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Abstract

In this paper, we present neural models sub-
mitted to Shared Task on Implicit Emotion
Recognition, organized as part of WASSA
2018. We propose a Bi-LSTM architecture
with regularization through dropout and Gaus-
sian noise. Our models use three different
embedding layers: GloVe word embeddings
trained on Twitter dataset, ELMo embeddings
and also sentence embeddings. We see pre-
processing as one of the most important parts
of the task. We focused on handling emoyjis,
emoticons, hashtags, and also various short-
ened word forms. In some cases, we pro-
posed to remove some parts of the text, as
they do not affect emotion of the original sen-
tence. We also experimented with other modi-
fications like category weights for learning and
stacking multiple layers. Our model achieved
a macro average F1 score of 65.55 %, signif-
icantly outperforming the baseline model pro-
duced by a simple logistic regression.

1 Introduction

Both text reconstruction and sentiment analysis
are well studied and highly practical areas of re-
search in the field of natural language processing.
Recently, there have been significant advances and
improvements (Buechel and Hahn, 2017), at least
partly due to the wider adoption of neural net-
works (Koper et al., 2017).

As it is, Implicit Emotion Recognition, as pro-
posed by organizers of WASSA 2018 workshop
(Klinger et al., 2018), can be seen both as a text
reconstruction and as a sentiment analysis task.
This is possible because, in this task, sentiment of
a sentence should be equal to the missing word.
In practice, the difference is marginal, neverthe-
less for both these tasks bi-directional LSTMs are
widely used.

In recent years, there have been several com-
petitions, papers and shared tasks dealing with
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emotion recognition and classification (Moham-
mad et al., 2018; Mohammad and Bravo-Marquez,
2017). Dealing with noisy and ungrammatical
user-generated text can be also challenging in
other high-level NLP tasks like summarization
(Pecar, 2018).

In this paper, we present a neural network ar-
chitecture with special focus on the preprocessing
phase. We believe preprocessing can have signif-
icant impact on accuracy of each system in nat-
ural language processing. We explored many se-
tups and also different types of regularization as
dropout, Gaussian noise, kernel and activity regu-
larization — L1 and L2, and also recurrent dropout
within LSTM cells. We also experimented with
three different types of embedding layers — GloVe,
ELMo and various sentence representations. Fi-
nally, we explored impact of different setups on
model accuracy. In this paper, we report on results
of these experiments.

2 Preprocessing

We are aware that preprocessing of input is one of
the most important phases in natural language pro-
cessing. This need is also highlighted when using
user generated content which is more difficult to
process. We can distinguish our preprocessing in
a few stages displayed in Figure 1. We also eval-
uate different setups of our preprocessing in the
results section.

Word-level Cleaning Word-level cleaning con-
sists of several rules to handle various forms of
words in language. Especially, we focused on han-
dling short forms of auxiliaries and also its nega-
tive variations. We split negative auxiliaries into
its full form (e.g. don’t as do not, isn’t as is not).
We also handled non negative auxiliaries and ex-
panded them into their full form (e.g. Il as will).
In analysis of original dataset we decided to also
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Figure 1: Preprocessing pipeline

omit some of the words which do not affect clas-
sification (e.g. @username, http://url.removed).
The [NEWLINE] sign was replaced by sentence
endings followed by space.

Character-level Cleaning Similarly to word-
level cleaning, this phase consists of several rules
operating on character-level preprocessing. We
can describe this preprocessing in several cate-
gories, such as: currency handling, character es-
caping, replacing, and removing. In currency han-
dling, we replaced signs for pounds, dollars, euros
and yens with its word form. Other currency signs
were replaced with the word ’currency’. Character
replacing consists of unification of different forms
used for apostrophe and as quotation marks. In
character escaping, we surrounded characters like
apostrophe, quotation mark, colon, dash, and caret
with white-spaces to separate them from words
and make tokenization easier. Finally, we decided
to remove other unmentioned punctuation marks.
We also considered removing all numbers as they
often do not determine any sentiment.

Emoji and Emoticons Processing Handling
emoticons and emojis is a more extensive part in
our preprocessing phase. The first step consists
of replacing emoticons (punctuation, numbers and
characters used to create pictorial icons) with their
emoji equivalent (only one unicode character). In
phase of handling emojis, we removed all char-
acters which modify original emoji with gender
or skin color. We also tried to categorize emoji
into categories (Figure 2). This step helped us
to reduce amount of emojis used in text. We re-
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placed emojis symbolizing sport, moon, earth, an-
imal, fruit, food, lag, music, flower, plant, drink,
dress, money with their category word surrounded
by colon (Figure 2). Another categories were pro-
duced by unification of different emojis with sim-
ilar sense.
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Figure 2: Emoji categorization

Finally, we surround all emojis with white-
spaces. This step can significantly help in tok-
enization, as emojis were sometimes recognized
as part of words and also group of emojis were
recognized as one token.

Hashtags Processing The last phase of prepro-
cessing consists of handling hashtags. We ex-
amined different options of hashtag handling. In
our final setup, we replaced only those hashtags,
which can be found in word embeddings in their
form without hash sign. We suppose removing
other, unknown hashtags should be also consid-
ered as one of the step within hashtag processing.
We also considered splitting hashtags into words
but some of the separated words can bring differ-
ent sentiment as the original hashtag. Hence, we
decided to omit this step.
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Figure 3: Emoji replacing

Examples of preprocessed texts are displayed in
Figure 4. We can see examples of each preprocess-
ing step described in this chapter.

3 Model

In this shared task, we experimented with many
different setups, based on a different embedding
layer and also different neural layers on top of an
embedding layer.

3.1 Embedding Layer

We experimented some of the commonly used
embedding layers like Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) or ELMo
(Peters et al., 2018) but also sentence embeddings
like Universal Sentence Encoder (Cer et al., 2018)
and InferSent (Conneau et al., 2017). For en-
coding input words, we used various pre-trained
word embeddings available online like GloVe em-
beddings'. With GloVe embeddings, we experi-
mented with domain specific embeddings trained
on Twitter data but also with embeddings trained
on data extracted by CommonCrawl. We have
also experimented with recent ELMo embeddings,

"https://lp.stanford.edu/projects/glove/
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however these experiments were done addition-
ally, after submission deadline. We used pre-
trained model of ELMo available online?.

Both GloVe and ELMo embeddings were in-
cluded in model in such way that they can be fur-
ther fine-tuned. However, available implementa-
tion of InferSent is done in Torch and integrating
that model into Keras model proved to be prob-
lematic, this is mainly due to their use of custom
layer. Hence, we encoded sentences into their vec-
tors outside of the model and stored it in a separate
file. We are considering a whole tweet as a single
sentence and have a file that has a label and an
embedding of the entire tweet. On the other hand,
both variants of USE are available as a Tensorflow
module® #. This enables us to use them as an em-
bedding layer, although without any fine tuning.

3.2 Hidden Layers

Embedding layer is followed by several Bi-LSTM
layers, when sentence embeddings were not used.
We have experimented with up to two stacked lay-
ers. In case of sentence embedding models, we
have experimented with several architectures with
varying number of layers, however in the end we
have settled on simple feed-forward network with
one hidden layer, which uses parametric rectified
linear unit.

We experimented with a different size of each
layer and also a different number of stacked layers.

While using 1024 units in each of hidden layers
was the best option, we also tested a much bigger
model with sentence embeddings containing more
units within each layer and also more stacked lay-
ers.

3.3 Activation

We experimented with several different activation
functions, but their impact was either insignifi-
cant or obvious. Hence, all our results use the
same configuration as far as activation functions
are concerned.

In LSTM cells, we use typical activation func-
tions — hard sigmoid and hyperbolic tangent. In
case of models that utilize sentence embeddings,
we use parametric rectified linear activation, al-
though its contribution is uncertain.

*https://tfhub.dev/google/elmo/2

3https://tfhub.dev/google/universal-sentence-encoder/2

“https://tfhub.dev/google/universal-sentence-encoder-
large/3



Original @QUSERNAME i'm [#TRIGGERWORD#] that he wasn't alone ¥’ since its his first solo..
Processed i am #TRIGGERWORD# that he was not alone @ since its his first solo

Original @QUSERNAME This picture says it all. Thank you again for being so kind & sweet. He's
SO [#TRIGGERWORD#] that you liked his gift @@ @ http://url.removed

Processed This picture says it all Thank you again for being so kind sweet He is SO
#TRIGGERWORD# that you liked his gift :animal: v :plant:

Figure 4: Examples of preprocessed sentences

Since we use categorical crossentropy as our
loss function, choice of softmax activation func-
tion for the last layer is natural.

3.4 Regularization

In training stage, we discovered a problem with
over-fitting on training dataset and some regular-
ization was needed. We experimented with differ-
ent types of regularization like dropout, Gaussian
noise and also applying L1 and L2 norm to differ-
ent types of regularization, such as: bias, kernel,
recurrent or activation. We found out that using
combined L1 and L2 regularization often causes
learning to stop. Although we fine-tuned L1 and
L2 weight parameters, it failed to achieve better
results than a model without this kind of regular-
ization.

Unsurprisingly, we have utilized early stopping
technique to halt training when validation accu-
racy has not improved at least by 0.001% two
times in a row. Although we experimented with
different configurations, such as monitoring vali-
dation loss and tweaking patience, we did not ob-
serve any improvement and in most cases we even
observed detrimental effect.

While L1 and L2 regularization had no posi-
tive effect on accuracy of our model, application
of dropout and Gaussian noise significantly im-
proved accuracy of tested models. We experi-
mented with different setups and the most accu-
rate combination was with the use of dropout with
rate of 0.3 after each layer or replacing dropout
after embedding layer with dropout with rate 0.2
and Gaussian noise on the embeddings with stan-
dard deviation 0.2. That being said, we have found
out that applying these regularizations on sentence
embeddings proved to be more challenging and

the same settings often were too much for the neu-
ral network to handle.

4 Evaluation

In this section, we briefly summarize evaluation
metrics for this task and also basic information
about used dataset and embeddings. Later, we de-
scribe different setups of our model.

For evaluation, standard measures like preci-
sion, recall and f-score were used. Then micro and
macro measures were computed. As final official
result, macro F1 was taken.

4.1 Dataset

The dataset for emotion recognition shared task
consists of tweets where emotion word was re-
moved. The dataset contains six different cate-
gories: anger, disgust, fear, joy, sadness, and sur-
prise. The train dataset contains approximately
150 thousands of tweets and test contains more
than 30 thousands of tweets. Detailed information
can be found in the main paper of the shared task
(Klinger et al., 2018).

4.2 Results

Our experiments show that the effect of LSTM
size is apparent up to 1024 units. After that, it
has negligible or even detrimental effect. Sim-
ilarly, our experiments with two-layer Bi-LSTM
achieved worse or same results as single-layer
only. Our results are shown in Table 1. Setup for
Glove and also ELMo was set as follows>:

e batch size: 64

e gaussian noise after embedding layer: 0.2

Sdefault attributes from keras were used if not specified
otherwise



dropout after embedding layer: 0.2

dropout after recurrent layer: 0.3

loss function: categorical cross entropy

optimizer: adam

early stopping value: 0.01

e carly stop patience: 1

e embeddings dimension: 200

The same setup, except for regularization, was
used also for sentence embedding approach. Reg-
ularization did not seem to improve generalization
and results, hence we did not include it in our
model. It is highly probable that regularization
was not needed, because, as we reported earlier,
sentence embedding methods are applied in such
way that they cannot be fine-tuned.

Model P R F1
GloVe

Bi-LSTM-256 0.6 0.598 0.599

Bi-LSTM-2x256 | 0.601 0.599 0.6

Bi-LSTM-1024 0.657 0.655 0.655

Bi-LSTM-2x1024 | 0.643 0.64  0.638
ELMo

Bi-LSTM-1024 0.665 0.666 0.665

Bi-LSTM-2048 0.661 0.661 0.661

Bi-LSTM-2x1024 | 0.666 0.665 0.664

Sentence embeddings

InferSent 0.564 0.536 0.537

USE-small 0.504 0.501 0.5

USE-large 0.544 0544 0.542

Table 1: Comparison between different models.

Various variants of GloVe, even those trained
on Twitter data, did not show much variance. On
the other hand, ELMo embeddings did slightly im-
prove our results as was expected.

There are several possible reasons why sentence
embedding methods failed. First, the provided
dataset is actually quite substantial and does not
need such methods. Secondly, these methods can-
not work well on Twitter data. Finally, the way
we have included both InferSent and USE into our
models does not enable fine tuning. Of course we
cannot rule out a bug in our code as well.

Preprocessing had far greater impact on results
than fine tuning our model. Details shown in Table
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2 clearly demonstrate that text cleaning with emoji
processing can improve classification of emotion.
In the setup Text cleaning, only word-level and
character-level cleaning were used. In the Emoji
processing setup, we used previous features along
with emoji processing and in Hashtag processing
we used only text cleaning with hashtag process-
ing. Finally, in the last setup, all previous setups
were combined.

Setup | R F1

No preprocessing 0.630 0.626 0.626

Text cleaning 0.645 0.639 0.641

Emoji processing 0.657 0.655 0.655

Hashtags processing | 0.648 0.647 0.647

Combined 0.657 0.655 0.655
Table 2: Comparison of different preprocessing se-

tups.

To see how our best model performed on differ-
ent classes, we can take a look at Table 3. It is ap-
parent that we have achieved best results on ’joy’
class and worst results on “anger’ class. Precision
metric of class ’surprise’ is particularly notewor-
thy, due to it being considerably lower than other
classes. This suggests that our model often classi-
fied other labels as ’surprise’ class.

Confusion matrix, shown in Table 4, depicts ac-
curacy of our official results (columns represent
predicted classes while rows represent true labels).
Quite surprisingly, false positives are more or less
balanced across all categories. Nevertheless, we
can see that our model rarely misclassified ’joy’
as ’disgust’, ’fear’, and vice versa. We can glean
more findings from this confusion matrix, but they
may be just a noise.

5 Conclusion

In this paper, we discussed different neural models
for emotion recognition based on word and sen-
tence embeddings followed by stacked Bi-LSTM
layers and dense layers, respectively. We also dis-
cussed need of preprocessing that can significantly
improve accuracy.

We observed that false negative and also false
positive examples were equally distributed be-
tween classes. We tried also set sample weights
for classes with the best and worst F1, but no com-
bination brought any overall improvement.

In our preprocessing, we also removed all num-
bers as they do not contain any sentiment. After



Label TP FP FN P R F
anger 2717 1713 2077 | 0.613 0.567 0.589
disgust 3013 1368 1781 | 0.688 0.628 0.657
sad 2793 1722 1546 | 0.619 0.644 0.631
joy 3893 1193 1353 | 0.765 0.742 0.754
surprise 3124 2297 1668 | 0.576 0.652 0.612
fear 3345 1578 1446 | 0.679 0.698 0.689
MicAvg | 18885 9871 9871 | 0.657 0.657 0.657
MacAvg 0.657 0.655 0.655
Table 3: Official results over classes.
Class anger | disgust | fear | joy | sadness | surprise
anger 2717 345 | 437 | 310 397 588
disgust 352 3013 | 196 | 146 457 630
fear 314 169 | 3345 | 223 275 465
joy 303 119 | 266 | 3893 337 328
sadness 388 364 | 234 | 274 2793 286
surprise 356 371 | 445 | 240 256 3124

Table 4: Confusion matrix of official results.

this preprocessing some of the sentences can be
recognized as the same. An interesting point of re-
search can be deduplication of these examples and
examination of overall impact of these duplicated
examples.

We made our code publicly available at
GitHub®.
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