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Abstract

Recent neural machine translation (NMT)

systems have been greatly improved by

encoder-decoder models with attention mech-

anisms and sub-word units. However, im-

portant differences between languages with

logographic and alphabetic writing systems

have long been overlooked. This study fo-

cuses on these differences and uses a simple

approach to improve the performance of NMT

systems utilizing decomposed sub-character

level information for logographic languages.

Our results indicate that our approach not

only improves the translation capabilities of

NMT systems between Chinese and English,

but also further improves NMT systems be-

tween Chinese and Japanese, because it uti-

lizes the shared information brought by simi-

lar sub-character units.

1 Introduction

Neural machine translation (Cho et al., 2014)

(NMT) systems based on sequence-to-sequence

models (Sutskever et al., 2014) have recently be-

come the de facto standard architecture. The

models use attention mechanisms (Bahdanau

et al., 2015; Luong et al., 2015) to keep records

of all encoding results, and can focus on particu-

lar parts of these results during decoding, so that

the model can produce longer and more accurate

translations. Sub-word units are another tech-

nique first introduced by Sennrich’s (2016) appli-

cation of the byte pair encoding (BPE) algorithm,

and are used to break up words in both source and

target sentences into sequences of smaller units,

learned without supervision. This alleviates the

risk of producing <unk> symbols when the model
encounters infrequent “unknown” words, also

known as the out-of-vocabulary (OOV) problem.

Moreover, sub-word units, which can be viewed

as learned stems and affixes, can help the NMT

model better encode the source sentence and de-

code the target sentence, particularly when the

source and target languages share some similar-

ities.

Almost all of the methods used to improve

NMT systems were developed for alphabetic lan-

guages such as English, French, and German as

either the source or target language, or both. An

alphabetic language typically uses an alphabet: a

small set of letters (basic writing symbols) that

each roughly represents a phoneme in the spo-

ken language. Words are composed by ordered

letters, and sentences are composed by space-

segmented ordered words. However, in other

major writing systems—namely, logographic (or

character-based) languages such as Chinese,

Japanese, and traditional Korean—strokes are

used to construct ideographs; ideographs are used

to construct characters, which are the basic units

for meaningful words. Words can then further

compose sentences. In alphabetic languages,

sub-word units are easy to identify, whereas in

logographic languages, a similar effect can be

achieved only if sub-character level information

is taken into consideration.1

Having noticed this significant difference

between these two writing systems, Shi et

al. (2015), Liu et al. (2017), Peng et al. (2017),

and Cao et al. (2017) used stroke-level informa-

tion for logographic languages when constructing

word embeddings; Toyama et al. (2017) used vi-

sual information for strokes and Japanese Kanji

1Taking the ASPEC corpus as an example, the average
word lengths are roughly 1.5 characters (Chinese words, to-
kenized by Jieba tokenizer), 1.7 characters (Japanese words,
tokenized byMeCab tokenizer), and 5.7 characters (English
words, tokenized by Moses tokenizer), respectively. There-
fore, when a sub-wordmodel of similar vocabulary size is ap-
plied directly, English sub-words usually contain several let-
ters, which are more effective in facilitating NMT, whereas
Chinese and Japanese sub-words are largely just characters.
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radicals in a text classification task.2

Some studies have performed NMT tasks using

various sub-word “equivalents”. For instance,

Du and Way (2017) trained factored NMT mod-

els using “Pinyin”3 sequences on the source side.

Unfortunately, they did not apply a BPE algo-

rithm during training, and their model also cannot

perform factored decoding. Wang et al. (2017)

directly applied a BPE algorithm to character se-

quences before building NMT models. However,

they did not take advantage of sub-character level

information during the training of sub-word and

NMT models. Kuang and Han (2018) also at-

tempted to use a factored encoder for Chinese

NMT systems using radical data. It is worth not-

ing that although the idea of using ideographs and

strokes in NLP tasks (particularly in NMT tasks)

is not new, no previous NMT research has fo-

cused on the decoding process. If it is also possi-

ble to construct an ideograph/stroke decoder, we

can further investigate translations between lo-

gographic languages. Additionally, no NMT re-

search has previously used stroke data.

To summarize, there are three potential in-

formation gaps associated with current studies

on NMT systems for logographic languages us-

ing sub-character level data: 1) no research has

been performed on the decoding process; 2) no

studies have trained models using sub-character

level sub-words; and 3) no studies have attempted

to build NMT models for logographic language

pairs, despite their sharing many similarities.

This study investigates whether sub-character in-

formation can facilitate both encoding and decod-

ing in NMT systems and between logographic

language pairs, and aims to determine the best

sub-character unit granularity for each setting.

The main contributions of this study are three-

fold:

1. We create a sub-character database of Chi-

nese character-based languages, and conduct

MT experiments using various types of sub-

character NMT models.

2To be more precise, there is another so-called syl-
labic writing system, which uses individual symbols to
represent symbols rather than phonemes. Japanese hira-
gana and katakana are actually syllabic symbols rather than
ideographs. In this paper, we focus only on the logographic
part.

3An official Romanization system for standard Chinese
in mainland China. Pinyin includes both letters and dia-
critics, which represent phonemic and tonal information, re-
spectively.

2. We facilitate the encoding or decoding pro-

cess by using sub-character sequences on ei-

ther the source or target side of the NMT

system. This will improve translation perfor-

mance; if sub-character information is shared

between the encoder and decoder, it will fur-

ther benefit the NMT system.

3. Specifically, Chinese ideograph4 data and

Japanese stroke data are the best choices for

relevant NMT tasks.

2 Background

2.1 NMT with Attention Mechanisms and

Sub-word Units

In this study, we applied a sequence-to-sequence

model with an attention mechanism (Bahdanau

et al., 2015). The basic recurrent unit is the “long

short-term memory” (Hochreiter and Schmidhu-

ber, 1997) unit. Because of the nature of the

sequence-to-sequence model, the vocabulary size

must be limited for the computational efficiency

of the Softmax function. In such cases, the de-

coder outputs an <unk> symbol for any word

that is not in the vocabulary, which will harm

the translation quality. This is called the out-of-

vocabulary (OOV) problem.

Sub-word unit algorithms (such as BPE algo-

rithms) first break up a sentence into the smallest

possible units. Then, two adjacent units at a time

are merged according to some standard (e.g., the

co-occurrence frequency). Finally, after n steps,

the algorithm collects the merged units as “sub-

word” units. By using sub-word units, it is pos-

sible to represent a large number of words with

a small vocabulary. Originally, sub-word units

were only applied to unknown words (Sennrich

et al., 2016). However, in the recent GNMT (Wu

et al., 2016) and transformer systems (Vaswani

et al., 2017), all words are broken up into sub-

word units to better represent the shared informa-

tion.

For alphabetic languages, researchers have in-

dicated that sub-word units are useful for solving

OOV problems, and that shared information can

further improve translation quality. The Senten-

cepiece project5 compared several combinations

of word-pieces (Kudo, 2018) and BPE sub-word

4We use the term “logographic” to refer to writing sys-
tems such as Chinese characters and Japanese Kanji, and
“ideograph” to refer to the character components.

5https://github.com/google/sentencepiece
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Character
Semantic

ideograph

Phonetic

ideograph
Pinyin

驰 run 马 horse 也 chí

池 pool 水(氵) water 也 chí

施 impose 方 direction 也 sh

弛 loosen 弓 bow 也 chí

地 land 土 soil 也 dì

驱 drive 马 horse 区 q

Table 1: Examples of decomposed ideographs of Chi-

nese characters. The composing ideographs of differ-

ent functionality might be shared across different char-

acters.

models in English/Japanese NMT tasks. The sub-

word units were trained on character (Japanese

Kanji and Hiragana/Katakana) sequences. Sim-

ilarly, Wang et al. (2017) attempted to compare

the effects of different segmentation methods on

NMT tasks, including “BPE” units trained on

Chinese character sequences.

2.2 Sub-character Units in NLP

In alphabetic languages, the smallest unit for

sub-word unit training is the letter; in character-

based languages, the smallest units should be sub-

character units, such as ideographs or strokes.

Because sub-character units are shared across dif-

ferent characters and have similar meanings, it

is possible to build a significantly smaller vocab-

ulary to cover a large amount of training data.

This has been researched quite extensively within

tasks such as word embeddings, as mentioned

previously.

As we can see from the examples in Table 1,

there are several independent Chinese charac-

ters. Each character can be split into at least

two ideographs: a semantic ideograph and a pho-

netic ideograph.6 More importantly, the same

ideograph can be shared by different characters

denoting similar meanings. For example, the

first five characters (驰, 池, 施, 弛 and 地) have

similar pronunciation (and they are written sim-

ilarly in Pinyin) because they share the same

phonetic ideograph “也”. Similarly, semantic

ideographs can be shared across characters and

denote a similar semantic meaning. For exam-

ple, the first character “驰” and the last char-

acter “驱” share same semantic ideograph “马”

(meaning “horse”); and their semantic meanings

are closely related (“run” and “drive”, respec-

6Semantic ideographs denote the meaning of a character,
whereas phonetic ideographs denote the pronunciation.

Word Meaning Ideographs

树木 Wood 木对木

森林 Forest 木木木木木

Table 2: Examples of multi-character words in Chi-

nese and their ideograph sequences.

tively). A few ideographs can also be treated as

standalone characters.

To the best of our knowledge, however, no re-

search has been performed on logographic lan-

guage NMT beyond character-level data, except

in thework of Du andWay (2017), who attempted

to use Pinyin sequences instead of character se-

quences in Chinese–English NMT tasks. Consid-

ering the fact that there are a large number of ho-

mophones and homonyms in Chinese languages,

it was difficult for this method to be used to re-

construct characters in the decoding step.

3 NMT Using Sub-character Level Units

3.1 Ideograph Information

When building NMT vocabulary, the use of sub-

characters (instead of words, characters, and char-

acter level sub-words) can greatly condense vo-

cabulary size. For example, a vocabulary can be

decreased from 6,000 to 10,000 character types7

to hundreds 8 of ideographs. Table 2 presents two

Chinese words composed of four different char-

acters that have very close meanings. Character-

based NMT models treat these characters sep-

arately as one-hot vectors. In contrast, if the

two words are broken down into ideograph se-

quences, they overlap significantly. Then, only

two ideographs are needed to compose the vocab-

ulary of the two words. The computational load

will be reduced, and the chances of training neu-

rons responsible for low-frequency vocabularies

will increase.

Moreover, sub-character units can serve as

building blocks for constructing characters that

are not present in the training data, because all

CJK characters are designed to be composed of a

limited number of ideographs in UNICODE stan-

dards.

3.2 Stroke Information

All ideographs can be further decomposed into

strokes, which are smaller units and have an even

7According to the ASPEC corpus.
8214 as defined in UNICODE 10.0 standard and 517 as

defined in CNS11643 charset.
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smaller number of types. Therefore, we also

propose training our model on stroke sequences.

There are five basic stroke types for Chinese char-

acters and Japanese Kanji: “horizontal” (一),

“vertical” (丨), “right falling” (㇃), “left falling”

(丿), and “break” (㇕). Each stroke type can be

further sub-categorized into several stroke varia-

tions. For example, left falling strokes contain

both long and short left fallings (㇓ and㇒), while

a break contains many more variations, such as

㇄, ㇅, ㇆, and ㇉ (details can be found in Ap-

pendix A).

In practice, the CNS11643 charset9 is used to

transform each character into a stroke sequence,

where unfortunately only “stroke-type” informa-

tion is available. In this study, we manually tran-

scribed all ideographs into stroke sequences using

33 pre-defined strokes.

3.3 Character Decomposition

The CNS11643 charset is used to facilitate char-

acter decomposition, where Chinese, Japanese,

and Korean characters are merged into a sin-

gle character type based on similarities in their

forms and meanings. This is potentially bene-

ficial; for example, if Chinese and Japanese vo-

cabularies are built, they will authentically share

some common types. There are 517 so-called

“components” (i.e., ideographs) pre-defined in

CNS11643. This ensures that all characters can

be divided into certain sequences of components.

For example, the character “可” can be split into

“丁” and “口”; and the character “君” can be

split into “尹” and “口”. Details can be found

on the CNS11643 website10. Using this ideo-

graph decomposition information, all Chinese

and Japanese sentence data can be transformed

into new ideograph sequences; then, using the

manually transcribed stroke decomposition data

introduced in Section 3.2, we can also obtain new

stroke sequences.

Note that although there are no clear indica-

tions of how the components/strokes are struc-

tured together, the sequence potentially contains

structural information, because the writing of

characters always follows a certain order, such as

“up-down”, “outside-in”, etc. We also note that

UNICODE 10.0 has introduced symbols indi-

9The CNS11643 charset is published and maintained by
the Taiwan government.
http://www.cns11643.gov.tw/AIDB/welcome_en.do

10http://www.cns11643.gov.tw/search.jsp?ID=13

Language Word

JP-character 風 景

JP-ideograph 几一虫 日亠口小_1

JP-stroke
丿㇈㇐㇑㇕㇐㇑㇀㇔

㇑㇕㇐㇐㇔㇐㇑㇆㇐㇚㇒㇔_1

CN-character 风 景

CN-ideograph 几㐅 日亠口小_1

CN-stroke
丿㇈㇒㇔
㇑㇕㇐㇐㇔㇐㇑㇆㇐㇚㇒㇔_1

EN landscape

Table 3: The Japanese word 風景 and Chinese word

风景 both mean “landscape” in English, and they only

differ in the middle part of the first character. Note that

there are “_1” tags at the ends of some decomposed se-

quences to distinguish between possible duplications.

cating sub-character structures (Ideographic De-

scription Characters), which provide a clearer in-

dication of character compositions. Wewill make

further use of this information in future studies.

To ensure that there are no duplicated ideo-

graph and stroke sequences for different charac-

ters andmulti-character words, we post-tag the se-

quences on the duplicated ones using “_1”, “_2”,

etc. Table 3 shows an example of character de-

composition in Chinese and Japanese11.

4 Experiments on

Chinese–Japanese–English Translation

To answer our research questions, we set up a

series of experiments to compare NMT mod-

els of logographic languages trained on word

sequences, character-level sub-word unit se-

quences, and ideograph- and stroke-level sub-

word unit sequences.

We performed two lines of experiments:

1. We trained NMT models between logo-

graphic language and alphabetic language

combinations, i.e., Japanese/Chinese and

English. In each model, we varied the data

granularity for the logographic language,

using “character level” or “sub-character

level” (ideograph level and stroke level)

granularities. We used the character level

11For example, the ideograph and stroke sequences for
character景 are the same as those for character晾 (meaning
“to dry in the sun”). However, these two characters have dif-
ferent architectures (“top-down” vs. “left-right”). Post-tags
are thus appended in order to distinguish them. Similarly,
characters风 and𠘰 have the same ideograph and stroke se-
quences, and thus must be post-tagged.
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NMT models as our baselines, and investi-

gated whether the sub-character level NMT

models could outperform the baseline mod-

els.

2. We trained NMT models between combina-

tions of two logographic languages, i.e., Chi-

nese and Japanese. Similarly, we used data

sets with different granularities: 1) Models

lacking sub-character level data. 2) Mod-

els having sub-character level data on both

sides (to confirm the results of the previ-

ous experiment). For the experiments, the

models will have both source and target

sides. The models will use sub-character

level data with/without shared vocabularies

(namely, ideograph models, stroke models,

ideograph-stroke models, stroke-ideograph

models, and ideograph/stroke models with

shared vocabularies). 3) Pinyin baselines ac-

cording to (Du and Way, 2017), where both

Pinyin word sequences with tones and char-

acter sequences with Pinyin factors are used

with the encoder.

4.1 Dataset

We trained our baselines and experiments using

Chinese, Japanese, and English. The Asian Sci-

entific Paper Excerpt Corpus (ASPEC (Nakazawa

et al., 2016)) and Casia201512 corpus were used

for this purpose.

ASPEC contains a Japanese–English paper

abstract corpus of 3 million parallel sentences

(ASPEC-JE) and a Japanese–Chinese paper

excerpt corpus of 680,000 parallel sentences

(ASPEC-JC). We used the first million con-

fidently aligned parallel sentences in ASPEC-

JE and all of the ASPEC-JC data to cover

Japanese–English and Japanese–Chinese lan-

guage pairs. The Casia2015 corpus contains ap-

proximately 1 million parallel Chinese–English

sentences. All data in the Casia2015 corpus were

used to cover Chinese–English language pairs.

During training, the maximum length hyperpa-

rameter was adjusted to ensure 90% coverage of

the training data. For development and testing,

the ASPEC corpus has an official split between

the development set and test set; however, be-

cause the Casia2015 corpus is not similarly split,

12http://nlp.nju.edu.cn/cwmt-wmt/, provided by the Insti-
tute of Automation, Chinese Academy of Sciences.

we made random selections from the develop-

ment set and test set of 1,000 sentences each.

4.2 Settings

Different pre-tokenization methods were applied

to the data in three languages (if applicable). A

Moses tokenizer was applied to the English data;

a Jieba13 tokenizer using the default dictionary

was applied to the Chinese data; and a MeCab14

tokenizer using the IPA dictionary was applied to

the Japanese data. For the Pinyin baseline, the

pypinyin15 Python library was used to transcribe

the Chinese character sequence into a Pinyin se-

quence.

In both of the experiment lines discussed

above, data at the “word”, “character”, “ideo-

graph”, and “stroke” levels were used in combi-

nations. For “word” level data, only dictionary-

based segmentation was applied; for the other

three levels of data, the byte pair encoding (BPE)

models were trained and applied, with a vocabu-

lary size of 8,000. In the second line of exper-

iments, where both the source and target sides

were logographic languages, we added “charac-

ter” level data without BPE (“char”) for com-

parison. Additionally, shared vocabularies were

applied when both the source and target had the

same data granularity level (meaning that both the

source and target sidewould have the same vocab-

ulary)16.

A basic RNNsearch model (Bahdanau et al.,

2015) with two layers of long short-term mem-

ory (LSTM) units was used. The hidden size was

512. A normalized Bahdanau attention mecha-

nism was applied at the output layer of the de-

coder. We developed our model based on Ten-

sorFlow17 and its neural machine translation tu-

torial18.

The model was trained on a single GeForce

GTX TITAN X GPU. During training, the SGD

optimizer was used, and the learning rate was

set at 1.0. The size of the training batch was

set to 128, and the total global training step was

250,000. We also decayed the learning rate as the

training progressed: after two-thirds of the train-

13https://github.com/fxsjy/jieba
14http://taku910.github.io/mecab/
15https://github.com/mozillazg/python-pinyin
16The shared vocabulary can be trained by a BPE model

on a concatenated corpus of source and target sentences.
17https://github.com/tensorflow
18https://github.com/tensorflow/nmt
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English-Japanese NMT BLEU

EN_word JP_word 36.1

EN_word JP_character 38.3

EN_word JP_ideograph 40.3∗

EN_word JP_stroke 41.3∗

Japanese-English NMT BLEU

JP_word EN_word 25.5

JP_character EN_word 26.3

JP_ideograph EN_word 26.8∗

JP_stroke EN_word 27.0∗

English-Chinese NMT BLEU

EN_word CN_word 11.8

EN_word CN_character 10.3

EN_word CN_ideograph 14.6∗

EN_word CN_stroke 14.1∗

Chinese-English NMT BLEU

CN_word EN_word 14.7

CN_character EN_word 14.5

CN_ideograph EN_word 15.6∗

CN_stroke EN_word 15.5∗

Table 4: Experimental results (BLEU scores) of NMT

systems for Japanese/English and Chinese/English

language pairs. All the scores are statistically signifi-

cant at p = 0.0001 (marked by ∗).

ing steps, we set the learning rate to be four times

smaller until the end of training. Additionally, we

set the drop-out rate to 0.2 during training.

BLEU was used as the evaluation metric in

our experiments. For Chinese and Japanese data,

a KyTea tokenization was applied before we ap-

plied BLEU, following the WAT (Workshop on

Asian Translation) leaderboard standard. To val-

idate the significance of our results, we ran boot-

strap re-sampling (Koehn, 2004) for all results us-

ing Travatar (Neubig, 2013) at a significance level

of p = 0.0001.

4.3 Results

4.3.1 NMT of Logographic and Alphabetic

Language Pairs

Table 4 shows the experimental results for the

Japanese/English and Chinese/English language

pairs in both translation directions. Generally,

for each of the experiment settings, the mod-

els using ideograph and stroke data outperformed

the baseline systems, regardless of the language

pair or translation direction. However, for the

Japanese/English language pair, the stroke se-

quence models performed better. For the Chi-

nese/English language pairs, the ideograph se-

quence models worked better. The reason for

these differences will be discussed in detail in

Section 5.

4.3.2 NMT of Logographic Language Pairs

Table 5 shows the results for all baselines and pro-

posed models. Among the character-level base-

lines, the “char” models and “bpe” models out-

performed the “word” models in both translation

directions. When we applied a shared vocabu-

lary to the “bpe”models, the models achieved the

best BLEU scores in both translation directions.

These character-level baselines conformwith pre-

vious studies indicating that sub-word units im-

prove the performance of NMT systems, and that

whenever both the source and target side data

have similarities in their writing systems, shared

vocabularies will further enhance performance.

Sub-character level models aim to replicate

similar results to those presented in Section 4.3.1,

because only one side of these models uses sub-

character level data. For Japanese–Chinese trans-

lation directions, half of the models showed a sig-

nificant improvement over the baselines, whereas

for Chinese–Japanese translation directions, five

out of six models showed significant improve-

ments.

When both the source and target side used the

same sub-character level data (either ideograph or

stroke data), the experimental results also showed

significant improvement over character baselines.

Additionally, the ideograph models outperformed

stroke models. When shared vocabularies were

applied to the models, the ideograph models ex-

hibited slight performance improvements (0.1 ∼
0.4 BLEU point), and the stroke models exhib-

ited dramatically decreased performance (0.9 ∼
1.1 BLEU points). However, no model here out-

performed the sub-character baselines.

To further exploit the power of sub-character

units, the last models having different levels of

sub-character units on the source and target side

were trained. The results conform with what we

found in Section 4.3.1: the models using Chinese

ideograph data and Japanese stroke data exhib-

ited the best performance, regardless of whether

they were applied at the source or target side. For

Japanese–Chinese translations, the best BLEU

score was 33.8, which was produced by the

Japanese-stroke and Chinese-ideograph model;

for Chinese–Japanese translation, the best BLEU

score was 43.9, which was produced by the

Chinese-ideograph and Japanese-stroke model.
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JP-CN NMT CN_word CN_char CN_bpe CN_ideograph CN_stroke

JP_word 29.6 - - 30.8 30.3

JP_char - 31.6 - 32.0∗ 32.1∗

JP_bpe - - 31.5 (31.7) 31.6 31.7

JP_ideograph 30.4 33.1∗ 33.3∗ 32.0∗ (32.4∗) 33.4∗

JP_stroke 30.3 33.4∗ 32.6∗ 33.8∗ 32.1∗ (31.2)

CN-JP NMT JP_word JP_char JP_bpe JP_ideograph JP_stroke

CN_word 40.0 (40.0) - - 40.5 40.1

CN_char 42.1 (40.4) 41.7 - 43.1∗ 42.2∗

CN_bpe 42.1 - 42.0 (42.3) 43.1∗ 42.2∗

CN_ideograph 43.2∗ 43.5∗ 43.0∗ 42.6∗ (42.7∗) 43.9∗

CN_stroke 43.0∗ 43.3∗ 42.5∗ 42.9∗ 42.2∗ (41.1)

Table 5: Experimental results (BLEU scores) for Japanese/Chinese NMT systems. The row headers and column

headers indicate which source and target data were used in the training. In particular, “word” and “char” are

character level data without BPE segmentation, while “bpe” (character level), “ideograph”, and “stroke” (sub-

character level) are data with BPE segmentation. The scores in parentheses indicate the models that had a shared

vocabulary, whenever applicable. The italic numbers represent the two Pinyin baselines used for comparative

purposes, namely the “WdPyT”model, which uses Pinyin words with tones as the source data, and the “factored-

NMT” model, which uses Pinyin characters as factors (Du and Way, 2017). Note that these two baselines can

only have Chinese data on the encoder side. The ∗ superscripts indicate that a score is significantly better than
the best baseline result.

5 Discussions

5.1 Translation Examples

Table 6 shows some of the translation exam-

ples. There is a rare proper noun “松下電器

(Matsushita Electric)” (OOV) in the source sen-

tence. The word baseline model cannot decode

this; therefore, an <unk> symbol is produced.

The character baseline model avoids the OOV

problem. However, the underlined parts in both

baseline translations seem to be word-for-word

translations from the Japanese source sentence

(“松下 電器 グループ で は”), which be-

come a prepositional phrase in Chinese (“在

松下 电器 集团 中 (in Matsushita Electric

Group)”). This makes the translation ungram-

matical because there will be no noun phrase as

the subject in the sentence. Our best model (i.e.,

sub-character based NMT model using Japanese

stroke data and Chinese ideograph data) can

solve these two problems by better encoding the

source sentence and can produce translations

both without OOV and with a noun phrase as the

sentence subject.

5.2 Strokes vs. Ideographs

The experimental results show that in NMTmod-

els, different logographic languages appear to pre-

fer sub-character units with different granulari-

ties. A very clear tendency that was observed con-

sistently in both experiments was that ideographs

worked better for Chinese and strokes worked

better for Japanese. This difference might be be-

cause of the differences in the writing systems. In

addition to Kanji (Chinese characters), Japanese

uses Hiragana and Katakana, which are stan-

dalone alphabets.

Moreover, as described in Section 4, stroke

models tended to perform more poorly than ideo-

graph models. This probably occurred because

to achieve a fair comparison between all baseline

models and proposed models, the same hyper-

parameter configurations were used. For exam-

ple, the embedding dimensions for all vocabular-

ies were set to 300. This might be appropriate

for vocabularies of character-based data and ideo-

graph data having vocabulary sizes larger than

500. However, the stroke data only has a vocabu-

lary size of approximately 30, which is too dispro-

portional. This phenomenon might also account

for the decrease in BLEU scores when shared vo-

cabularies were applied to stroke models.

5.3 The Encoding and Decoding Process

In comparison with character level data, sub-

character level data (such as ideographs and

strokes) can be used to generate much smaller

andmore concentrated vocabularies. This is help-

ful during both the encoding and decoding pro-

cesses. Vocabularies constructed using character-

level data are known to be very skewed, con-

taining both very frequent words and very rare
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Model Sentence

Source
松下 電器 グループ で は , 経営 理念 の 基本 と し て 1991 年 に 「 環境

宣言 」 を 制定 し た 。

Reference 作为 经营 理念 , 松下电气集团 于 1991年 制定 了 《 环境 宣言 》 。

Baseline

(Word)
在 <unk> 集团 中 , 1991年 制定 了 “ 环境 宣言 ” 作为 经营 理念 的 基础 。

Baseline

(Char)

在 松下电器 集团 中 , 作为 经营 理念 的 基础 , 1991年 制定 了 《 环境

宣言 》 。

Best Model

(JP-stroke-

CN-ideograph)

松下电器集团 , 作为 经营 理念 的 基础 , 1991年 制定 了 “ 环境 宣言 ” 。

English

Translation

The Matsushita Electric Group enacted the ”Environmental Declaration” as the basis of

its business philosophy in 1991.

Table 6: Translation examples of Japanese-Chinese NMT systems. Note that “松下电器” as a proper noun,

could be handled properly in sub-character based translation systems.

words. As a result, during training, the neurons

responsible for high-frequency words might be

updated many times, while the neurons respon-

sible for low-frequency words might be updated

only a very limited number of times. This will

potentially harm translation performance for low-

frequency words.

However, this problem can be alleviated by ap-

plying sub-character units. Because ideographs

and strokes are repeatedly shared by different

characters, no items occur with very low frequen-

cies. More instances can be found in the train-

ing data, even for the least frequent sub-character

items. Therefore, the translation performance for

low-frequency items could be much better.

6 Conclusions and Future Work

This study was the first attempt to use sub-

character units in NMT models. Our results

not only confirmed the positive effects of using

ideograph and stroke sequences in NMT tasks,

but also indicated that different logographic lan-

guages actually preferred different sub-character

granularities (namely, ideograph for Chinese and

stroke for Japanese). Finally, this paper presented

a simple method for extending the available cor-

pus from the character level to the sub-character

level. During this process, we maintained a one-

to-one relationship between the original charac-

ters and transformed sub-character sequences. As

a result, this simple and straightforward method

achieved consistently better results for NMT sys-

tems used to translate logographic languages, and

could be easily applied to similar scenarios.

Many questions remain to be answered in fu-

ture work. The first question involves the relative

benefits of ideograph data and stroke data, and the

effects of shared vocabularies. We have not yet

explained why there are considerable differences

in performance. In particular, for NMT models

in which both sides have stroke data, why does

performance drop dramatically when shared vo-

cabularies are applied? We discussed the possi-

ble reasons for this phenomenon in Section 5.2;

however, further investigation is needed.

Another important issue is as follows: when

characters are transformed into ideographs and

strokes, no structural information is considered.

This causes repetitions in data, and we must add

tags at the end of each sequence to differentiate

them. A better way to solve this problem would

be to have structural information directly encoded

in the data.
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Appendix A Strokes in CNS11643 Charset

Type Strokes

Horizontal

Vertical

Left-falling

Right-falling

Break

25


