
Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 212–223
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64022

Correcting Length Bias in Neural Machine Translation

Kenton Murray and David Chiang
Department of Computer Science and Engineering

University of Notre Dame
{kmurray4,dchiang}@nd.edu

Abstract

We study two problems in neural machine
translation (NMT). First, in beam search,
whereas a wider beam should in principle help
translation, it often hurts NMT. Second, NMT
has a tendency to produce translations that are
too short. Here, we argue that these prob-
lems are closely related and both rooted in la-
bel bias. We show that correcting the brevity
problem almost eliminates the beam problem;
we compare some commonly-used methods
for doing this, finding that a simple per-word
reward works well; and we introduce a simple
and quick way to tune this reward using the
perceptron algorithm.

1 Introduction

Although highly successful, neural machine trans-
lation (NMT) systems continue to be plagued by a
number of problems. We focus on two here: the
beam problem and the brevity problem.

First, machine translation systems rely on
heuristics to search through the intractably large
space of possible translations. Most commonly,
beam search is used during the decoding process.
Traditional statistical machine translation systems
often rely on large beams to find good translations.
However, in neural machine translation, increas-
ing the beam size has been shown to degrade per-
formance. This is the last of the six challenges
identified by Koehn and Knowles (2017).

The second problem, noted by several authors,
is that NMT tends to generate translations that
are too short. Jean et al. (2015) and Koehn
and Knowles address this by dividing translation
scores by their length, inspired by work on au-
dio chords (Boulanger-Lewandowski et al., 2013).
A similar method is also used by Google’s pro-
duction system (Wu et al., 2016). A third sim-
ple method used by various authors (Och and Ney,
2002; He et al., 2016; Neubig, 2016) is a tunable

reward added for each output word. Huang et al.
(2017) and Yang et al. (2018) propose variations
of this reward that enable better guarantees during
search.

In this paper, we argue that these two problems
are related (as hinted at by Koehn and Knowles)
and that both stem from label bias, an undesirable
property of models that generate sentences word
by word instead of all at once.

The typical solution is to introduce a sentence-
level correction to the model. We show that mak-
ing such a correction almost completely eliminates
the beam problem. We compare two commonly-
used corrections, length normalization and a word
reward, and show that the word reward is slightly
better.

Finally, instead of tuning the word reward using
grid search, we introduce a way to learn it using a
perceptron-like tuning method. We show that the
optimal value is sensitive both to task and beam
size, implying that it is important to tune for every
model trained. Fortunately, tuning is a quick post-
training step.

2 Problem

Current neural machine translation models are ex-
amples of locally normalized models, which es-
timate the probability of generating an output se-
quence e = e1:m as

P(e1:m) =

m∏

i=1

P(ei | e1:i−1).

For any partial output sequence e1:i, let us call
P(e′ | e1:i), where e′ ranges over all possible com-
pletions of e1:i, the suffix distribution of e1:i. The
suffix distribution must sum to one, so if the model
overestimates P(e1:i), there is no way for the suf-
fix distribution to downgrade it. This is known as
label bias (Bottou, 1991; Lafferty et al., 2001).
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Figure 1: Label bias causes this toy word-by-word
translation model to translate French un hélicoptère in-
correctly to an autogyro.

2.1 Label bias in sequence labeling

Label bias was originally identified in the con-
text of HMMs and MEMMs for sequence-labeling
tasks, where the input sequence f and output se-
quence e have the same length, and P(e1:i) is con-
ditioned only on the partial input sequence f1:i. In
this case, since P(e1:i) has no knowledge of future
inputs, it’s much more likely to be incorrectly es-
timated. For example, suppose we had to trans-
late, word-by-word, un hélicoptère to a helicopter
(Figure 1). Given just the partial input un, there is
no way to know whether to translate it as a or an.
Therefore, the probability for the incorrect transla-
tion P(an) will turn out to be an overestimate. As a
result, the model will overweight translations be-
ginning with an, regardless of the next input word.

This effect is most noticeable when the suffix
distribution has low entropy, because even when
new input (hélicoptère) is revealed, the model
will tend to ignore it. For example, suppose that
the available translations for hélicoptère are heli-
copter, chopper, whirlybird, and autogyro. The
partial translation a must divide its probability
mass among the three translations that start with a
consonant, while an gives all its probability mass
to autogyro, causing the incorrect translation an
autogyro to end up with the highest probability.

In this example, P(an), even though overesti-
mated, is still lower than P(a), and wins only be-
cause its suffixes have higher probability. Greedy
search would prune the incorrect prefix an and
yield the correct output. In general, then, we might
expect greedy or beam search to alleviate some
symptoms of label bias. Namely, a prefix with
a low-entropy suffix distribution can be pruned if
its probability is, even though overestimated, not
among the highest probabilities. Such an observa-
tion was made by Zhang and Nivre (2012) in the

context of dependency parsing, and we will see
next that precisely such a situation affects output
length in NMT.

2.2 Length bias in NMT

In NMT, unlike the word-by-word translation ex-
ample in the previous section, each output symbol
is conditioned on the entire input sequence. Nev-
ertheless, it’s still possible to overestimate or un-
derestimate p(e1:i), so the possibility of label bias
still exists. We expect that it will be more visi-
ble with weaker models, that is, with less training
data.

Moreover, in NMT, the output sequence is of
variable length, and generation of the output se-
quence stops when </s> is generated. In effect,
for any prefix ending with </s>, the suffix dis-
tribution has zero entropy. This situation paral-
lels example of the previous section closely: if the
model overestimates the probability of outputting
</s>, it may proceed to ignore the rest of the input
and generate a truncated translation.

Figure 2 illustrates how this can happen. Al-
though the model can learn not to prefer shorter
translations by predicting a low probability for
</s> early on, at each time step, the score of </s>
puts a limit on the total remaining score a transla-
tion can have; in the figure, the empty translation
has score −10.1, so that no translation can have
score lower than −10.1. This lays a heavy burden
on the model to correctly guess the total score of
the whole translation at the outset.

As in our label-bias example, greedy search
would prune the incorrect empty translation. More
generally, consider beam search: at time step t,
only the top k partial or complete translations are
retained while the rest are pruned. (Implementa-
tions of beam search vary in the details, but this
variant is simplest for the sake of argument.) Even
if a translation ending at time t scores higher than a
longer translation, as long as it does not fall within
the top k when compared with partial translations
of length t (or complete translations of length at
most t), it will be pruned and unable to block
the longer translation. But if we widen the beam
(k), then translation accuracy will suffer. We call
this problem (which is Koehn and Knowles’s sixth
challenge) the beam problem. Our claim, hinted at
by Koehn and Knowles (2017), is that the brevity
problem and the beam problem are essentially the
same, and that solving one will solve the other.
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Figure 2: A locally normalized model must determine,
at each time step, a “budget” for the total remaining
log-probability. In this example sentence, “The British
women won Olymp ic gold in p airs row ing,” the empty
translation has initial position 622 in the beam. Already
by the third step of decoding, the correct translation
has a lower score than the empty translation. However,
using greedy search, a nonempty translation would be
returned.

3 Correcting Length

To address the brevity problem, many designers of
NMT systems add corrections to the model. These
corrections are often presented as modifications to
the search procedure. But, in our view, the brevity
problem is essentially a modeling problem, and
these corrections should be seen as modifications
to the model (Section 3.1). Furthermore, since
the root of the problem is local normalization, our
view is that these modifications should be trained
as globally-normalized models (Section 3.2).

3.1 Models
Without any length correction, the standard model
score (higher is better) is:

s(e) =

m∑

i=1

log P(ei | e1:i).

To our knowledge, there are three methods in
common use for adjusting the model to favor
longer sentences.

Length normalization divides the score by m
(Koehn and Knowles, 2017; Jean et al., 2015;
Boulanger-Lewandowski et al., 2013):

s′(e) = s(e) / m.

Google’s NMT system (Wu et al., 2016) relies
on a more complicated correction:

s′(e) = s(e)
/ (5 + m)α

(5 + 1)α
.

Finally, some systems add a constant word re-
ward (He et al., 2016):

s′(e) = s(e) + γm.

If γ = 0, this reduces to the baseline model. The
advantage of this simple reward is that it can be
computed on partial translations, making it easier
to integrate into beam search.

3.2 Training
All of the above modifications can be viewed as
modifications to the base model so that it is no
longer a locally-normalized probability model.

To train this model, in principle, we should use
something like the globally-normalized negative
log-likelihood:

L = − log
exp s′(e∗)∑
e exp s′(e)

where e∗ is the reference translation. However, op-
timizing this is expensive, as it requires perform-
ing inference on every training example or heuris-
tic approximations (Andor et al., 2016; Shen et al.,
2016).

Alternatively, we can adopt a two-tiered model,
familiar from phrase-based translation (Och and
Ney, 2002), first training s and then training s′

while keeping the parameters of s fixed, possibly
on a smaller dataset. A variety of methods, like
minimum error rate training (Och, 2003; He et al.,
2016), are possible, but keeping with the globally-
normalized negative log-likelihood, we obtain, for
the constant word reward, the gradient:

∂L
∂γ

= −|e∗| + E[|e|].

If we approximate the expectation using the mode
of the distribution, we get

∂L
∂γ
≈ −|e∗| + |ê|

where ê is the 1-best translation. Then the stochas-
tic gradient descent update is just the familiar per-
ceptron rule:

γ ← γ + η (|e∗| − |ê|),
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although below, we update on a batch of sentences
rather than a single sentence. Since there is only
one parameter to train, we can train it on a rela-
tively small dataset.

Length normalization does not have any addi-
tional parameters, with the result (in our opin-
ion, strange) that a change is made to the model
without any corresponding change to training. We
could use gradient-based methods to tune the α in
the GNMT correction, but the perceptron approx-
imation turns out to drive α to ∞, so a different
method would be needed.

4 Experiments

We compare the above methods in four set-
tings, a high-resource German–English system,
a medium-resource Russian–English system, and
two low-resource French–English and English–
French systems. For all settings, we show that
larger beams lead to large BLEU and METEOR
drops if not corrected. We also show that the opti-
mal parameters can depend on the task, language
pair, training data size, as well as the beam size.
These values can affect performance strongly.

4.1 Data and settings

Most of the experimental settings below follow
the recommendations of Denkowski and Neubig
(2017). Our high-resource, German–English data
is from the 2016 WMT shared task (Bojar et al.,
2016). We use a bidirectional encoder-decoder
model with attention (Bahdanau et al., 2015).1

Our word representation layer has 512 hidden
units, while other hidden layers have 1024 nodes.
Our model is trained using Adam with a learning
rate of 0.0002. We use 32k byte-pair encoding
(BPE) operations learned on the combined source
and target training data (Sennrich et al., 2016).
We train on minibatches of size 2012 words and
validate every 100k sentences, selecting the final
model based on development perplexity.

Our medium-resource, Russian–English system
uses data from the 2017 WMT translation task,
which consists of roughly 1 million training sen-
tences (Bojar et al., 2017). We use the same archi-
tecture as our German–English system, but only
have 512 nodes in all layers. We use 16k BPE
operations and dropout of 0.2. We train on mini-

1We use Lamtram (Neubig, 2015) for all experiments and
our modifications have been added to the project.

batches of 512 words and validate every 50k sen-
tences.

Our low-resource systems use French and En-
glish data from the 2010 IWSLT TALK shared
task (Paul et al., 2010). We build both French–
English and English–French systems. These net-
works are the same as for the medium Russian-
English task, but use only 6k BPE operations. We
train on minibatches of 512 words and validate ev-
ery 30k sentences, restarting Adam when the de-
velopment perplexity goes up.

To tune our correction parameters, we use 1000
sentences from the German–English development
dataset, 1000 sentences from the Russian–English
development dataset, and the entire development
dataset for French–English (892 sentences)2. We
initialize the parameter, γ = 0.2. We use batch
gradient descent, which we found to be much more
stable than stochastic gradient descent, and use a
learning rate of η = 0.2, clipping gradients for γ
to 0.5. Training stops if all parameters have an
update of less than 0.03 or a max of 25 epochs
was reached.

4.2 Solving the length problem solves the
beam problem

Here, we first show that the beam problem is in-
deed the brevity problem. We then demonstrate
that solving the length problem does solve the
beam problem. Tables 1, 2, and 3 show the re-
sults of our German–English, Russian–English,
and French–English systems respectively. Each
table looks at the impact on BLEU, METEOR,
and the ratio of the lengths of generated sentences
compared to the gold lengths (Papineni et al.,
2002; Denkowski and Lavie, 2014). The baseline
method is a standard model without any length
correction. The reward method is the tuned con-
stant word reward discussed in the previous sec-
tion. Norm refers to the normalization method,
where a hypothesis’ score is divided by its length.

4.2.1 Baseline
The top sections of Tables 1, 2, 3 illustrate the
brevity and beam problems in the baseline mod-
els. As beam size increases, the BLEU and ME-
TEOR scores drop significantly. This is due to
the brevity problem, which is illustrated by the
length ratio numbers that also drop with increased

2We found through preliminary experiments that this size
of dev subset was an adequate trade-off between tuning speed
and performance.
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Russian–English (medium) Beam Size
10 50 75 100 150 1000

baseline BLEU 24.9 23.8 23.6 23.3 22.5 3.7
METEOR 30.9 30.0 29.7 29.4 28.8 12.8
length 0.90 0.86 0.85 0.84 0.81 0.31

reward BLEU 26.5 26.6 26.5 26.5 26.5 25.7
METEOR 32.0 32.0 31.9 31.9 31.9 31.2
length 0.98 0.98 0.98 0.98 0.98 1.02
γ 0.716 0.643 0.640 0.633 0.617 0.562

norm BLEU 26.2 26.3 26.3 26.3 26.3 25.3
METEOR 31.8 31.8 31.8 31.7 31.7 31.2
length 0.96 0.96 0.96 0.96 0.97 1.02

Table 1: Results of the Russian–English translation system. We report BLEU and METEOR scores, as well as the
ratio of the length of generated sentences compared to the correct translations (length). γ is the word reward score
discovered during training. Here, we examine a much larger beam (1000). The beam problem is more pronounced
at this scale, with the baseline system losing over 20 BLEU points when increasing the beam from size 10 to 1000.
However, both our tuned length reward score and length normalization recover most of this loss.

German–English (large) Beam Size
10 50 75

baseline BLEU 29.6 28.6 28.2
METEOR 34.0 33.1 32.8
length 0.95 0.90 0.89

reward BLEU 30.3 30.6 30.6
METEOR 34.9 34.8 34.9
length 1.02 1.00 1.00
γ 0.67 0.57 0.58

norm BLEU 30.7 31.0 30.9
METEOR 34.9 35.0 35.0
length 1.00 1.00 1.00

Table 2: Results of the high-resource German–English system. Rows: BLEU, METEOR, length = ratio of output
to reference length; γ = learned parameter value. While baseline performance decreases with beam size due to the
brevity problem, other methods perform more consistently across beam sizes. Length normalization (norm) gets
the best BLEU scores, but similar METEOR scores to the word reward.
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French–English (small) Beam Size
10 50 100 150 200

baseline BLEU 30.0 28.9 25.4 21.9 19.4
METEOR 32.4 31.3 28.6 25.9 24.1
length 0.94 0.89 0.80 0.71 0.64

reward BLEU 29.4 29.7 29.7 29.8 29.8
METEOR 32.8 32.9 32.9 32.9 32.9
length 1.03 1.03 1.03 1.03 1.03
γ 1.20 1.05 1.01 0.99 0.97

norm BLEU 30.7 30.8 30.7 30.7 30.7
METEOR 32.8 32.8 32.8 32.7 32.7
length 0.97 0.97 0.97 0.96 0.96

English–French (small) Beam Size
10 50 100 150 200

baseline BLEU 25.8 26.1 26.1 25.5 24.3
METEOR 47.8 47.5 47.2 46.3 44.2
length 1.03 1.01 1.00 0.97 0.92

reward BLEU 25.5 25.5 25.5 25.5 25.5
METEOR 48.3 48.5 48.5 48.5 48.4
length 1.05 1.05 1.05 1.05 1.05
γ 0.353 0.444 0.465 0.474 0.475

norm BLEU 25.4 25.5 25.5 25.5 25.5
METEOR 48.4 48.4 48.4 48.4 48.4
length 1.06 1.05 1.05 1.05 1.05

Table 3: Results of low-resource French–English and English–French systems. Rows: BLEU, METEOR, length =

ratio of output to reference length; γ = learned parameter value. While baseline performance decreases with beam
size due to the brevity problem, other methods perform more consistently across beam sizes. Word reward gets the
best scores in both directions on METEOR. Length normalization (norm) gets the best BLEU scores in Fra-Eng
due to the slight bias of BLEU towards shorter translations.

beam 10 50 75 100 150 200

French–English (small) 6.9 27.2 52.4 71.1 105.9 176.6
English–French (small) 12.6 44.2 67.3 88.1 107.5 111.2
German–English (large) 6.8 132.6 1066

Table 4: Tuning time on top of baseline training time. Times are in minutes on 1000 dev examples (German–
English) or 892 dev examples (French–English). Due to the much larger model size, we only looked at beam sizes
up to 75 for German–English.
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beam size. For larger beam sizes, the length of
the generated output sentences are a fraction of
the lengths of the correct translations. For the
lower-resource French–English task, the drop is
more than 8 BLEU when increasing the beam size
from 10 to 150. The issue is even more evident
in our Russian-English system where we increase
the beam to 1000 and BLEU scores drop by more
than 20 points.

4.2.2 Word reward
The results of tuning the word reward, γ, as de-
scribed in Section 3.2, is shown in the second sec-
tion of Tables 1, 2, and 3. In contrast to our base-
line systems, our tuned word reward always fixes
the brevity problem (length ratios are approxi-
mately 1.0), and generally fixes the beam problem.
An optimized word reward score always leads to
improvements in METEOR scores over any of the
best baselines. Across all language pairs, reward
and norm have close METEOR scores, though the
reward method wins out slightly. BLEU scores for
reward and norm also increase over the baseline in
most cases, despite BLEU’s inherent bias towards
shorter sentences. Most notably, whereas the base-
line Russian–English system lost more than 20
BLEU points when the beam was increased to
1000, our tuned reward score resulted in a BLEU
gain over any baseline beam size. Whereas in our
baseline systems, the length ratio decreases with
larger beam sizes, our tuned word reward results
in length ratios of nearly 1.0 across all language
pairs, mitigating many of the issues of the brevity
problem.

4.2.3 Wider beam
We note that the beam problem in NMT exists
for relatively small beam sizes – especially when
compared to traditional beam sizes in SMT sys-
tems. On our medium-resource Russian–English
system, we investigate the full impact of this prob-
lem using a much larger beam size of 1000. In Ta-
ble 1, we can see that the beam problem is particu-
larly pronounced. The first row of the table shows
the uncorrected, baseline score. From a beam of
10 to a beam of 1000, the drop in BLEU scores is
over 20 points. This is largely due to the brevity
problem discussed earlier. The second row of the
table shows the length of the translated outputs
compared to the lengths of the correct translations.
Though the problem persists even at a beam size
of 10, at a beam size of 1000, our baseline system

generates less than one third the number of words
that are in the correct translations. Furthermore,
37.3% of our translated outputs have sentences of
length 0. In other words, the most likely transla-
tion is to immediately generate the stop symbol.
This is the problem visualized in Figure 2.

However, when we tune our word reward score
with a beam of 1000, the problem mostly goes
away. Over the uncorrected baseline, we see a
22.0 BLEU point difference for a beam of 1000.
Over the uncorrected baseline with a beam of 10,
the corrected beam of 1000 gets a BLEU gain of
0.8 BLEU. However, the beam of 1000 still sees
a drop of less than 1.0 BLEU over the best cor-
rected version. The word reward method beats the
uncorrected baseline and the length normalization
correction in almost all cases.

4.2.4 Short sentences
Another way to demonstrate that the beam prob-
lem is the same as the brevity problem is to look
at the translations generated by baseline systems
on shorter sentences. Figure 3 shows the BLEU
scores of the Russian–English system for beams of
size 10 and 1000 on sentences of varying lengths,
with and without correcting lengths. The x-axes of
the figure are cumulative: length 20 includes sen-
tences of length 0–20, while length 10 includes 0–
10. It is worth noting that BLEU is a word-level
metric, but the systems were built using BPE; so
the sequences actually generated are longer than
the x-axes would suggest.

The baseline system on sentences with 10 words
or less still has relatively high BLEU scores—even
for a beam of 1000. Though there is a slight drop
in BLEU (less than 2), it is not nearly as severe as
when looking at the entire test set (more than 20).
When correcting for length with normalization or
word reward, the problem nearly disappears when
considering the entire test set, with reward do-
ing slightly better. For comparison, the rightmost
points in each of the subplots correspond to the
BLEU scores in columns 10 and 1000 of Table 1.
This suggests that the beam problem is strongly
related to the brevity problem.

4.2.5 Length ratio
The interaction between the length problem and
the beam problem can be visualized in the his-
tograms of Figure 4 on the Russian–English sys-
tem. In the upper left plot, the uncorrected model
with beam 10 has the majority of the generated
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Figure 3: Impact of beam size on BLEU score when varying reference sentence lengths (in words) for Russian–
English. The x-axis is cumulative moving right; length 20 includes sentences of length 0-20, while length 10
includes 0-10. As reference length increases, the BLEU scores of a baseline system with beam size of 10 remain
nearly constant. However, a baseline system with beam 1000 has a high BLEU score for shorter sentences, but a
very low score when the entire test set is used. Our tuned reward and normalized models do not suffer from this
problem on the entire test set, but take a slight performance hit on the shortest sentences.

Figure 4: Histogram of length ratio between generated sentences and gold varied across methods and beam size
for Russian–English. Note that the baseline method skews closer 0 as the beam size increases, while our other
methods remain peaked around 1.0. There are a few outliers to the right that have been cut off, as well as the peaks
at 0.0 and 1.0.
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sentences with a length ratio close to 1.0, the gold
lengths. Going down the column, as the beam size
increases, the distribution of length ratios skews
closer to 0. By a beam size of 1000, 37% of the
sentences have a length of 0. However, both the
word reward and the normalized models remain
very peaked around a length ratio of 1.0 even as
the beam size increases.

4.3 Tuning word reward

Above, we have shown that fixing the length prob-
lem with a word reward score fixes the beam prob-
lem. However these results are contingent upon
choosing an adequate word reward score, which
we have done in our experiments by optimization
using a perceptron loss. Here, we show the sen-
sitivity of systems to the value of this penalty, as
well as the fact that there is not one correct penalty
for all tasks. It is dependent on a myriad of factors
including, beam size, dataset, and language pair.

4.3.1 Sensitivity to γ
In order to investigate how sensitive a system is
to the reward score, we varied values of γ from 0
to 1.2 on both our German–English and Russian–
English systems with a beam size of 50. BLEU
scores and length ratios on 1000 heldout devel-
opment sentences are shown in Figure 5. The
length ratio is correlated with the word reward
as expected, and the BLEU score varies by more
than 5 points for German–English and over 4.5
points for Russian–English. On German–English,
our method found a value of γ = 0.57, which is
slightly higher than optimal; this is because the
heldout sentences have a slightly shorter length
ratio than the training sentences. Conversely, on
Russian–English, our found value of γ = 0.64 is
slightly lower than optimal as these heldout sen-
tences have a slightly higher length ratio than the
sentences used in training.

4.3.2 Optimized γ values
Tuning the reward penalty using the method de-
scribed in Section 3.2 resulted in consistent im-
provements in METEOR scores and length ratios
across all of our systems and language pairs. Ta-
bles 1, 2, and 3 show the optimized value of γ for
each beam size. Within a language pair, the op-
timal value of γ is different for every beam size.
Likewise, for a given beam size, the optimal value
is different for every system. Our French–English
and English–French systems in Table 3 have the
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Figure 5: Effect of word penalty on BLEU and hy-
pothesis length for Russian–English (top) and German-
English (bottom) on 1000 unseen dev examples with
beams of 50. Note that the vertical bars represent the
word reward that was found during tuning.

exact same architecture, data, and training criteria.
Yet, even for the same beam size, the tuned word
reward scores are very different.

Training dataset size Low-resource neural ma-
chine translation performs significantly worse than
high-resource machine translation (Koehn and
Knowles, 2017). Table 5 looks at the impact of
training data size on BLEU scores and the beam
problem by using 10% and 50% of the available
Russian–English data. Once again, the optimal
value of γ is different across all systems and beam
sizes. Interestingly, as the amount of training data
decreases, the gains in BLEU using a tuned reward
penalty increase with larger beam sizes. This sug-
gests that the beam problem is more prevalent in
lower-resource settings, likely due to the fact that
less training data can increase the effects of label
bias.
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Russian–English (medium) Beam Size
Dataset Size 10 50 75 100 150

baseline 24.9 23.8 23.6 23.3 22.5
100% reward 26.5 26.6 26.5 26.5 26.5

γ 0.716 0.643 0.640 0.633 0.617

baseline 22.8 21.4 20.8 20.4 19.2
50% reward 24.7 25.0 24.9 24.9 25.0

γ 0.697 0.645 0.638 0.636 0.646

baseline 17.0 16.2 15.8 15.6 15.1
10% reward 17.6 18.0 18.0 18.0 18.1

γ 0.892 0.835 0.773 0.750 0.800

Table 5: Varying the size of the Russian–English training dataset results in different optimal word reward scores
(γ). In all settings, the tuned score alleviates the beam problem. As the datasets get smaller, using a tuned larger
beam improves the BLEU score over a smaller tuned beam. This suggests that lower-resource systems are more
susceptible to the beam problem.

4.3.3 Tuning time
Fortunately, the tuning process is very inexpen-
sive. Although it requires decoding on a develop-
ment dataset multiple times, we only need a small
dataset. The time required for tuning our French–
English and German–English systems is shown in
Table 4. These experiments were run on an Nvidia
GeForce GTX 1080Ti. The tuning usually takes
a few minutes to hours, which is just a fraction of
the overall training time. We note that there are nu-
merous optimizations that could be taken to speed
this up even more, such as storing the decoding
lattice for partial reuse. However, we leave this
for future work.

4.4 Word reward vs. length normalization

Tuning the word reward score generally had
higher METEOR scores than length normaliza-
tion across all of our settings. With BLEU, length
normalization beat the word reward on German-
English and French–English, but tied on English-
French and lost on Russian–English. For the
largest beam of 1000, the tuned word reward had
a higher BLEU than length normalization. Over-
all, the two methods have relatively similar per-
formance, but the tuned word reward has the more
theoretically justified, globally-normalized deriva-
tion – especially in the context of label bias’ influ-
ence on the brevity problem.

5 Conclusion

We have explored simple and effective ways to al-
leviate or eliminate the beam problem. We showed

that the beam problem can largely be explained
by the brevity problem, which results from the
locally-normalized structure of the model. We
compared two corrections to the model and intro-
duced a method to learn the parameters of these
corrections. Because this method is helpful and
easy, we hope to see it included to make stronger
baseline NMT systems.

We have argued that the brevity problem is an
example of label bias, and that the solution is a
very limited form of globally-normalized model.
These can be seen as the simplest case of the more
general problem of label bias and the more general
solution of globally-normalized models for NMT
(Wiseman and Rush, 2016; Venkatraman et al.,
2015; Ranzato et al., 2015; Shen et al., 2016).
Some questions for future research are:

• Solving the brevity problem leads to signif-
icant BLEU gains; how much, if any, im-
provement remains to be gained by solving
label bias in general?

• Our solution to the brevity problem re-
quires globally-normalized training on only
a small dataset; can more general globally-
normalized models be trained in a similarly
inexpensive way?
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