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Abstract

In this article we describe the TALP-UPC
research group participation in the WMTI18
news shared translation task for Finnish-
English and Estonian-English within the
multi-lingual subtrack. All of our primary sub-
missions implement an attention-based Neural
Machine Translation architecture. Given that
Finnish and Estonian belong to the same lan-
guage family and are similar, we use as train-
ing data the combination of the datasets of
both language pairs to paliate the data scarce-
ness of each individual pair. We also report the
translation quality of systems trained on indi-
vidual language pair data to serve as baseline
and comparison reference.

1 Introduction

Neural Machine Translation (NMT) has consis-
tently maintained state of the art results in the last
years. However, due to its need for large amounts
of training data, low resource language pairs need
to resort to extra techniques to achieve acceptable
translation quality.

In the WMTI18 news shared translation task,
two of the languages to translate are Finnish and
Estonian (that are to be translated to and from En-
glish). Both can be considered low-resource lan-
guages in general, and also in particular for this
shared task, based on the volume of data made
available for training, especially Estonian.

In this report we describe the participation
of the TALP research group from Universitat
Politecnica de Catalunya (UPC) at the afore-
mentioned WMT18 news shared translation task,
specifically in the multi-lingual subtrack, as our
systems make use of the data from both Finnish
and Estonian language to improve the translation
quality.

2 Linguistic Background

Finnish and Estonian are respectively the official
languages of Finland and Estonia, having 5.4 and
1.1 million native speakers (Lewis, 2009). They
are Finnic Languages, a branch within the Uralic
Language family.

Estonian and Finnish make use of the Latin al-
phabet with some additional letters, each one in-
corporating extra letters (e.g. 4, 0, U, 0, §, Z).

Finnish and Estonian are morphologically-rich
agglutinative languages. Estonian presents four-
teen grammatical cases while Finnish presents fif-
teen. Verb conjungations are very regular in both
languages. Neither of them has grammatical gen-
der nor definite or indefinite articles. Both have
flexible word order, but the basic order is subject-
verb-object.

Like other Finnic languages, both Finnish and
Estonian present consonant gradation (consonants
are classified in grades according to phonologic
criteria, and such grades condition the combined
appearance of the consonants in a derived word),
but the gradation patterns each one follows are dif-
ferent.

While Finnish has kept most of its late Proto-
Finnic linguistic traits, Estonian has lost some
of its former characteristics, like vowel harmony
(vowels in a word cannot appear freely but their al-
lowance is constrained by rules), which in Finnish
affects case and derivational endings. Also, Esto-
nian mostly lost the word-final sound, making its
inflectional morphology more fusional for nouns
and adjectives (Fortescue et al., 2017). German
language influence also led Estonian to use more
postpositions where Finnish uses cases. Geo-
graphical location has also led to differences in the
loanwords borrowed by each language.
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3 Attention-based NMT

The first competitive NMT systems were based on
the sequence-to-sequence architecture (Cho et al.,
2014; Sutskever et al., 2014), especially with the
addition of attention mechanisms (Bahdanau et al.,
2014; Luong et al., 2015), either using Gated Re-
current Units (GRU) (Cho et al., 2014) or Long-
Short Term Memory (LSTM) units (Hochreiter
and Schmidhuber, 1997).

Sequence-to-sequence with attention was the
state of the art NMT model until the Transformer
architecture (Vaswani et al., 2017) was proposed.
This model does not rely on recurrent units or con-
volutional networks, but only on attention layers,
combining them with several other architectural
elements: positional embeddings (Gehring et al.,
2017), layer normalization (Ba et al., 2016), resid-
ual connections (He et al., 2016) and dropout (Sri-
vastava et al., 2014).

The type of attention mechanism used by the
Transformer model is a multi-headed version of
the dot-product attention, applied both as self-
attention to source and target (prefix) sentences
and as encoder-decoder attention mechanism.

4 Low resource NMT

The application of NMT to low resource language
pairs needs extra techniques to achieve good trans-
lation quality. These are some of the frequently
used approaches:

Back-translation (Sennrich et al., 2015a) con-
sists in training an auxiliary translation system
from target language to source language and use
it to translate a large target language monolingual
corpus into the source language, and then use such
synthetic source-target sentence pairs to augment
the originally available parallel corpus and train on
it a new source language to target language trans-
lation system.

Pivoting approaches use a third resource-rich
language as pivor and train translation systems
from source language to pivot and from pivot to
target language. These auxiliary systems can ei-
ther be used in cascade to obtain source-to-target
translations, or be used to build syntethic paral-
lel source-target corpora (i.e. pseudocorpus ap-
proach). A recent application of pivoting tech-
niques to NMT can be found in (Costa-jussa et al.,
2018).

Adversarial learning (Lample et al., 2018;
Artetxe et al., 2018) in a multi-task learning setup,

356

with an auxiliary text (denoising) auto-encoding
loss, whose internal sentence representation is
aligned with the ones from the translation task by
means of a discriminator in feature space.

Pre-trained cross-lingual embeddings
(Artetxe et al., 2016, 2017) can be used comple-
mentarily to further reduce the need for parallel
data.

Finding parallel data from a similar source
language and the same target language (or vice
versa) and adding it to the original parallel cor-
pus. With such a composite training data set, a
wordpiece-level vocabulary can leverage the com-
mon word stems between the similar languages
and profit from the combined amount of data. This
approach is used in the present work, as described
in sections 5 and 6.1.

Multilingual zero-shot translation (Johnson
et al., 2017) also uses parallel corpora from differ-
ent source and target language pairs, but mixes to-
gether every available language pair, regardless of
how linguistically close they are. This way, there
is a single shared word-piece vocabulary for all
languages, and the system is trained on a corpus
that combines data from several different language
pairs. In order to convey the association between
a source sentence and its translation to a specific
target language, the source sentence is prefixed
with a token that specifies which language the tar-
get sentence belongs to. This approach aims at
implicitly learning language-independent internal
representations, enabling the translation of low re-
source language pairs (and even language pairs
where there is zero parallel data available) to profit
from the combined language pair training data.

5 Corpora and Data preparation

All proposed systems in this work are constrained
using exclusively parallel data provided by the or-
ganization. For the English - Finnish language pair
the data employed is the Europarl corpus version
7 and 8, Paracrawl corpus, Rapid corpus of EU
press releases and Wiki Headlines corpus. For
the English - Estonian data the Europarl v8 cor-
pus, Paracrawl and Rapid corpus of EU press re-
leases corpus were employed.

All language pairs have been preprocessed fol-
lowing the proposed scripts by the organization
of the conference. The pipeline consisted in nor-
malizing punctuation, tokenization and truecas-
ing using the standard Moses (Koehn et al., 2007)



scripts. With the addition that, for tokenization, no
escaping of special characters was performed.

For the language pair of English - Estonian we
found that from Paracrawl corpus a considerable
number of sentences were not suitable sentences
in the intended languages, but apparently random
sequences of upper case characters. In order to re-
move them, an additional step of language detec-
tion was performed using library langdetect
(Danilak, 2017), which is a port to Python of li-
brary language-detection (Shuyo, 2010).
The criteria for removing noisy sentences from the
dataset was that either one of the languages of the
pair could not be identified as a language.

The sizes of the different data sets compiled for
each language pair and once cleaned as described
earlier in this section are presented in Table 1.

Table 1: Corpus statistics in number of sentences and
words for both parallel corpora, English - Estonian and
English - Finnish.

corpus lang set sentences words
En train 998547 23056922

En-Et test 2000 44305
£t train 998547 17376004

test 2000 34733

train 3064124 62208347

En  dev 3000 64611

En-Fi test 3002 63417
train 3064124 45692989

Fi  dev 3000 48839

test 3002 46572

As described in sections 2 and 4, as Finnish and
Estonian belong to the Finnic language family and
are similar to each other, we aimed at combining
the individual parallel corpora (En - Fi and En -
Eys) into a single larger corpus. For the translation
directions where English is the target language
(i.e. Fi — En and Et — En) we prepared a com-
bined Fi + Et — En corpus by simply concatenat-
ing the original ones. This approach was not appli-
cable to the reverse directions, as we needed some
way to convey the information about whether to
generate either Finnish or Estonian as part of the
input to the neural network. Following the ap-
proach in (Johnson et al., 2017), we modify the
individual parallel corpora to add a prefix to the
English sentences to mark whether the associated
target sentence was Finnish or Estonian, and then
proceed to concatenate both corpora into the final
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combined one En — Fi + Et. The prefixes used
were respectively <£fi> and <et>. This prefix
needs to be added likewise to the test English sen-
tences when decoding them into Finnish or Esto-
nian.

As the combined corpora are concatenations of
the individual ones, their sizes can be computed
from the figures in Table 1 by mere addition of the
individual sizes of each language pair.

6 System Description

In this section we present the translation systems
used for our submissions, both in terms of vocab-
ulary extraction strategies followed (section 6.1),
of neural architecture used (section 6.2) and of
needed post-processing (section 6.3).

6.1 Vocabulary Extraction

The NMT models used for all of our submissions,
which are described in section 6.2 make use of pre-
defined sets of discrete tokens that comprise the
vocabulary.

The vocabulary of each of our translation sys-
tems (both the final submissions and the systems
trained for reference described in section 7) was
based on wordpiece extraction (Wu et al., 2016).
For each system, the source and target vocabular-
ies were extracted separately, aiming at a vocab-
ulary size of 32K tokens. Vocabularies are not
shared between source and target languages in any
case.

Word-piece vocabularies (or the very similar
Byte-Pair Encoding (BPE) vocabularies (Sennrich
et al., 2015b)) are usually applied to extract vocab-
ularies from corpora that contain data from simi-
lar languages in order to try to find common stems
and derivational suffixes so that the language com-
monalities can be leveraged by the neural network
training.

6.2 NMT Models

All the submissions presented to the task make use
of the Transformer NMT architecture, which is de-
scribed in section 3. We used the implementation
released by the authors of (Vaswani et al., 2017) !

The complete hyperparameter configuration
used for all the attention-based neural machine

"The authors of (Vaswani et al., 2017) made the
source code available at https://github.com/
tensorflow/tensor2tensor. For this work, version
1.2.9 was used.



translation models in our submissions (which con-
sisted in the t ransformer_base parameter set
in tensor2tensor) is shown in Table 2.

Table 2: Hyperparameters of the neural model.

hyperparameter value
attention layers 6
attention heads per layer 8
hidden size (embedding) 512
batch size (in tokens) 4096 (4 GPU)
training steps 800000
tokenization strategy wordpiece
vocabulary size 32K
optimization algorithm Adam

learning rate warmup + decay

After the training, the weights of the last
5 checkpoints (having checkpoints stored every
2000 optimization steps) are averaged to obtain
the final model.

6.3 Post-processing

Following the inverse steps of the processing de-
scribed in section 5, the decoded outputs of NMT
model need to be de-truecased and de-tokenized
by means of the appropriate Moses scripts.

7 Experiments

The hypothesis on which we base this work is that,
given the similarity between Estonian and Finnish,
a system trained with the combination of the data
from both languages would outperform systems
trained on the individual language datasets.

In order to validate this hypothesis, we con-
ducted direct experiments, training systems on
the individual language datasets and also on
the combined datasets (as described in sec-
tion 5), and comparing their translation quality.
The datasets used for testing the performance
were newsdev2018 for Estonian - English and
newstest2017 for Finnish - English. The re-
sults of the experiments are shown in Table 3, were
all figures represent case-insensitive BLEU score
over the aforementioned reference test corpora.

While the results for Finnish are not very dif-
ferent between the individual and combined data
trainings 2, the results for Estonian show an im-
portant improvement of the training on the com-
bined data over the individual data. This cor-

*Improvements of less than 1 BLEU point are normally
considered neglectable.
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Table 3: Comparison between translation quality
(case-insensitive BLEU) of systems trained on the
individual language data vs. systems trained on the
combined data .

direction individual combined ABLEU
En — Fi 24.36 25.21 +0.85
Fi— En 29.39 30.00 +0.61
En — Et 15.97 18.92 +2.95
Et — En 21.66 25.66 +4.00

relates with the fact that the Estonian - English
training set is less than one third the size
of the Finnish - English, therefore the size in-
crease in the Finnish - English combined train-
ing corpus is much smaller than the increase for
Estonian - English, as shown in Table 1.

8 Conclusions

In this article we described the TALP-UPC sub-
missions to the the multi-lingual subtrack of
the WMTI18 news shared translation task for
Finnish - English and Estonian - English language
pairs.

Our experiments suggest that for low resource
languages, enlarging the training data with trans-
lations from a similar language can lead to impor-
tant improvements in the translation quality when
using subword-level vocabulary extraction strate-
gies. In this line, further research should be con-
ducted to understand how subwords have captured
the differences between Estonian and Finnish cog-
nates and to leverage such an insight to devise
more effective vocabulary extraction strategies.
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