organizers of the news translation
shared task. WMT_backtranslated_news_crawl
denotes Edinburgh’s backtranslations of monolin-
gual WMT News Crawl corpora from WMT16.6

Y3_base_general_data is a large collection of
English–German bitext used in the HimL project.
Cochrane-selected and NHS24-selected denote
synthetic data mixes from HimL whose content
is automatically filtered to match the Cochrane or
NHS24 use cases. Corpus statistics of the HimL
training data and a more detailed description of
the data selection procedure are provided by Bo-
jar et al. (2017b) (Section 2.4 of HimL Deliverable
D1.1).

We vary the learning rate during system devel-
opment, as stated in the table. As a last step, we
apply n-best list reranking (n = 50) with a right-
to-left NMT model (“r2l reranking”). Ensembling
did not yield any clear gains, so we deployed sin-
gle models for English→German.

The bottom row of Table 1 contains the BLEU

scores of our last year’s primary system (Huck
et al., 2017a) for the WMT17 biomedical task
(Yepes et al., 2017). We improve over it by more
than three points.

5.2 English→German Transformer System
We build Transformer models (Section 3.2) in or-
der to evaluate whether they perform better than
our Nematus-based HimL Y3 system.

For the English→German Transformer model,
we train three separate models and ensemble them.

5http://www.himl.eu/test-sets
6http://data.statmt.org/rsennrich/

wmt16_backtranslations/en-de/
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English→German Cochrane NHS24
BLEU BLEU

WMT_parallel (lrate = 0.0001) 31.5 28.9
+ WMT_parallel, WMT_backtranslated_news_crawl (lrate = 0.0001) 29.8 27.6
+ UFAL_medical_shuffled_all (lrate = 0.0001) 35.1 28.9
+ Y3_base_general_data (lrate = 0.00001) 35.7 29.8
+ Cochrane-selected, NHS24-selected, 10 × UFAL_medical_indomain (lrate = 0.00001) 38.6 33.0
+ r2l reranking (= HimL Y3) 39.6 34.0
Transformer single 37.8 33.3
Transformer ensemble 39.0 34.1
+ r2l reranking 40.3 35.5
LMU WMT17 biomedical (Huck et al., 2017a) 35.8 30.3

Table 1: English→German medical translation results on HimL devtest sets (case-sensitive BLEU). Extensions are
applied incrementally. Particularly, in the top section of the table, which reports on HimL Y3 system engineering,
we conduct successive model refinement by consecutively optimizing on different corpora. The middle section
of the table reports on Transformer experiments. The row at the bottom provides the results of our WMT17
biomedical task system.

We also apply right-to-left reranking on these
models as well. Because of time constraints we
did not train a Transformer right-to-left model. In-
stead, we generated a 50-best list with the Trans-
former models and used the already trained Nema-
tus right-to-left models for the reranking.

No incremental training regime or fine-tuning
is applied to the Transformer system. We train
on the same set of corpora that is also used in
the last refinement step of the HimL Y3 sys-
tem (Cochrane-selected, NHS24-selected, 10 ×
UFAL_medical_indomain).

The translation results with the
English→German Transformer systems are
presented in the middle section of Table 1. The
Transformer outperforms our other systems.

We submitted three runs to the WMT18
biomedical translation shared task: the r2l-
reranked Transformer (run1, primary); a Trans-
former ensemble without reranking (run2, con-
trastive); and the HimL Y3 system (run3, con-
trastive).

5.3 German→English Transformer System

Our German→English Transformer model is an
ensemble of three separate models, like in the
English→German translation direction. We use
the same training corpus, but with source and tar-
get side switched. The preprocessing remains the
same. Since German is the source language in this
setup, our linguistically informed word segmenta-
tion technique is applied to the input side here.

The BLEU scores of the German→English
Transformer without ensembling (single model)

are 53.3 (Cochrane) and 41.7 (NHS24), respec-
tively. The ensemble is reaching BLEU scores of
54.5 (Cochrane) and 42.2 (NHS24), which is a de-
cent gain over the single model.

6 Systems: News Translation

6.1 English→German News Task System

For the shared task on machine translation of
news, we did not build any updated system, but
participated with our system from WMT17 (Bojar
et al., 2017a). The system was trained under “con-
strained” conditions, employing only permissible
resources as defined by the shared task organizers.
Huck et al. (2017a) provide a detailed description,
along with experimental results. In short, we con-
ducted the following steps in an incremental train-
ing regime (with consecutive optimizations, in a
similar manner as presented above for the HimL
Y3 system):

1. Optimize a Europarl baseline model.
2. Add News Commentary and Common Crawl.
3. Add synthetic training data (Ueffing et al.,

2007; Lambert et al., 2011; Huck et al., 2011;
Huck and Ney, 2012; Sennrich et al., 2016a).

4. Fine-tune towards the domain of news arti-
cles. For that purpose, several newstest
development sets are employed as a training
corpus. The learning rate is decreased.

5. Rerank n-best list with a right-to-left neural
model (Liu et al., 2016), which is trained for
reverse word order (Freitag et al., 2013).
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6.2 German→English News Task System

Finally, for the translation of news articles from
German into English, we also trained a basic
shallow GRU encoder-decoder system (cf. Sec-
tion 3.1). The training data is a concatenation
of Europarl, News Commentary, Common Crawl,
and some synthetic data in the form of backtrans-
lated English news texts. The German source side
is preprocessed with our linguistically informed
word segmentation (Section 4).

7 Conclusion

In this paper, we have described the steps we took
to build a strong neural system for the translation
of medical documents. Our English→German
translation system was deployed within the HimL
project. We used the system to participate in the
WMT18 biomedical translation shared task. On
HimL devtest sets, our WMT18 biomedical task
systems outperforms our WMT17 submission sys-
tem by more than three BLEU points.

Three aspects make our system effective in our
view. (1.) We have high-quality in-domain train-
ing data at hand. (2.) A reliable preprocessing
pipeline has been developed. (3.) A simple, but
well-working domain adaptation method is known
for neural machine translation.

The model architecture is also very important,
as our additional Transformer experiments show:
A less highly engineered Transformer model is on
par with our deployed HimL project system.

Additionally to the English→German medical
domain system, we have also briefly presented our
system for the German→English translation direc-
tion and our WMT18 news task submissions.
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