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Abstract

Data selection is a process used in select-
ing a subset of parallel data for the training
of machine translation (MT) systems, so that
1) resources for training might be reduced,
2) trained models could perform better than
those trained with the whole corpus, and/or 3)
trained models are more tailored to specific do-
mains. It has been shown that for statistical
MT (SMT), the use of data selection helps im-
prove the MT performance significantly. In
this study, we reviewed three data selection
approaches for MT, namely Term Frequency–
Inverse Document Frequency, Cross-Entropy
Difference and Feature Decay Algorithm, and
conducted experiments on Neural Machine
Translation (NMT) with the selected data us-
ing the three approaches. The results showed
that for NMT systems, using data selection
also improved the performance, though the
gain is not as much as for SMT systems.

1 Introduction

Data selection is a technology used to improve
Machine Translation (MT) performance by choos-
ing a subset of the corpus for the training of MT
systems (Chen et al., 2016). There are additional
benefits using subsets instead of the whole corpus
for MT training. Firstly, the training time could
be reduced significantly. In some application sce-
narios, a much shorter training time would be very
useful. Secondly, we could select data with the
aim to make trained systems perform well for spe-
cific domains. In MT, models built with in-domain
data perform better, as the vocabulary and sentence
structures used in one domain (e.g. legal) differs
from another unrelated domain (e.g. biotechnol-
ogy).

There are several studies on data selection meth-
ods for SMT, showing good improvements over the
baselines in which the whole corpora were used

for training (Chen et al., 2016). A popular data
selection method is cross-entropy difference (CED)
(Moore and Lewis, 2010). In particular its bilingual
variant (Axelrod et al., 2011) showed a positive im-
pact of data selection for MT.

Term Frequency-Inverse Document Frequency
(TF-IDF) (Salton and Yang, 1973) has also been
used as a baseline data selection method in the liter-
ature. Data selection with cleaning was proposed to
improve the robustness of training with divergent
sentences (Carpuat et al., 2017).

Feature Decay Algorithms (FDA) are data se-
lection methods that try to extract the subset of
sentences by which the coverage of target language
features is maximized (Biçici and Yuret, 2011). It
has been used to select sentences from parallel data
for SMT and NMT (Poncelas et al., 2018) in order
to obtain a subset of data that is more tailored to a
given test set.

Most of these results focused on comparing train-
ing of models from scratch for use in specific do-
mains. The aforementioned papers do not include
a focus on the impact of such techniques in fine-
tuning the resulting trained model, which could be
useful in the case where a baseline model works
as an initialization and can be reused for any do-
main and thus reduce the time required to train the
models for specific domains (van der Wees et al.,
2017).

In this paper we evaluate the impact of data se-
lection methods on Neural Machine Translation
(NMT) systems. We would like to answer the fol-
lowing questions: Do data selection approaches
improve domain NMT performance? Which of the
three commonly used methods delivers the best
results on data selection for NMT? How does the
size of the seed and the selected training sentences
affect the performance?

The paper is organised as follows. In Section 2,
we give an overview of data selection approaches.
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Experimental setup and results are presented in
Section 3 and Section 4. Conclusions and future
work are given in Section 5.

2 Data Selection Methods

In order to train an MT model for a specific domain,
it is best to use those sentences in a data set that are
the most related to that domain. We use different
data selection techniques to retrieve the sentences.
These techniques aim to extract a subset of data
from large datasets. The application of these tech-
niques can be used to limit the amount of resource
consumption, removing noise and/or adapting the
data to a particular domain.

Among different data selection techniques
(Eetemadi et al., 2015), in this work, we focus on
three particular methods: Cross Entropy Difference
(Section 2.1), TF-IDF Data Selection (Section 2.2),
and Feature Decay Algorithms (Section 2.3).

2.1 Cross Entropy Difference
The Cross Entropy Difference method was first
introduced by (Moore and Lewis, 2010) as a way to
build more accurate in-domain Language Models
for use in several tasks. The method is a variant
of scoring by perplexity, since cross-entropy and
perplexity are tightly coupled as shown in 1, where
b is the used base.

b−
∑

x ·p(x) log q(x) = bH(p,q) (1)

Given a general language model LMG, built
with out-of-domain data, and an in-domain
language-model LMD, the method ranks sentences
s using the cross-entropy difference in both lan-
guage models, as in (2):

CED(s) = HD(s)−HG(s) (2)

Although different ranking methods have been
introduced, this method still remains popular
among data selection approaches, having been used
in recent work such as for the selection of mono-
lingual data (Junczys-Dowmunt and Grundkiewicz,
2016), and for the selection of conversational data
(Lewis and Federmann, 2015). Some work was
also published on the use of neural language mod-
els for this purpose, such as Duh et al. (2013), but
this applied to Statistical Machine Translation.

In our experiments, we built n-gram language
models of order 5 using the KenLM tool1 (Heafield,

1https://github.com/kpu/kenlm

2011). We then use the language model probability
scores normalized by sentence length to compute
the cross-entropy difference and rank the entire
generic corpus.

2.2 TF-IDF data selection
The TF-IDF (Salton and Yang, 1973) method is
widely known for its use in several information
retrieval applications. It is defined in (3), where
tft,d is the term frequency in the document, i.e. the
ratio between the number of times the term appears
in the sentence and the total number of terms, and
idft,d is the inverse document frequency, the ratio
between the total number of documents and the
number of documents containing the term.

tf-idft,d = tft,d ·
N

dft
(3)

To compute the TF-IDF measure in our experi-
ments, we apply tokenization, remove punctuation
and common stopwords in the texts, and finally
truecase the sentences. We then consider every sen-
tence in the domain corpus as a query sentence, and
every sentence in the generic corpus as a document.
Then, we obtain for each query a ranking of the
documents, computed with cosine-similarity.

This ranking is stored for every query sentence
and used to retrieve the K-nearest neighbours
(KNN) necessary to obtain different data selection
sizes.

2.3 Feature Decay Algorithms
Feature Decay Algorithms (FDA) (Biçici and Yuret,
2011; Biçici, 2013) are methods of data selection
that try to extract, from a set of sentences, those
that better represent a seed. It has been used in
SMT to extract sentences from parallel corpora in
order to obtain a subset of data more adapted to
a given test set. These methods select sentences
based on two criteria: a) the similarity with the
seed (the more sequence of words it shares with the
seed the better); and b) the variability of the words
(the occurrences of the words shared with the seed
should be well distributed, and avoid having too
many occurrences of a few words).

These algorithms extract the n-grams from the
seed as features. Each feature is assigned an initial
value, indicating the relevance of being selected,
and the sentences are scored as the normalized
sum of values of contained features. Then, the
sentences are iteratively selected. Each time a sen-
tence is selected, the values of contained features
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are decayed. Accordingly, it promotes selecting
features that have not been previously selected in
the process.

The decay function is defined in Equation (4):

decay(f) = init(f)
dCL(f)

(1 + CL(f))c
(4)

where L is the set of selected sentences and CL(f)
is the count of the feature f in L. init(f) is an
initialization function. The variables d ∈ (0, 1] and
c ∈ [0,∞) are parameters that regulate how much
the value of the feature f should decay. These
values are by default (Biçici and Yuret, 2011) 0.5
and 0.0 for d and c, respectively (so, by using de-
fault values the decay function in Equation (4) is
decay(f) = init(f)0.5CL(f)). There are alterna-
tive ways of setting the values (Poncelas et al.,
2016, 2017) that can obtain better results. However,
in this work we used the default configuration of
d = 0.5, c = 0.0 and used trigrams as features.

3 Experimental Setup

3.1 Data description
For the experiments we use English–French par-
allel data from two different domains/corpora:
EMEA2 and DGT3 from the Open Parallel Cor-
pus (OPUS) (Tiedemann, 2009). The first consists
of medical data and the second a translation mem-
ory in the legal domain. We chose these domains in
particular because they are categories more distant
from the generic data, which is comprised of news
data. The MultiUN corpus (Ziemski et al., 2016) is
used for the training of generic models. Moreover,
we use only its 6-way subset corpora, to be able to
run the experiments in a more comparable setting.

3.2 Seed preparation
Although each data selection method has provided
its own approach to select subsets from large cor-
pora, in practice they would better perform if given
a good initial subset (i.e. seed) to start with.

To prepare such an initial seed (the same seed
is used in the three data selection algorithms), we
remove noisy sentences considering punctuation
and numerical character. In particular, we remove
sentences where:

1. a source (or target) sentence contains fewer
than tchars non-punctuation characters,

2http://opus.nlpl.eu/EMEA.php
3http://opus.nlpl.eu/DGT.php

2. a source (or target) sentence contains fewer
than twords words,

3. the source (or target) sentence ratio between
punctuation characters and non-punctuation
characters is above tratio.

where tchars, twords and tratio are thresholds.
For both domains and language pairs, tchars=5,
twords=2 and tratio=0.5 are used. We then removed
duplicates using the source as reference and com-
pile the remaining sentences into three parts: a val-
idation set (2000 lines); a test set (2000 lines); and
the remaining lines comprise the seed domain data.
The EMEA domain corpus gave rise to a seed with
238K lines, and the DGT was truncated to a similar
size, 250K, to keep experiments comparable.

3.3 Neural Machine Translation

The aim of this work is to assess the impact of data
selection techniques on NMT. For this purpose,
we use the Marian framework4 (Junczys-Dowmunt
et al., 2018) to train models using the attention-
based encoder–decoder architecture as described
in Sennrich et al. (2017).

For all experiments a preprocessing routine sim-
ilar to the one in Moses5 (Koehn et al., 2007) is
used. The preprocessing consists of the following
steps: entity replacement (on numbers, emails, urls
and alphanumeric entities), tokenisation, truecas-
ing and Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) with 89,500 merge operations.

4 Experiments

We present MT results using the three data selec-
tion methods and then use the best of the three
methods to conduct a series of experiments to as-
sess the impact of data selection on NMT mod-
els. We present two evaluation scores, BLEU
(Papineni et al., 2002) and Translation Error Rate
(TER) (Snover et al., 2006), in the tables. These
scores give an estimation of how good the trans-
lation is: For BLEU, higher scores indicate better
translations, while for TER, as it measures an error
rate, lower scores indicate better translation perfor-
mance.

We performed three different experiments:

• A comparison of the three data selection meth-
ods introduced in this paper (Section 4.1).

4https://marian-nmt.github.io/
5http://www.statmt.org/moses/
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TF-IDF CED FDA
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

Seed .384 .535 .384 .535 .384 .535
+ 240K (1:1) .417 .506 .409 .513 .439 .487
+ 480K (1:1) .433 .497 .422 .497 .441 .484
+ 480K (2:1) .453 .470 .443 .483 .464 .467
+ 1M (1:1) .443 .477 .433 .493 .445 .476
+ 1M (4:1) .466 .470 .456 .473 .477 .457
+ 2M (1:1) .449 .479 .440 .483 .452 .469
+ 2M (8:1) .488 .445 .479 .453 .491 .446

Table 1: Results of running three different data selection methods on different selection sizes for EMEA EN→FR. Both BLEU
and TER are presented. The top result for each slice of selected data is presented in bold.

• A comparison of the data selection methods
using different seeds (Section 4.2).

• The impact of the best data selection method
in NMT (Section 4.3)

4.1 Comparison of methods
We start by comparing the three methods for the
EMEA domain for English–French. Several exper-
iments are run with different data selection sizes,
between 250K and 2M lines, from the MultiUN
corpus. We create different sizes of selected data
in between these values, corresponding to a factor
of 1, 2, 4 and 8 in relation to the size of the original
seed. The comparison is not extended to larger se-
lection sizes since a bigger slice, for example 4M,
would already represent almost half of the total
data available.

Table 1 shows the results of the three methods
for models trained from scratch using seed data and
different selected data. We present two approaches
of combining the data. The first is a simple con-
catenation of the seed and the selected data. The
second tries to balance the seed and the selected
data in terms of the number of sentences used for
training, by oversampling the seed a number of
times such that there are approximately the same
number of sentences in the selected data.

Two visible outcomes are shown in these experi-
ments. The first is the overall gain of the Feature
Decay Algorithm technique over its two counter-
parts. For every test (corresponding to a line in
the table), the BLEU scores are better using the
FDA method, followed by TF-IDF, with the CED
method showing lower NMT performance. This
result is interesting, since CED is one of the most
common used methods for data selection and it has
shown good results in several data selection experi-

ments. However, these results are typically related
to SMT, and in fact previous work in data selection
has shown that these methods do not achieve the
same performance for NMT.

The second result is that best performance was
obtained when balancing the seed data with the
selected data. We use this knowledge to guide the
following experiments. Finally, in all experiments
TER is also computed, and the results are consistent
with those shown in BLEU scores.

4.2 Seed size variation

In previous experiments we used all the domain
data available that passed our quality threshold,
described in Section 3.2, and selected from the
MultiUN corpus, which has little relation to the
domain data. We conduct further experiments to
analyse whether the previous results are dependent
on the initial seed size and also to what extend the
seed size impacts or limits the data selection gains.

We start with a seed of about 240K lines. To
study the impact of the seed size we retrieve two
subsets from the original seed with 50K lines and
100K lines. For each subset, we randomly sample
the amount of lines from the original seed three
different times and keep only the best subset, where
the quality is evaluated by running a baseline MT
experiment. Taking advantage of this preliminary
experiment, we guarantee that the seed we choose
from is not the worst to start with, increasing the
reliability of these experiments.

Regarding our first goal, we can conclude that
the previous results are not dependent on the ini-
tial seed size, from the results presented in Ta-
ble 2, which consistently show that FDA performs
best for all seeds. All experiments were run using
balanced data since this showed enhanced perfor-

227



TF-IDF CED FDA
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

240K .384 .535 .384 .535 .384 .535
+ 240K .417 .506 .409 .513 .439 .487
+ 480K .453 .470 .443 .483 .464 .467
+ 1M .466 .470 .456 .473 .477 .457
100K .306 .613 .306 .613 .306 .613
+ 240K .394 .520 .361 .550 .396 .523
+ 480K .419 .507 .396 .533 .425 .498
+ 1M .430 .498 .420 .505 .432 .489
50K .219 .685 .219 .685 .219 .685
+ 240K .368 .554 .296 .633 .370 .552
+ 480K .379 .545 .339 .595 .390 .537
+ 1M .391 .531 .384 .547 .394 .535

Table 2: Results of running different data selection methods on different seed sizes for EMEA EN→FR. The top result for
each seed size and slice of data selected is presented in bold. The ratio in the parentheses indicate the number of times seed was
oversampled

mance, as mentioned in the previous section.
For the impact of the seed size on the data selec-

tion gains, the results show that for similar selected
data, the score decreases with the seed, which is
visible from the seed score to the 1M data selection.
This is an intuitive result, since the amount of infor-
mation contained in the full size seed is obviously
larger than its counterparts.

However, it also shows that the gains from the
baseline to the data selection are actually bigger
for smaller seeds, with around 5–9 BLEU points
increase for the full seed, 9–13 for the 100K sample
and 16–18 points for the smaller 50K sample. This
is consistent with the fact that the amount of data
used has a bigger impact in NMT, especially when
compared with previous knowledge about these
methods in SMT.

4.3 Impact of data selection in NMT

Using the previous results as starting points, we
focus now only on the FDA method for data selec-
tion and use oversampling of the seed to obtain a
balanced training set.

4.3.1 Full training
Several experiments are run for both domains,
EMEA and DGT. To increase the confidence in
our results, we repeat the experiment for English-
Spanish, by selecting the corresponding Spanish
sentences in both domain datasets.6 All experi-

6Both the DGT and EMEA datasets are available in EN–
FR, EN–ES, and ES–FR, where part of the lines are aligned
across the three languages.

ments for each language pair share the same seed
data, oversampled to obtain a balanced corpus.

The results presented in Table 3 seem to support
some of the previous conclusions that data selec-
tion does not yield as much gain for the NMT as
it did for SMT. The best results are mostly data
selection of 2M or 4M. However, the values are
very close to the baseline obtained with the en-
tire MultiUN data combined with the seed, which
is balanced in the same way as the data selection
methods. The results with 6M are also very close
or slightly higher than the baseline, showing that
more data helps almost as much as selected data.

4.3.2 Adaptation from generic models
To try and separate the impact of the huge amount
of data the generic model represents, we ran the
same experiments in a fine-tuning scenario. In
this context, a model is firstly trained with all the
generic data until convergence, without any added
domain knowledge. Then, a new training pass is
ran until convergence with the domain data, where
we add the selected data to the seed as pseudo-
domain data. We mean to compare these selections
with a baseline using only the seed, since using the
full data here is redundant.

The data selection performed in the fine-tuning
scenario has a negative impact, as shown in Table
4, where most of the data selection sets used ob-
tain scores lower than the original seed baseline.
One possible factor is that the MultiUN data con-
tains very little domain data. As mentioned in the
previous section, this experiment would gain from
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EMEAEN→FR DGTEN→FR EMEAEN→ES DGTEN→ES
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

Seed .384 .535 .427 .469 .432 .485 .413 .453
+ 250K .439 .487 .438 .436 .486 .434 .458 .410
+ 500K .464 .467 .464 .417 .511 .418 .476 .397
+ 1M .477 .457 .472 .409 .525 .403 .494 .382
+ 2M .491 .446 .482 .403 .531 .396 .496 .383
+ 4M .492 .441 .478 .404 .535 .398 .495 .379
+ 6M .489 .448 .434 .453 .534 .399 .494 .385
+ all data (11M) .487 .454 .482 .405 .495 .449 .493 .384

Table 3: BLEU and TER scores for NMT training with different slices of selected data, using FDA for data selection. The top
two results for each column are shaded, with the top result presented in bold

gathering a larger and more diverse generic corpus.
Moreover, all fine-tuning results are below the

fully trained models with all data from the previ-
ous section. The most important factor here seems
to be the highly technical vocabulary the models
can have access to. While the model trained with
all data has access to both the generic and domain
vocabulary, the fine-tuned models are built on top
of the generic vocabulary only. Thus, the model’s
input vocabulary of the first contains the most rele-
vant domain words, while in the second these are
split into subwords, as would happen to rare words.

4.3.3 Human evaluation
We also conducted a human evaluation using Un-
babel’s quality control system. For each language
pair, translation direction and domain, 150 sen-
tences were chosen randomly for evaluation. We
then shuffled the content and provided it to evalu-
ators ( professional linguists) for Fluency and Ad-
equacy assessment. This assessment is done by
rating each sentence from 1 to 5, and then com-
puting the average for each model. The evaluators
were not provided with the information as to which
model was used to generate sentences. The defi-
nitions of Fluency and Adequacy, as used by the
Unbabel Quality Team, are as follows.

Fluency addresses the linguistic well-
formedness and naturalness of the text. Fluency
errors include grammar, spelling or unintelligible
text, sentence structure and word order issues, etc.
In sum, these errors affect the reading and the
comprehension of the text. The evaluation is done
on the resulting translations without revealing their
source sentences to the evaluators, to avoid biasing
Fluency scores.

Adequacy addresses the relationship of the tar-
get text to the source text and can only be assessed

by providing both translations and their source sen-
tences to the editors. In other words, Adequacy ad-
dresses the extent to which a target text accurately
renders the meaning of a source text. Adequacy er-
rors include changes in intended meaning, addition
and omission of content or any type of mistransla-
tion, etc. In sum, Adequacy measures if the target
text accurately reflect the meaning conveyed in the
source text (Way, 2018).

The results of human evaluation on Fluency and
Adequacy are presented in Table 5. The figures in
the table correspond to the top scores in Tables 3
and 4. The results show that with fine-tuning of the
training of models, Fluency is improved, especially
for the EMEA models. Adequacy is also signifi-
cantly improved in both EN-to-FR and EN-to-ES
models. It shows very clear that data selection does
improve the performance of all MT systems evalu-
ated in this paper, in both Adequacy and Fluency.

It was also shown in Table 4 and Table 5 that
for EN-to-FR, BLEU .452 of MT translated French
sentences approximately corresponds to Fluency
4.25, and for EN-to-ES, BLEU .485 of MT trans-
lated Spanish sentences approximately corresponds
to Fluency 4.50. In the future, we would like to
make more comparisons between human evalua-
tion metrics, e.g. Adequacy and Fluency as defined
by Unbabel Quality Team, with commonly used
MT performance metrics, e.g. BLEU and TER.

5 Conclusions

In this paper, we reviewed three commonly used
data selection methods, i.e. TF-IDF, CED and FDA,
for NMT. These methods improve the performance
significantly for SMT. The results showed that FDA
outperformed the other two methods. Although
the gain in MT performance is not as much as
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EMEAEN→FR DGTEN→FR EMEAEN→ES DGTEN→ES
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

MultiUN .208 .699 .338 .528 .247 .657 .361 .495
Seed .438 .481 .476 .413 .486 .432 .487 .388
+ 250K .429 .485 .462 .418 .469 .442 .473 .399
+ 500K .439 .476 .462 .416 .471 .438 .476 .396
+ 1M .436 .478 .465 .414 .478 .440 .477 .397

Table 4: Fine-tuning approach for NMT training with data selection. The top two results for each column are shaded, with the
top result presented in bold

Models trained EMEAEN→FR DGTEN→FR EMEAEN→ES DGTEN→ES
AD ↑ FL ↑ AD ↑ FL ↑ AD ↑ FL ↑ AD ↑ FL ↑

From Scratch
Seed 1.02 4.01 3.28 3.99 3.82 4.06 3.61 3.99
+ best slice 4.18 3.95 3.87 4.39 4.25 4.42 4.22 4.50
+ all data (11M) 4.1 3.95 3.78 4.29 3.99 4.33 4.19 4.47

With Fine-tuning
Seed 4.17 4.03 3.96 4.28 4.41 4.51 4.29 4.53
+ best slice 4.22 4.05 4.12 4.45 4.43 4.50 4.30 4.52

Table 5: Human evaluation of Adequacy (AD) and Fluency (FL) for top scores in previous experiments in Tables 3 and 4

that in SMT systems, our experiments showed that
using EMEA and MultiUN corpora, NMT systems
trained with FDA-selected data still outperform
systems trained with the whole corpus, in terms of
both BLEU and TER.

In addition to using data selection, training with
fine-tuning from pre-trained models is also em-
ployed to further improve MT performance. We
conducted human evaluation by professional lin-
guists, in which Adequacy and Fluency are as-
sessed. The results show that models trained with
selected data constantly outperformed those trained
with the whole corpus, in both human evaluation
measures. By employing fine-tuning on top of data
selection, MT performance is further improved sig-
nificantly in both Adequacy and Fluency.
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