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Abstract
Neural Machine Translation (MT) has radi-
cally changed the way systems are developed.
A major difference with the previous gener-
ation (Phrase-Based MT) is the way mono-
lingual target data, which often abounds, is
used in these two paradigms. While Phrase-
Based MT can seamlessly integrate very large
language models trained on billions of sen-
tences, the best option for Neural MT devel-
opers seems to be the generation of artificial
parallel data through back-translation - a tech-
nique that fails to fully take advantage of exist-
ing datasets. In this paper, we conduct a sys-
tematic study of back-translation, comparing
alternative uses of monolingual data, as well
as multiple data generation procedures. Our
findings confirm that back-translation is very
effective and give new explanations as to why
this is the case. We also introduce new data
simulation techniques that are almost as effec-
tive, yet much cheaper to implement.

1 Introduction

The new generation of Neural Machine Transla-
tion (NMT) systems is known to be extremely data
hungry (Koehn and Knowles, 2017). Yet, most ex-
isting NMT training pipelines fail to fully take ad-
vantage of the very large volume of monolingual
source and/or parallel data that is often available.
Making a better use of data is particularly criti-
cal in domain adaptation scenarios, where paral-
lel adaptation data is usually assumed to be small
in comparison to out-of-domain parallel data, or
to in-domain monolingual texts. This situation
sharply contrasts with the previous generation of
statistical MT engines (Koehn, 2010), which could
seamlessly integrate very large amounts of non-
parallel documents, usually with a large positive
effect on translation quality.

Such observations have been made repeatedly
and have led to many innovative techniques to in-

tegrate monolingual data in NMT, that we review
shortly. The most successful approach to date
is the proposal of Sennrich et al. (2016a), who
use monolingual target texts to generate artificial
parallel data via backward translation (BT). This
technique has since proven effective in many sub-
sequent studies. It is however very computation-
ally costly, typically requiring to translate large
sets of data. Determining the “right” amount (and
quality) of BT data is another open issue, but we
observe that experiments reported in the literature
only use a subset of the available monolingual re-
sources. This suggests that standard recipes for
BT might be sub-optimal.

This paper aims to better understand the
strengths and weaknesses of BT and to design
more principled techniques to improve its effects.
More specifically, we seek to answer the following
questions: since there are many ways to generate
pseudo parallel corpora, how important is the qual-
ity of this data for MT performance? Which prop-
erties of back-translated sentences actually matter
for MT quality? Does BT act as some kind of
regularizer (Domhan and Hieber, 2017)? Can BT
be efficiently simulated? Does BT data play the
same role as a target-side language modeling, or
are they complementary? BT is often used for do-
main adaptation: can the effect of having more in-
domain data be sorted out from the mere increase
of training material (Sennrich et al., 2016a)? For
studies related to the impact of varying the size of
BT data, we refer the readers to the recent work of
Poncelas et al. (2018).

To answer these questions, we have reimple-
mented several strategies to use monolingual data
in NMT and have run experiments on two lan-
guage pairs in a very controlled setting (see § 2).
Our main results (see § 4 and § 5) suggest promis-
ing directions for efficient domain adaptation with
cheaper techniques than conventional BT.
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Out-of-domain In-domain
Sents Token Sents Token

en-fr 4.0M 86.8M/97.8M 1.9M 46.0M/50.6M
en-de 4.1M 84.5M/77.8M 1.8M 45.5M/43.4M

Table 1: Size of parallel corpora

2 Experimental Setup

2.1 In-domain and out-of-domain data

We are mostly interested with the following train-
ing scenario: a large out-of-domain parallel cor-
pus, and limited monolingual in-domain data. We
focus here on the Europarl domain, for which
we have ample data in several languages, and
use as in-domain training data the Europarl cor-
pus1 (Koehn, 2005) for two translation directions:
English→German and English→French. As we
study the benefits of monolingual data, most of
our experiments only use the target side of this
corpus. The rationale for choosing this domain is
to (i) to perform large scale comparisons of syn-
thetic and natural parallel corpora; (ii) to study the
effect of BT in a well-defined domain-adaptation
scenario. For both language pairs, we use the
Europarl tests from 2007 and 20082 for evalua-
tion purposes, keeping test 2006 for development.
When measuring out-of-domain performance, we
will use the WMT newstest 2014.

2.2 NMT setups and performance

Our baseline NMT system implements the atten-
tional encoder-decoder approach (Cho et al., 2014;
Bahdanau et al., 2015) as implemented in Nematus
(Sennrich et al., 2017) on 4 million out-of-domain
parallel sentences. For French we use samples
from News-Commentary-11 and Wikipedia from
WMT 2014 shared translation task, as well as
the Multi-UN (Eisele and Chen, 2010) and EU-
Bookshop (Skadiņš et al., 2014) corpora. For Ger-
man, we use samples from News-Commentary-11,
Rapid, Common-Crawl (WMT 2017) and Multi-
UN (see table 1). Bilingual BPE units (Sennrich
et al., 2016b) are learned with 50k merge opera-
tions, yielding vocabularies of about respectively
32k and 36k for English→French and 32k and 44k
for English→German.

Both systems use 512-dimensional word em-
beddings and a single hidden layer with 1024 cells.
They are optimized using Adam (Kingma and Ba,

1Version 7, see www.statmt.org/europarl/.
2www.statmt.org/wmt08.

2014) and early stopped according to the valida-
tion performance. Training lasted for about three
weeks on an Nvidia K80 GPU card.

Systems generating back-translated data are
trained using the same out-of-domain corpus,
where we simply exchange the source and target
sides. They are further documented in § 3.1.

For the sake of comparison, we also train a sys-
tem that has access to a large batch of in-domain
parallel data following the strategy often referred
to as “fine-tuning”: upon convergence of the base-
line model, we resume training with a 2M sentence
in-domain corpus mixed with an equal amount
of randomly selected out-of-domain natural sen-
tences, with the same architecture and training pa-
rameters, running validation every 2000 updates
with a patience of 10. Since BPE units are selected
based only on the out-of-domain statistics, fine-
tuning is performed on sentences that are slightly
longer (ie. they contain more units) than for the
initial training. This system defines an upper-
bound of the translation performance and is de-
noted below as natural.

Our baseline and topline results are in Table 2,
where we measure translation performance using
BLEU (Papineni et al., 2002), BEER (Stanojević
and Sima’an, 2014) (higher is better) and char-
acTER (Wang et al., 2016) (smaller is better).
As they are trained from much smaller amounts
of data than current systems, these baselines are
not quite competitive to today’s best system, but
still represent serious baselines for these datasets.
Given our setups, fine-tuning with in-domain nat-
ural data improves BLEU by almost 4 points for
both translation directions on in-domain tests; it
also improves, albeit by a smaller margin, the
BLEU score of the out-of-domain tests.

3 Using artificial parallel data in NMT

A simple way to use monolingual data in MT is to
turn it into synthetic parallel data and let the train-
ing procedure run as usual (Bojar and Tamchyna,
2011). In this section, we explore various ways
to implement this strategy. We first reproduce re-
sults of Sennrich et al. (2016a) with BT of various
qualities, that we then analyze thoroughly.

3.1 The quality of Back-Translation

3.1.1 Setups
BT requires the availability of an MT system in
the reverse translation direction. We consider here
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English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
backtrans-bad 31.55 62.39 51.50 31.89 62.23 51.73 31.99 61.59 48.86
backtrans-good 32.99 63.43 49.58 33.25 63.08 49.29 33.52 62.62 47.23
backtrans-nmt 33.30 63.33 50.02 33.39 63.09 49.48 34.11 62.76 46.94
fwdtrans-nmt 31.93 62.55 50.84 32.62 62.66 49.83 33.56 62.44 47.65
backfwdtrans-nmt 33.09 63.19 50.08 33.70 63.25 48.83 34.00 62.76 47.22
natural 35.10 64.71 48.33 35.29 64.52 48.26 34.96 63.08 46.67

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
backtrans-bad 21.84 57.85 61.24 21.04 57.44 59.77 22.28 57.70 55.49
backtrans-good 23.33 59.03 58.84 23.11 57.14 57.14 22.87 58.09 54.91
backtrans-nmt 23.00 59.12 58.31 23.10 58.85 56.67 22.91 58.12 54.67
fwdtrans-nmt 21.97 57.46 61.99 21.89 57.53 59.71 22.52 57.93 55.13
backfwdtrans-nmt 22.99 58.37 60.45 22.82 58.14 58.80 23.04 58.17 54.96
natural 26.74 61.14 56.19 26.16 60.64 54.76 23.84 58.64 54.23

Table 2: Performance wrt. different BT qualities

French→English German→English
test-07 test-08 nt-14 unk test-07 test-08 nt-14 unk

backtrans-bad 18.86 19.27 20.49 3.22% 14.66 14.62 15.07 1.45%
backtrans-good 29.71 29.51 32.10 0.24% 24.19 24.19 25.75 0.73%
backtrans-nmt 31.10 31.43 31.27 0.0% 26.02 26.03 26.98 0.0%

Table 3: BLEU scores for (backward) translation into English

three MT systems of increasing quality:

1. backtrans-bad: this is a very poor SMT
system trained using only 50k parallel sen-
tences from the out-of-domain data, and no
additional monolingual data. For this system
as for the next one, we use Moses (Koehn
et al., 2007) out-of-the-box, computing align-
ments with Fastalign (Dyer et al., 2013), with
a minimal pre-processing (basic tokeniza-
tion). This setting provides us with a pes-
simistic estimate of what we could get in low-
resource conditions.

2. backtrans-good: these are much larger
SMT systems, which use the same parallel
data as the baseline NMTs (see § 2.2) and
all the English monolingual data available for
the WMT 2017 shared tasks, totalling ap-
proximately 174M sentences. These systems
are strong, yet relatively cheap to build.

3. backtrans-nmt: these are the best NMT
systems we could train, using settings that
replicate the forward translation NMTs.

Note that we do not use any in-domain (Eu-
roparl) data to train these systems. Their perfor-
mance is reported in Table 3, where we observe a

12 BLEU points gap between the worst and best
systems (for both languages).

As noted eg. in (Park et al., 2017; Crego and
Senellart, 2016), artificial parallel data obtained
through forward-translation (FT) can also prove
advantageous and we also consider a FT system
(fwdtrans-nmt): in this case the target side of
the corpus is artificial and is generated using the
baseline NMT applied to a natural source.

3.1.2 BT quality does matter

Our results (see Table 2) replicate the findings of
(Sennrich et al., 2016a): large gains can be ob-
tained from BT (nearly +2 BLEU in French and
German); better artificial data yields better trans-
lation systems. Interestingly, our best Moses sys-
tem is almost as good as the NMT and an order of
magnitude faster to train. Improvements obtained
with the bad system are much smaller; contrary to
the better MTs, this system is even detrimental for
the out-of-domain test.

Gains with forward translation are significant,
as in (Chinea-Rios et al., 2017), albeit about half
as good as with BT, and result in small improve-
ments for the in-domain and for the out-of-domain
tests. Experiments combining forward and back-
ward translation (backfwdtrans-nmt), each

146



English→French English→German
Figure 1: Learning curves from backtrans-nmt and natural. Artificial parallel data is more prone to over-
fitting than natural data.

using a half of the available artificial data, do not
outperform the best BT results.

We finally note the large remaining difference
between BT data and natural data, even though
they only differ in their source side. This shows
that at least in our domain-adaptation settings, BT
does not really act as a regularizer, contrarily to
the findings of (Poncelas et al., 2018; Sennrich
et al., 2016b). Figure 3.1.1 displays the learn-
ing curves of these two systems. We observe that
backtrans-nmt improves quickly in the ear-
liest updates and then stays horizontal, whereas
natural continues improving, even after 400k
updates. Therefore BT does not help to avoid over-
fitting, it actually encourages it, which may be due
“easier” training examples (cf. § 3.2).

3.2 Properties of back-translated data
Comparing the natural and artificial sources of our
parallel data wrt. several linguistic and distribu-
tional properties, we observe that (see Fig. 2 - 3):

(i) artificial sources are on average shorter than
natural ones: when using BT, cases where
the source is shorter than the target are rarer;
cases when they have the same length are
more frequent.

(ii) automatic word alignments between artificial
sources tend to be more monotonic than when
using natural sources, as measured by the av-
erage Kendall τ of source-target alignments
(Birch and Osborne, 2010): for French-
English the respective numbers are 0.048
(natural) and 0.018 (artificial); for German-
English 0.068 and 0.053. Using more mono-

tonic sentence pairs turns out to be a facilitat-
ing factor for NMT, as also noted by Crego
and Senellart (2016).

(iii) syntactically, artificial sources are simpler
than real data; We observe significant differ-
ences in the distributions of tree depths.3

(iv) distributionally, plain word occurrences in ar-
tificial sources are more concentrated; this
also translates into both a slower increase of
the number of types wrt. the number of sen-
tences and a smaller number of rare events.

The intuition is that properties (i) and (ii) should
help translation as compared to natural source,
while property (iv) should be detrimental. We
checked (ii) by building systems with only 10M
words from the natural parallel data selecting these
data either randomly or based on the regularity of
their word alignments. Results in Table 4 show
that the latter is much preferable for the overall
performance. This might explain that the mostly
monotonic BT from Moses are almost as good as
the fluid BT from NMT and that both boost the
baseline.

4 Stupid Back-Translation

We now analyze the effect of using much simpler
data generation schemes, which do not require the
availability of a backward translation engine.

3Parses were automatically computed with CoreNLP
(Manning et al., 2014).
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(a) (b)

(c) (d)
Figure 2: Properties of pseudo-English data obtained with backtrans-nmt from French. The synthetic source
contains shorter sentences (a) and slightly simpler syntax (b). The vocabulary growth wrt. an increasing number
of observed sentences (c) and the token-type correlation (d) suggest that the natural source is lexically richer.

test-07 test-08 newstest-14
BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER

random 32.08 62.98 50.78 32.66 62.86 49.99 23.05 55.38 58.51
monotonic 33.52 63.75 49.51 33.73 63.59 48.91 32.16 61.75 48.64

Table 4: Selection strategies for BT data (English-French)

4.1 Setups
We use the following cheap ways to generate
pseudo-source texts:

1. copy: in this setting, the source side is a
mere copy of the target-side data. Since the
source vocabulary of the NMT is fixed, copy-
ing the target sentences can cause the occur-
rence of OOVs. To avoid this situation, Cur-
rey et al. (2017) decompose the target words
into source-side units to make the copy look
like source sentences. Each OOV found in
the copy is split into smaller units until all the
resulting chunks are in the source vocabulary.

2. copy-marked: another way to integrate

copies without having to deal with OOVs is to
augment the source vocabulary with a copy of
the target vocabulary. In this setup, Ha et al.
(2016) ensure that both vocabularies never
overlap by marking the target word copies
with a special language identifier. Therefore
the English word resume cannot be confused
with the homographic French word, which is
marked @fr@resume.

3. copy-dummies: instead of using actual
copies, we replace each word with “dummy”
tokens. We use this unrealistic setup to ob-
serve the training over noisy and hardly in-
formative source sentences.
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(a) (b)

(c) (d)
Figure 3: Properties of pseudo-English data obtained with backtrans-nmt (back-translated from German).
Tendencies similar to English-French can be observed and difference in syntax complexity is even more visible.

We then use the procedures described in § 2.2,
except that the pseudo-source embeddings in the
copy-marked setup are pretrained for three
epochs on the in-domain data, while all remaining
parameters are frozen. This prevents random pa-
rameters from hurting the already trained model.

4.2 Copy+marking+noise is not so stupid

We observe that the copy setup has only a small
impact on the English-French system, for which
the baseline is already strong. This is less true for
English-German where simple copies yield a sig-
nificant improvement. Performance drops for both
language pairs in the copy-dummies setup.

We achieve our best gains with the
copy-marked setup, which is the best way to
use a copy of the target (although the performance
on the out-of-domain tests is at most the same as
the baseline). Such gains may look surprising,
since the NMT model does not need to learn to
translate but only to copy the source. This is

indeed what happens: to confirm this, we built a
fake test set having identical source and target side
(in French). The average cross-entropy for this
test set is 0.33, very close to 0, to be compared
with an average cost of 58.52 when we process
an actual source (in English). This means that the
model has learned to copy words from source to
target with no difficulty, even for sentences not
seen in training. A follow-up question is whether
training a copying task instead of a translation
task limits the improvement: would the NMT
learn better if the task was harder? To measure
this, we introduce noise in the target sentences
copied onto the source, following the procedure
of Lample et al. (2017): it deletes random words
and performs a small random permutation of
the remaining words. Results (+ Source noise)
show no difference for the French in-domain
test sets, but bring the out-of-domain score to
the level of the baseline. Finally, we observe a
significant improvement on German in-domain
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English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
copy 31.65 62.45 52.09 32.23 62.37 52.20 32.80 61.99 49.05
copy-dummies 30.89 62.06 52.07 31.51 61.98 51.46 31.43 60.92 50.58
copy-marked 32.01 62.66 51.57 32.31 62.52 51.46 32.33 61.55 49.44
+ Source noise 31.87 62.52 52.69 32.64 62.55 51.63 33.04 62.11 48.47

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
copy 22.15 57.95 61.49 21.95 57.72 59.58 22.59 57.83 55.44
copy-dummies 21.73 57.84 61.35 21.38 57.38 60.10 21.12 56.81 57.21
copy-marked 22.58 58.23 61.10 22.47 57.97 59.24 22.53 57.54 55.85
+ Source noise 22.92 58.62 60.27 22.83 58.36 58.48 22.34 57.47 55.72

Table 5: Performance wrt. various stupid BTs

test sets, compared to the baseline (about +1.5
BLEU). This last setup is even almost as good as
the backtrans-nmt condition (see § 3.1) for
German. This shows that learning to reorder and
predict missing words can more effectively serve
our purposes than simply learning to copy.

5 Towards more natural pseudo-sources

Integrating monolingual data into NMT can be as
easy as copying the target into the source, which
already gives some improvement; adding noise
makes things even better. We now study ways
to make pseudo-sources look more like natural
data, using the framework of Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014), an
idea borrowed from Lample et al. (2017)4.

5.1 GAN setups

In our setups, we use a marked target copy, viewed
as a fake source, which a generator encodes so as
to fool a discriminator trained to distinguish a fake
from a natural source. Our architecture contains
two distinct encoders, one for the natural source
and one for the pseudo-source. The latter acts as
the generator (G) in the GAN framework, com-
puting a representation of the pseudo-source that
is then input to a discriminator (D), which has to
sort natural from artificial encodings. D assigns a
probability of a sentence being natural.

During training, the cost of the discriminator
is computed over two batches, one with natu-
ral (out-of-domain) sentences x and one with (in-
domain) pseudo-sentences x′. The discriminator is

4Our implementation is available at
https://github.com/franckbrl/
nmt-pseudo-source-discriminator

a bidirectional-Recurrent Neural Network (RNN)
of dimension 1024. Averaged states are passed to
a single feed-forward layer, to which a sigmoid
is applied. It inputs encodings of natural (E(x))
and pseudo-sentences (G(x′)) and is trained to op-
timize:

J (D) =− 1

2
Ex∼preal logD(E(x))

− 1

2
Ex′∼ppseudo log(1−D(G(x′)))

G’s parameters are updated to maximally fool
D, thus the loss J (G):

J (G) = −Ex′∼ppseudo logD(G(x′))

Finally, we keep the usual MT objective. (s is a
real or pseudo-sentence):

J (MT) = log p(y|s) = −Es∼pall logMT(s)

We thus need to train three sets of parame-
ters: θ(D), θ(G) and θ(MT) (MT parameters), with
θ(G) ∈ θ(MT). The pseudo-source encoder and
embeddings are updated wrt. both J (G) and J (MT).
Following (Goyal et al., 2016), θ(G) is updated
only when D’s accuracy exceeds 75%. On the
other hand, θ(D) is not updated when its accu-
racy exceeds 99%. At each update, two batches
are generated for each type of data, which are en-
coded with the real or pseudo-encoder. The en-
coder outputs serve to compute J (D) and J (G). Fi-
nally, the pseudo-source is encoded again (once
G is updated), both encoders are plugged into
the translation model and the MT cost is back-
propagated down to the real and pseudo-word em-
beddings. Pseudo-encoder and discriminator pa-
rameters are pre-trained for 10k updates. At test
time, the pseudo-encoder is ignored and inference
is run as usual.
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English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
copy-marked 32.01 62.66 51.57 32.31 62.52 51.46 32.33 61.55 49.44
+ GANs 31.95 62.55 52.87 32.24 62.47 52.16 32.86 61.90 48.97
copy-marked + noise 31.87 62.52 52.69 32.64 62.55 51.63 33.04 62.11 48.47
+ GANs 32.41 62.78 52.25 32.79 62.72 50.92 33.01 61.98 48.37
backtrans-nmt 33.30 63.33 50.02 33.39 63.09 49.48 34.11 62.76 46.94
+ Distinct encoders 32.29 62.83 51.55 32.98 62.91 51.19 33.60 62.43 48.06
+ GANs 32.91 63.08 51.17 33.24 62.93 50.82 33.77 62.42 47.80
natural 35.10 64.71 48.33 35.29 64.52 48.26 34.96 63.08 46.67

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
copy-marked 22.58 58.23 61.10 22.47 57.97 59.24 22.53 57.54 55.85
+ GANs 22.71 58.25 61.25 22.44 57.86 59.28 22.81 57.54 55.99
copy-marked + noise 22.92 58.62 60.27 22.83 58.36 58.48 22.34 57.47 55.72
+ GANs 23.01 58.66 60.22 22.53 58.16 58.65 22.64 57.70 55.48
backtrans-nmt 23.00 59.12 58.31 23.10 58.85 56.67 22.91 58.12 54.67
+ Distinct encoders 23.62 58.83 59.74 23.10 58.50 58.19 22.82 57.91 54.96
+ GANs 23.65 58.85 59.70 23.20 58.50 58.22 23.00 57.89 55.15
natural 26.74 61.14 56.19 26.16 60.64 54.76 23.84 58.64 54.23

Table 6: Performance wrt. different GAN setups

English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
deep-fusion 31.85 62.52 52.27 32.25 62.40 51.64 33.65 62.40 48.24
copy-marked + noise + GANs 32.41 62.78 52.25 32.79 62.72 50.92 33.01 61.98 48.37
+deep-fusion 31.96 62.59 51.96 32.59 62.59 51.65 32.96 61.95 48.95

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
deep-fusion 21.65 57.57 62.38 21.33 57.33 60.54 23.10 58.06 55.33
copy-marked + noise + GANs 23.01 58.66 60.22 22.53 58.16 58.65 22.64 57.70 55.48
+deep-fusion 23.07 58.50 60.47 22.86 58.18 58.76 22.64 57.46 55.85

Table 7: Deep-fusion model

5.2 GANs can help

Results are in Table 6, assuming the same fine-
tuning procedure as above. On top of the
copy-marked setup, our GANs do not provide
any improvement in both language pairs, with the
exception of a small improvement for English-
French on the out-of-domain test, which we un-
derstand as a sign that the model is more ro-
bust to domain variations, just like when adding
pseudo-source noise. When combined with noise,
the French model yields the best performance we
could obtain with stupid BT on the in-domain
tests, at least in terms of BLEU and BEER. On
the News domain, we remain close to the baseline
level, with slight improvements in German.

A first observation is that this method brings
stupid BT models closer to conventional BT, at a

greatly reduced computational cost. While French
still remains 0.4 to 1.0 BLEU below very good
backtranslation, both approaches are in the same
ballpark for German - may be because BTs are bet-
ter for the former system than for the latter.

Finally note that the GAN architecture has two
differences with basic copy-marked: (a) a dis-
tinct encoder for real and pseudo-sentence; (b) a
different training regime for these encoders. To
sort out the effects of (a) and (b), we reproduce the
GAN setup with BT sentences, instead of copies.
Using a separate encoder for the pseudo-source
in the backtrans-nmt setup can be detrimen-
tal to performance (see Table 6): translation de-
grades in French for all metrics. Adding GANs on
top of the pseudo-encoder was not able to make
up for the degradation observed in French, but al-
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lowed the German system to slightly outperform
backtrans-nmt. Even though this setup is un-
realistic and overly costly, it shows that GANs are
actually helping even good systems.

6 Using Target Language Models

In this section, we compare the previous meth-
ods with the use of a target side Language Model
(LM). Several proposals exist in the literature to
integrate LMs in NMT: for instance, Domhan and
Hieber (2017) strengthen the decoder by integrat-
ing an extra, source independent, RNN layer in a
conventional NMT architecture. Training is per-
formed either with parallel, or monolingual data.
In the latter case, word prediction only relies on
the source independent part of the network.

6.1 LM Setup

We have followed Gulcehre et al. (2017) and reim-
plemented5 their deep-fusion technique. It re-
quires to first independently learn a RNN-LM on
the in-domain target data with a cross-entropy ob-
jective; then to train the optimal combination of
the translation and the language models by adding
the hidden state of the RNN-LM as an additional
input to the softmax layer of the decoder.

Our RNN-LMs are trained using dl4mt6 with
the target side of the parallel data and the Europarl
corpus (about 6M sentences for both French and
German), using a one-layer GRU with the same
dimension as the MT decoder (1024).

6.2 LM Results

Results are in Table 7. They show that
deep-fusion hardly improves the Europarl re-
sults, while we obtain about +0.6 BLEU over
the baseline on newstest-2014 for both languages.
deep-fusion differs from stupid BT in that
the model is not directly optimized on the in-
domain data, but uses the LM trained on Europarl
to maximize the likelihood of the out-of-domain
training data. Therefore, no specific improve-
ment is to be expected in terms of domain adap-
tation, and the performance increases in the more
general domain. Combining deep-fusion and

5Our implementation is part of the Nematus
toolkit (theano branch): https://github.com/
EdinburghNLP/nematus/blob/theano/doc/
deep_fusion_lm.md

6https://github.com/nyu-dl/
dl4mt-tutorial

copy-marked + noise + GANs brings slight im-
provements on the German in-domain test sets,
and performance out of the domain remains near
the baseline level.

7 Re-analyzing the effects of BT

As a follow up of previous discussions, we analyze
the effect of BT on the internals of the network.
Arguably, using a copy of the target sentence in-
stead of a natural source should not be helpful for
the encoder, but is it also the case with a strong
BT? What are the effects on the attention model?

7.1 Parameter freezing protocol

To investigate these questions, we run the
same fine-tuning using the copy-marked,
backtrans-nmt and backtrans-nmt se-
tups. Note that except for the last one, all train-
ing scenarios have access to same target training
data. We intend to see whether the overall perfor-
mance of the NMT system degrades when we se-
lectively freeze certain sets of parameters, mean-
ing that they are not updated during fine-tuning.

7.2 Results

BLEU scores are in Table 8. The
backtrans-nmt setup is hardly impacted
by selective updates: updating the only decoder
leads to a degradation of at most 0.2 BLEU. For
copy-marked, we were not able to freeze the
source embeddings, since these are initialized
when fine-tuning begins and therefore need to
be trained. We observe that freezing the encoder
and/or the attention parameters has no impact on
the English-German system, whereas it slightly
degrades the English-French one. This suggests
that using artificial sources, even of the poorest
quality, has a positive impact on all the compo-
nents of the network, which makes another big
difference with the LM integration scenario.

The largest degradation is for natural, where
the model is prevented from learning from infor-
mative source sentences, which leads to a decrease
of 0.4 to over 1.0 BLEU. We assume from these
experiments that BT impacts most of all the de-
coder, and learning to encode a pseudo-source,
be it a copy or an actual back-translation, only
marginally helps to significantly improve the qual-
ity. Finally, in the fwdtrans-nmt setup, freez-
ing the decoder does not seem to harm learning
with a natural source.
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English→French English→German
test-07 test-08 nt-14 test-07 test-08 nt-14

Baseline 31.25 32.17 33.06 21.36 21.27 22.49
backtrans-nmt 33.30 33.39 34.11 23.00 23.10 22.91
+ Freeze source embedd. 33.20 33.24 34.16 22.84 22.85 23.00
+ Freeze encoder 33.17 33.25 33.73 22.72 22.74 22.64
+ Freeze attention 33.13 33.22 33.47 23.03 23.01 22.85
copy-marked 32.01 32.31 32.33 22.58 22.47 22.53
+ Freeze encoder 31.70 32.39 32.90 22.59 22.30 22.81
+ Freeze attention 31.59 32.39 32.54 22.55 22.13 22.69
fwdtrans-nmt 31.93 32.62 33.56 21.97 21.89 22.52
+ Freeze decoder 31.84 32.62 33.35 21.91 21.65 13.61
natural 35.10 35.29 34.96 26.74 26.16 23.84
+ Freeze encoder 34.02 34.25 34.09 24.95 25.08 23.44
+ Freeze attention 34.13 34.42 34.19 25.13 24.97 23.35

Table 8: BLEU scores with selective parameter freezing

8 Related work

The literature devoted to the use of monolingual
data is large, and quickly expanding. We already
alluded to several possible ways to use such data:
using back- or forward-translation or using a target
language model. The former approach is mostly
documented in (Sennrich et al., 2016a), and re-
cently analyzed in (Park et al., 2017), which focus
on fully artificial settings as well as pivot-based
artificial data; and (Poncelas et al., 2018), which
studies the effects of increasing the size of BT
data. The studies of Crego and Senellart (2016);
Park et al. (2017) also consider forward translation
and Chinea-Rios et al. (2017) expand these results
to domain adaptation scenarios. Our results are
complementary to these earlier studies.

As shown above, many alternatives to BT exist.
The most obvious is to use target LMs (Domhan
and Hieber, 2017; Gulcehre et al., 2017), as we
have also done here; but attempts to improve
the encoder using multi-task learning also exist
(Zhang and Zong, 2016).

This investigation is also related to recent at-
tempts to consider supplementary data with a valid
target side, such as multi-lingual NMT (Firat et al.,
2016), where source texts in several languages are
fed in the same encoder-decoder architecture, with
partial sharing of the layers. This is another re-
alistic scenario where additional resources can be
used to selectively improve parts of the model.

Round trip training is another important source
of inspiration, as it can be viewed as a way to use
BT to perform semi-unsupervised (Cheng et al.,
2016) or unsupervised (He et al., 2016) training of
NMT. The most convincing attempt to date along
these lines has been proposed by Lample et al.

(2017), who propose to use GANs to mitigate the
difference between artificial and natural data.

9 Conclusion

In this paper, we have analyzed various ways to
integrate monolingual data in an NMT framework,
focusing on their impact on quality and domain
adaptation. While confirming the effectiveness of
BT, our study also proposed significantly cheaper
ways to improve the baseline performance, using
a slightly modified copy of the target, instead of
its full BT. When no high quality BT is available,
using GANs to make the pseudo-source sentences
closer to natural source sentences is an efficient
solution for domain adaptation.

To recap our answers to our initial questions:
the quality of BT actually matters for NMT (cf.
§ 3.1) and it seems that, even though artificial
source are lexically less diverse and syntactically
complex than real sentence, their monotonicity is
a facilitating factor. We have studied cheaper alter-
natives and found out that copies of the target, if
properly noised (§ 4), and even better, if used with
GANs, could be almost as good as low quality BTs
(§ 5): BT is only worth its cost when good BT can
be generated. Finally, BT seems preferable to in-
tegrating external LM - at least in our data condi-
tion (§ 6). Further experiments with larger LMs
are needed to confirm this observation, and also
to evaluate the complementarity of both strategies.
More work is needed to better understand the im-
pact of BT on subparts of the network (§ 7).

In future work, we plan to investigate other
cheap ways to generate artificial data. The experi-
mental setup we proposed may also benefit from a
refining of the data selection strategies to focus on
the most useful monolingual sentences.
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