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Abstract

This paper describes our system created for the
WASSA 2018 Implicit Emotion Shared Task.
The goal of this task is to predict the emo-
tion of a given tweet, from which a certain
emotion word is removed. The removed word
can be sad, happy, disgusted, angry, afraid
or a synonym of one of them. Our proposed
system is based on deep-learning methods. We
use Bidirectional Long Short-Term Memory
(BiLSTM) with word embeddings as an input.
Pre-trained DeepMoji model and pre-trained
emoji2vec emoji embeddings are also used as
additional inputs. Our System achieves 0.657
macro F; score and our rank is 13" out of 30.

1 Introduction

Emotions, especially on the social media and so-
cial networks, as an immediate response to a spe-
cific object or a situation, are a significant part
of the communication between people. Even for
a human, it is sometimes challenging to describe
or recognize an emotion without imminent contact
with a subject (e.g. idioms or sarcasm). One of
the most important ways to express an emotion in
a text is an emoji. Emojis are small ideograms de-
picting objects, people and scenes (Barbieri et al.,
2018). Emojis try to capture a facial expression of
a subject, which is determining for emotion detec-
tion.

This paper describes our system created for
the WASSA 2018 Implicit Emotion Shared Task
(Klinger et al., 2018). The goal of this task is to
predict the emotion of a given tweet, from which
a certain emotion word is removed, for example:

It is [#TARGETWORD#] when you feel
like you are invisible to others.

The removed word can be sad, happy, dis-
gusted, surprised, angry, afraid or a synonym of
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one of them. The possible emotions are Sad-
ness, Joy, Disgust, Surprise, Anger, and Fear. The
[#TARGETWORD#] token in the example indi-
cates a position of the removed word in the given
tweet.

1.1 Related Work

As we mentioned before emojis are an important
part of expressing emotions. Barbieri et al. (2017)
investigated the relationship between words and
emojis. They also proposed an approach to predict
the most probable emoji that is associated with
a tweet. The mentioned approach uses a Bidirec-
tional Long Short-Term Memory networks (BiL-
STM) (Graves and Schmidhuber, 2005).

Pre-trained word embeddings (word represen-
tations) such as (Mikolov et al., 2013; Pennington
et al., 2014) are currently standard part in most of
the state-of-the-art solutions for key NLP tasks.

Tang et al. (2014) propose a method that can
learn sentiment—specific word embeddings, which
are able to improve performance by combining
with other existing feature sets.

There are also some previously submitted sys-
tems in similar SemEval shared tasks using deep
learning models. Cliche (2017) uses a CNN
and LSTM for Sentiment Analysis SemEval-2017
task 4 (Rosenthal et al., 2017). Another approach
with a deep LSTM with Attention mechanism is
used by Baziotis et al. (2017) for the same task.
Most of the best performing submitted systems
(Baziotis et al., 2018; Gee and Wang, 2018; Park
et al., 2018) in SemEval-2018 Task 1: Affect in
Tweets (Mohammad et al., 2018) also use deep
learning models with LSTM or BiLSTM neural
networks.

2  Overview

Our approach is based on the artificial neural net-
work that combines word embeddings and emoji—

Brussels, Belgium, October 31, 2018. (©2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17



based features as input. We use Weka machine
learning workbench (Hall et al., 2009) for prepro-
cessing. Our submitted model combines BiLSTM
layer for word embeddings input and dense lay-
ers for the other inputs (emoji2vec (Eisner et al.,
2016) and DeepMoji (Felbo et al., 2017) features,
see 2.2) connected to one dense layer, see the Fig-
ure 2 with a model architecture. Outputs of these
three layers are concatenated and then a dropout
(Srivastava et al., 2014) technique is applied. After
the concatenating a next dense layer is employed.
An output from the previous dense layer is then
passed to a fully-connected softmax layer. An out-
put of the softmax layer is a probability distribu-
tion over all six possible classes.

We trained several modified versions of our sub-
mitted model and we evaluated these models on
the development data. The model with the highest
macro F; score on the development data was then
trained again on the training data extended by the
development data. This model was used for test
data predictions. All models were implemented by
using Keras (Chollet et al., 2015) with TensorFlow
backend (Abadi et al., 2015).

2.1 Tweets Preprocessing

Tweets often contain slang expressions, mis-
spelled words, emoticons or abbreviations and it
is needed to make some preprocessing steps before
training and making predictions. We use a similar
approach to Pribai et al. (2018).

At first, we remove the [ #TARGETWORD# ] to-
ken, that represents a position of the removed word
with a certain emotion and every tweet is tok-
enized using TweetNLP twokenizer (Gimpel et al.,
2011). Then the following steps are applied on to-
kens:

1. Tokens are converted to lowercase

2. Tokens containing sequences of letters occur-
ring more than two times in a row are re-
placed with two occurrences of them (e.g.
huuuungry is reduced to huungry, looooove
to loove)

3. From hashtags (tokens starting with #) the
# character is removed.

4. Common sequences of words and emojis are
separated by space (e.g. token "nice:D:D” is
split into three tokens "nice”, ”:D” and ”:D”)

5. Characters &_— in tokens are replaced with
space
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Weka machine learning workbench is used to per-
form the mentioned steps. After tokenization and
mentioned preprocessing the tweet is padded to 50
tokens. Tweets longer than 50 words are short-
ened, while to the shorter tweets padding tokens
are added.

2.2 Features

We use three types of input features — word em-
beddings, emoji embeddings and an emotional
representation of a sentence. Word embeddings
are representations of words usually expressed
as pre-trained dense real vectors (Mikolov et al.,
2013; Pennington et al., 2014) with a fixed dimen-
sion size. We use pre-trained Ultradense Word
Embeddings (Rothe et al., 2016) that were trained
on Twitter domain corpus. The number of dimen-
sions for this embedding is 400.

Pre-trained emoji2vec (Eisner et al., 2016)
emoji embeddings (300-dimensional) are used as
another input to our model. We average vectors
for each emoji in a tweet and the resulting aver-
aged vector is used as an input. The mentioned
emoji2vec embeddings contain vectors for all Uni-
code emojis which were learned from their de-
scription in the Unicode emoji standard!, see the
(Eisner et al., 2016) for details. Emoji2vec embed-
dings can be used only for some tweets because
not every tweet contains some emojis, but we sup-
pose that using emoji2vec will lead to an overall
performance improvement.

We also use DeepMoji (Felbo et al., 2017) as an
emotional sentence representation. The Deep-
Moji model is able to predict emoji that is included
with a given sentence and thus the model has also
an understanding of the emotional content of that
sentence. The model was trained on a dataset of
1.2 billion tweets. As an input for our model, we
use the 2304-dimensional vector from the atten-
tion layer in the pre-trained DeepMoji model.

2.3 Recurrent Neural Network

The Recurrent Neural Network (RNN) extends the
classic (feed—forward) neural network. An RNN
is intended for sequential data. The actual hidden
state h; of the RNN depends on the previous hid-
den state h;—; (see Figure 1). An RNN takes the
input sequence x1, 2 . . . x7 and for each element,
at the time step ¢ computes new hidden state h;

"http://www.unicode.org/emoji/charts/
emoji-list.html
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from the input x; and from the previous hidden
state h;—1. The new hidden state h; is computed
by hidden layer function 7.

)

In the simplest case, the hidden layer function
‘H is defined as:

hy = H(x, hi—1)

he = 0 (Wanxe + Wiphe—1 + bp,) 2

where the W terms correspond to weight matri-
ces (e.g. Wy, is the input-hidden weight matrix)
and by, term is hidden bias vector. The concrete
implementation of the H function depends on the
type of the used RNN unit (Graves et al., 2013),
for example Long Short-Term Memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997) or Gated
Recurrent Unit (GRU) (Cho et al., 2014).

In our case, the input z; denotes the word em-
bedding vector for each word in the tweet and 7" is
a length of the tweet. Every tweet is also padded
to the length 7'. As mentioned, the new hidden
state h; depends on the previous hidden state and
hence the word order is also taken into account in
the RNN.

2.4 Long Short-Term Memory

The Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) allows learning (remember)
long-term dependencies from the input sequence.
The LSTM unit consists of cell state (cell activa-
tion vector) input, forget and output gates. These
gates control how the cell state is updated. The H
function of the LSTM unit is defined as:

it = 0 (Waize + Whihi—1 + b;) 3)
ft =0 (Warze + Whrhe—1 + by) 4)
0t = 0 (Waoxt + Whohi—1 + bo) )

ct = fe* ce—1 + 1y * tanh (Waexe + Whehi—1 + be) (6)

hi = o * tanh (c) @)

where the W terms correspond to weight ma-

trices and b terms are bias vectors, 7, f, o are

the input, forget and output gates, ¢ denotes cell

state (activation vector), o is sigmoid function

and = character means element-wise multiplica-
tion.

It is a common practice to use Bidirectional
LSTM (BIiLSTM) (Graves and Schmidhuber,
2005). The BiLSTM consists of two LSTMs, one
LSTM process the input sequence from the first
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Figure 1: Basic RNN architecture?

element x; to x7 and produces output vector E}
The second LSTM process the input sequence in
reverse order e.g. from the last element z7 to x;
and produces output vector h;. Both output vec-
tors have dimension D. The final output vector h;
from BiLSTM with dimension_>2D is then created
by concatenating two vectors h; and h;.

Dropout (Srivastava et al., 2014) is a technique
for improving neural networks by reducing over-
fitting. The dropout technique randomly drops
out units (hidden and visible) during training and
thus prevents co-adaption of neurons from training
data.

3 Model Description

The proposed model has three inputs. Figure
2 shows the model architecture. The first in-
put (word embeddings) represents tweet as a se-
quence of ¢ = 50 tokens. We use the Ultradense
Word Embeddings (Rothe et al., 2016) to obtain
a vector of dimension d = 400 for each token
from the tweet. The whole tweet is then repre-
sented as a matrix M € R**?. The vectors are ob-
tained only for 50,000 most frequent words in the
training dataset. If the tweet word is not present
in a vocabulary of 50,000 most frequent words,
the randomly initialized vector of the same dimen-
sion is used. The word embeddings input is fol-
lowed by a BILSTM layer with 1200 units, respec-
tively every single LSTM has 600 units. We also
use a dropout to recurrent connections in BiLSTM
layer.

The emoji embeddings input is based on
emoji2vec (Eisner et al., 2016). For each emoji
in the tweet, a 300-dimensional vector is produced
by the pre-trained model. All emoji vectors for
the tweet are then averaged to a single vector.
If the tweet does not contain any emoji a zero
vector is used. The resulting averaged emoji em-
beddings vector £ € R3% is used as an input to
a dense layer with 300 units.

*Image is based on: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/
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Our last input uses a pre-trained DeepMoji
(Felbo et al., 2017) model for an emotional sen-
tence representation. The DeepMoji model gen-
erates for each tweet vector D € R?3%4 which rep-
resents the emotional content of the tweet. The
emotional sentence representation input is fol-
lowed by a dense layer with 2304 units.

All three output vectors of the BiLSTM and
two dense layers are concatenated into one vec-
tor C' € R3804 that is passed to a next dense layer
with 400 units. We also use a dropout after the
concatenating. An output of the last dense layer
is passed to a final fully-connected softmax layer.
An output of the softmax layer is a probability dis-
tribution over all six possible classes. The class
with the highest probability is predicted as a final
output of our model.

3.1 Model Training & Hyper-Parameters

We trained our model using mini-batches of size
1024 for 5 epochs and we used the Adam (Kingma
and Ba, 2014) optimizer with learning rate 0.001
the other parameters of the Adam optimizer follow
those provided in the cited paper. As an activation
function in the BiLSTM and in the dense layers,
we used a Rectified Linear Unit (ReLu). Dropout
of 0.2 is used for the recurrent connections in Bil-
STM layer and in all dense layers.

We trained the model on the provided training
dataset and we evaluated the trained model on the
development dataset. We experimented with dif-
ferent settings of the hyper-parameters (learning
rate, mini-batch size etc.) but the mentioned set-
tings showed to be the best one on the develop-
ment data. These hyper-parameters settings were
also used for final submission.

4 Experiments & Results

All presented experiments were evaluated on the
provided development and test datasets. Table 1
shows the results for the different model settings.

We performed ablation study to see which fea-
tures are the most beneficial (see Table 2). Num-
bers represent the performance change when the
given feature is removed .

We also modified our model and we experi-
mented with an attention mechanism (Rocktéschel
et al., 2015; Raffel and Ellis, 2015). The atten-

3The lowest number denotes the most beneficial feature
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Macro Fy
Model Settings dev data | test data
Ultradense + DeepMoji + emoji2vec’ 0.657 0.657
Ultradense + DeepMoji 0.661 0.660
Ultradense + emoji2vec 0.653 0.658
Ultradense 0.648 0.650
DeepMoji + emoji2vec 0.556 0.547
DeepMoji 0.560 0.552
emoji2vec 0.151 0.154
Ultradense + DeepMoji + emoji2vec* 0.661 0.656
Ultradense + DeepMoji* 0.654 0.653

*Model with added attention mechanism to BiLSTM layer
TModel used for the final submission

Table 1: Results for individual model settings

tion mechanism was added to our BiLSTM layer*
(see Table 1 with results obtained by the modified
model).

Our results for the WASSA 2018 Implicit Emo-
tion Shared Task are shown in Table 3 along with
some other teams. Table 4 contains the confu-
sion matrix obtained from the submitted predic-
tions and Table 5 contains Recall, Precision an F;
measures that are computed from the confusion
matrix.

Feature ‘ dev data ‘ test data
Ultradense + DeepMoji + emoji2vec* 0.657 0.657
Ultradense -0.101 -0.110
DeepMoji -0.004 -0.001
emoji2vec 0.004 -0.003

*Values used to calculate ablation results

Table 2: Feature ablation study

Team ‘ Macro F; ‘ Rank
Amobee 0.714 1
IIIDYT 0.710 2
NTUA-SLP 0.703 3
hgsgnlp 0.658 12
UWB 0.657 13
NL-FIIT 0.655 14
BASELINE 0.599 20

Table 3: WASSA 2018 Implicit Emotion Shared Task
official results

4.1 Discussion

Thanks to the ablation study (see Table 2) and re-
sults from Table 1 we can observe that the Ultra-
dense Word Embeddings are the most important
features for our model. The DeepMoji and the

“We experimented with an attention mechanism after the
submission deadline and therefore the modified model cannot
be used to make predictions for the final submission
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Figure 2: System architecture

1 x 2304
#super
Predicted Labels

A D F J Sa Su
A | 3011 250 441 326 431 335
_'?:j D 484 2807 274 204 596 429
5 F 461 119 3484 243 210 274
= | J 336 76 319 4021 304 190
3 Sa 439 206 266 345 2939 145
Su| 530 331 569 315 345 2702

Table 4: Confusion Matrix on the test dataset (A, D, F,
J, Sa, and Su are abbreviations for anger, disgust, fear,
joy, sadness, and surprise respectively)

emoji2vec features also increase the performance
of our model for the test dataset, but the contri-
bution is insignificant and it is not so important
as the word embeddings. So our assumption, that
the emoji2vec feature will lead to a more signifi-
cant overall performance improvement for the test
dataset, is not correct. It would be more benefi-
cial to use a simpler model without an emoji2vec
feature.

The modified models with the attention mecha-
nism did not improve the performance. The possi-
ble explanation is that it is caused by the missing
emotion word in the classified tweet. The missing
word carries probably the most information about
the emotion. If the word was present in the clas-
sified tweet the attention mechanism would pay
most attention to the missing word and thus the
attention mechanism would improve the perfor-
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Emotion ‘ Recall ‘ Precision | F; score

Anger 0.628 0.572 0.599
Disgust 0.586 0.741 0.654
Fear 0.727 0.651 0.687
Joy 0.766 0.737 0.752
Sadness 0.677 0.609 0.641
Surprise | 0.564 0.663 0.609

Table 5: Recall, Precision and F; score for each emo-
tion of the test dataset

mance of our model.

Our model performs best for the joy and fear
emotions (see Table 5). On the other hand, we
obtained worst results for the anger emotion. Our
model produces the most false positive predictions
for the anger emotion (tweet is classified as anger
but the true emotion is different). From the con-
fusion matrix (Table 4), we can see that for our
model it is difficult to distinguish especially be-
tween disgust and sadness, disgust and anger, fear
and anger, surprise and anger, and between sur-
prise and fear.

Table 1 shows that there are no important dif-
ferences between the development dataset and test
dataset results. So our decision to select the sec-
ond best model (evaluated on the development
dataset) for the final submission based on the re-
sults for the development dataset was suitable.



5 Conclusion

In this paper we described our UWB deep-learning
system created for the WASSA 2018 Implicit
Emotion Shared Task. Our system uses Bidirec-
tional Long Short-Term Memory (BiLSTM) with
word embeddings as an input. Pre-trained Deep-
Moji model and pre-trained emoji2vec emoji em-
beddings are also used as additional inputs. The
proposed system performs best for the joy emo-
tion. Our System achieves 0.657 macro F; score
and our rank is 13" out of 30.

We performed ablation study and showed that
the most beneficial features are word embed-
dings. The emotional sentence representation
(DeepMoji feature) and the averaged emoji vec-
tors (emoji2vec feature) did not much improve the
performance of our model.

In the future work, we would like to try an-
other approach employing a twitter specific lan-
guage model to predict probabilities for each emo-
tion class for the missing target emotion word in
the provided data. These probabilities could be
used as input features to our model.
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