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Abstract

Sentiment Analysis has seen much progress
in the past two decades. For the past few
years, neural network approaches, primarily
RNNs and CNNs, have been the most suc-
cessful for this task. Recently, a new cat-
egory of neural networks, self-attention net-
works (SANs), have been created which uti-
lizes the attention mechanism as the basic
building block. Self-attention networks have
been shown to be effective for sequence model-
ing tasks, while having no recurrence or convo-
lutions. In this work we explore the effective-
ness of the SANs for sentiment analysis. We
demonstrate that SANs are superior in perfor-
mance to their RNN and CNN counterparts by
comparing their classification accuracy on six
datasets as well as their model characteristics
such as training speed and memory consump-
tion. Finally, we explore the effects of various
SAN modifications such as multi-head atten-
tion as well as two methods of incorporating
sequence position information into SANs.

1 Introduction

Sentiment analysis, also know as opinion mining,
deals with determining the opinion classification
of a piece of text. Most commonly the classifi-
cation is whether the writer of a piece of text is
expressing a position or negative attitude towards
a product or a topic of interest. Having more than
two sentiment classes is called fine-grained sen-
timent analysis with the extra classes represent-
ing intensities of positive/negative sentiment (e.g.
very-positive) and/or the neutral class. This field
has seen much growth for the past two decades,
with many applications and multiple classifiers pro-
posed [Mäntylä et al., 2018]. Sentiment analy-
sis has been applied in areas such as social media
[Jansen et al., 2009], movie reviews [Pang et al.,
2002], commerce [Jansen et al., 2009], and health
care [Greaves et al., 2013b] [Greaves et al., 2013a].

In the past few years, neural network approaches
have consistently advanced the state-of-the-art tech-
nologies for sentiment analysis and other natural
language processing (NLP) tasks. For sentiment
analysis, the neural network approaches typically
use pre-trained word embeddings such as word2vec
[Mikolov et al., 2013] or GloVe[Pennington et al.,
2014] for input, which get processed by the model
to create a sentence representation that is finally
used for a softmax classification output layer. The
main neural network architectures that have been
applied for sentiment analysis are recurrent neural
networks(RNNs) [Tai et al., 2015] and convolu-
tional neural networks (CNNs) [Kim, 2014], with
RNNs being more popular of the two. For RNNs,
typically gated cell variants such as long short-term
memory (LSTM) [Hochreiter and Schmidhuber,
1997], Bi-Directional LSTM (BiLSTM) [Schuster
and Paliwal, 1997], or gated recurrent unit (GRU)
[Cho et al., 2014] are used.

Most recently, Vaswani et al. [Vaswani et al.,
2017] introduced the first fully-attentional archi-
tecture, called Transformer, which utilizes only
the self-attention mechanism and demonstrated
its effectiveness on neural machine translation
(NMT). The Transformer model achieved state-of-
the-art performance on multiple machine transla-
tion datasets, without having recurrence or con-
volution components. Since then, self-attention
networks have been successfully applied to a vari-
ety of tasks, including: image classification [Par-
mar et al., 2018], generative adversarial networks
[Zhang et al., 2018], automatic speech recognition
[Povey et al., 2017], text summarization [Liu et al.,
2018], semantic role labeling [Strubell et al., 2018],
as well as natural language inference and sentiment
analysis [Shen et al., 2018].

In this paper we demonstrate that self-attention
is a better building block compared to recurrence or
convolutions for sentiment analysis classifiers. We
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extend the work of [Barnes et al., 2017] by explor-
ing the behaviour of various self-attention architec-
tures on six different datasets and making direct
comparisons to their work. We set our baselines
to be their results for LSTM, BiLSTM, and CNN
models, and used the same code for dataset pre-
processing, word embedding imports, and batch
construction. Finally, we explore the effectiveness
of SAN architecture variations such as different
techniques of incorporating positional information
into the network, using multi-head attention, and
stacking self-attention layers. Our results suggest
that relative position representations is superior to
positional encodings, as well as highlight the effi-
ciency of the stacking self-attention layers.

Source code is publicly available1.

2 Background

The attention mechanism was introduced by [Bah-
danau et al., 2014] to improve the RNN encoder-
decoder sequence-to-sequence architecture for
NMT [Sutskever et al., 2014]. Since then, it has
been extensively used to improve various RNN and
CNN architectures ([Cheng et al., 2016]; [Kokki-
nos and Potamianos, 2017]; [Lu et al., 2016]). The
attention mechanism has been an especially popu-
lar modification for RNN-based architectures due
to its ability to improve the modeling of long range
dependencies ([Daniluk et al., 2017]; [Zhou et al.,
2018]).

2.1 Attention
Originally [Bahdanau et al., 2014] described atten-
tion as the process of computing a context vector
for the next decoder step that contains the most
relevant information from all of the encoder hidden
states by performing a weighted average on the en-
coder hidden states. How much each encoder state
contributes to the weighted average is determined
by an alignment score between that encoder state
and previous hidden state of the decoder.

More generally, we can consider the previous
decoder state as the query vector, and the encoder
hidden states as key and value vectors. The output
is a weighted average of the value vectors, where
the weights are determined by the compatibility
function between the query and the keys. Note that
the keys and values can be different sets of vectors
[Vaswani et al., 2017].

1https://github.com/Artaches/SSAN-
self-attention-sentiment-analysis-
classification

The above can be summarized by the following
equations. Given a query q, values (v1, ..., vn), and
keys (k1, ..., kn) we compute output z:

z =
n∑

j=1

αj(vj) (1)

αj =
exp f(kj , q)∑n
i=1 exp f(ki, q)

(2)

αj is computed using the softmax function where
f(ki, q) is the compatibility score between ki and
q,

For the compatibility function, we will be us-
ing using the scaled dot-product function from
[Vaswani et al., 2017]:

f(k, q) =
(k)(q)T√

dk
(3)

where dk is the dimension of the key vectors. This
scaling is done to improve numerical stability as
the dimension of keys, values, and queries grows.

2.2 Self-Attention

Self-attention is the process of applying the atten-
tion mechanism outlined above to every position of
the source sequence. This is done by creating three
vectors (query, key, value) for each sequence posi-
tion, and then applying the attention mechanism for
each position xi, using the xi query vector and key
and value vectors for all other positions. As a result,
an input sequence X = (x1, x2, ..., xn) of words
is transformed into a sequence Y = (y1, y2, ..., yn)
where yi incorporates the information of xi as well
as how xi relates to all other positions in X . The
(query, key, value) vectors can be created by ap-
plying learned linear projections [Vaswani et al.,
2017], or using feed-forward layers.

This computation can be done for the entire
source sequence in parallel by grouping the queries,
keys, and values in Q, K, V matrices[Vaswani et al.,
2017].

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

Furthermore, instead of performing self-
attention once for (Q,K,V) of dimension dmodel,
[Vaswani et al., 2017] proposed multi-head atten-
tion, which performs attention h times on projected
(Q,K,V) matrices of dimension dmodel/h. For each
head, the (Q,K,V) matrices are uniquely projected

https://github.com/Artaches/SSAN-self-attention-sentiment-analysis-classification
https://github.com/Artaches/SSAN-self-attention-sentiment-analysis-classification
https://github.com/Artaches/SSAN-self-attention-sentiment-analysis-classification
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to dimension dmodel/h and self-attetnion is per-
formed to yield an output of dimension dmodel/h.
The outputs of each head are then concatenated,
and once again a linear projection layer is applied,
resulting in an output of same dimensionality as per-
forming self-attention once on the original (Q,K,V)
matrices. This process is described by the follow-
ing formulas:

MultiHead(Q,K, V ) =

Concat(head1, ...,headh)W
O (5)

where headi =

Attention(QWQ
i ,KW

K
i , V W

V
i ) (6)

Where the projections are parameter matrices
WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , W V

i ∈
Rdmodel×dv and WO ∈ Rhdv×dmodel .

2.3 Position Information Techniques

The attention mechanism is completely invariant
to sequence ordering, thus self-attention networks
need to incorporate positional information. Three
main techniques have been proposed to solve this
problem: adding sinusoidal positional encodings or
learned positional encoding to input embeddings,
or using relative positional representations in the
self-attention mechanism.

2.3.1 Sinusoidal Position Encoding

This method was proposed by [Vaswani et al.,
2017] to be used for the Transformer model. Here,
positional encoding (PE) vectors are created using
sine and cosine functions of difference frequen-
cies and then are added to the input embeddings.
Thus, the input embeddings and positional encod-
ings must have the same dimensionality of dmodel.
The following sine and cosine functions are used:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the sentence position and i is the di-
mension. Using this approach, sentences longer
than those seen during training can still have posi-
tional information added. We will be referring to
this method as PE.

2.3.2 Learned Position Encoding
In a similar method, learned vectors of the same di-
mensionality, that are also unique to each position
can be added to the input embeddings instead of
sinusoidal position encodings[Gehring et al., 2017].
There are two downsides to this approach. First,
this method cannot handle sentences that are longer
than the ones in the training set as no vectors are
trained for those positions. Second, the further po-
sition will likely not get trained as well if the train-
ing dataset has more short sentences than longer
ones. Vaswani et al. [2017] also reported that these
perform identically to the positional encoding ap-
proach.

2.3.3 Relative Position Representations
Relative Position Representations (RPR) was in-
troduced by [Shaw et al., 2018] as a replacement
of positional encodings for the Transformer. Using
this approach, the Transformer was able to perform
even better for NMT. Out of the three discussed, we
have found this approach to work best and we will
be referring to this method as RPR throughout the
paper.

For this method, the self-attention mechanism is
modified to explicitly learn the relative positional
information between every two sequence positions.
As a result, the input sequence is modeled as a la-
beled, directed, fully-connected graph, where the
labels represent positional information. A tunable
parameter k is also introduced that limits the max-
imum distance considered between two sequence
positions. [Shaw et al., 2018] hypothesized that
this will allow the model to generalize to longer
sequences at test time.

3 Proposed Architectures

In this work we propose a simple self-attention
(SSAN) model and test it in 1 as well as 2 layer
stacked configurations. We designed the SSAN
architecture to not have any extra components in or-
der to compare specifically the self-attention com-
ponent to the recurrence and convolution compo-
nents of LSTM and CNN models. Our goal is to
test the effectiveness of the main building blocks.
We compare directly the results of two proposed
architectures, 1-Layer-SSAN and 2-Layer-SSAN, to
the LSTM, BiLSTM, and CNN architectures from
[Barnes et al., 2017].

SSAN performs self-attention only once, which
is identical to 1-head multi-head attention. SSAN
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Figure 1: SSAN Model Architecture

takes in input word embeddings and applies 3 feed-
forward layers to obtain Q,K,V representations on
which self-attention is performed. The output of
the self-attention layer is passed through another
feed-forward layer. This process is done twice
for 2-Layer-SSAN, using the output of first layer
as input for the second. The output of the last
self-attention layer is averaged and a feed-forward
layer is then applied to create a sentence represen-
tation vector of fixed dimension dmodel. Finally, the
sentence representation vector is passed through
an output softmax layer that has an output dimen-
sion of dclasses. Dropout [Srivastava et al., 2014]
is applied on input word embeddings, output of
self-attention layers, on the sentence representa-
tion vector. The architecture is visualized in Figure
1. All feed-forward layers use ReLU [Nair and
Hinton, 2010] activation functions. For relative po-
sitional representation, we set the parameter k=10,
which is the maximum relative position considered
for each input sequence position.

Finally, we also show results for other, more
complex, self-attention architectures that are based
on the Transformer. We take a 2 layer Transformer
encoder as described by [Vaswani et al., 2017],
then just like for SSAN, average the output of the
second layer to create a sentence representation and
apply a feed-forward layer followed by an output
softmax layer. Dropout is applied as described in
[Vaswani et al., 2017] as well as on the sentence
representation vector.

4 Experiments

To reduce implementation deviations from pre-
vious work, we use the codebase from [Barnes
et al., 2017] and only replace the model and train-
ing process. We re-use the code for batch pre-
processing and batch construction for all datasets,
accuracy evaluation, as well as use the same word
embeddings2. All neural network models use cross-
entropy for the training loss.

All experiments and benchmarks were run using
a single GTX 1080 Ti with an i7 5820k @ 3.3Ghz
and 32Gb of RAM. For model implementations:
LSTM, BiLSTM, and CNN baselines are imple-
mented in Keras 2.0.8 [Chollet et al., 2015] with
Tensorflow 1.7 backend using cuDNN 5.1.5 and
CUDA 9.1. All self-attention models are imple-
mented in Tensorflow 1.7 and use the same CUDA
libraries.

4.1 Datasets

In order to determine if certain neural network
building blocks are superior, we test on six datasets
from [Barnes et al., 2017] with different properties.
The summary for dataset properties is in Table 1.

The Stanford Sentiment Treebank (SST-fine)
[Socher et al., 2013] deals with movie reviews,
containing five classes [very-negative, negative,
neutral, positive, very-positive]. (SST-binary) is
constructed from the same data, except the neutral
class sentences are removed, all negative classes are

2https://github.com/jbarnesspain/sota_
sentiment

https://github.com/jbarnesspain/sota_sentiment
https://github.com/jbarnesspain/sota_sentiment
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Train Dev. Test
# of

Classes

Average
Sent.

Length

Max
Sent.

Length

Vocab.
Size

Wiki
Emb.

Coverage

300D
Emb.

Coverage

SST-fine 8,544 1,101 2,210 5 19.53 57 19,500 94.4% 89.0%
SST-binary 6,920 872 1,821 2 19.67 57 17,539 95.0% 89.6%
OpeNER 2,780 186 743 4 4.28 23 2,447 94.2% 99.3%
SenTube-A 3,381 225 903 2 28.54 127 18,569 75.6% 74.5%
SenTube-T 4,997 333 1,334 2 28.73 121 20,276 70.4% 76.0%
SemEval 6,021 890 2,376 3 22.40 40 21,163 77.1% 99.8%

Table 1: Modified Table 2 from [Barnes et al., 2017]. Dataset statistics, embedding coverage of dataset
vocabularies, as well as splits for Train, Dev (Development), and Test sets. The ’Wiki’ embeddings are
the 50, 100, 200, and 600 dimension used for experiments.

grouped, and all positive classes are grouped. The
datasets are pre-processed to only contain sentence-
level labels, and none of the models reported in this
work utilize the phrase-level labels that are also
provided.

The OpeNER dataset [y Montse Cuadros y Seán
Gaines y German Rigau, 2013] is a dataset of hotel
reviews with four sentiment classes: very negative,
negative, positive, and very positive. This is the
smallest dataset with the lowest average sentence
length.

The SenTube datasets [Uryupina et al., 2014]
consist of YouTube comments with two sentiment
classes: positive and negative. These datasets con-
tain the longest average sentence length as well
as the longest maximum sentence length of all the
datasets.

The SemEval Twitter dataset (SemEval) [Nakov
et al., 2013] consists of tweets with three classes:
positive, negative, and neutral.

4.2 Embeddings

We use the exact same word embeddings as [Barnes
et al., 2017]. They trained the 50, 100, 200,
and 600-dimensional word embeddings using the
word2vec algorithm described in [Mikolov et al.,
2013] on a 2016 Wikipedia dump. In order to com-
pare to previous work, they also used the publicly
available Google 300-dimensional word2vec em-
beddings, which are trained on a part of Google
News dataset3. For all models, out-of-vocabulary
words are initialized randomly from the uniform
distribution on the interval [-0.25 , 0.25].

3https://code.google.com/archive/p/
word2vec/

4.3 Baselines

We take 5 classifiers from [Barnes et al., 2017] and
use their published results as baselines. Two of
the methods are based on logistic regression, Bow
and Ave, and 3 are neural network based, LSTM,
BiLSTM, and CNN.

The (Bow) baseline is a L2-regularized logistic
regression trained on bag-of-words representation.
Each word is represented by a one-hot vectors of
size n = |V |, where |V | is the vocabulary size.

The (Ave) baseline is also a L2-regularized lo-
gistic regression classifier except trained on the
average of the 300-dimension word embeddings
for each sentence.

The LSTM baseline, input word embeddings are
passed into an LSTM layer. Then a 50-dimensional
feed-forward layer with ReLU activations is ap-
plied, followed by a softmax layer that produces
that model classification outputs. Dropout [Sri-
vastava et al., 2014] is applied to the input word
embeddings for regularization.

The BiLSTM baseline is the same as LSTM, ex-
cept that a second LSTM layer is used to process
the input word embeddings in the reverse order.
The outputs of the two LSTM layers are concate-
nated and passed a feed-forward layer, following by
the output softmax layer. Dropout is applied identi-
cally as in LSTM. This modification improves the
networks ability to capture long-range dependen-
cies.

The final baseline is a simple CNN network. The
input sequence of n embeddings is reshaped to an
n×R dimensional matrixM , whereR is the dimen-
sionality of the embeddings. Convolutions with fil-
ter size of [2,3,4] are applied to M , following by a
pooling layer of length 2. As for LSTM networks, a

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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M
od

el

Dim
.

SST-fi
ne

SST-b
ina

ry

Ope
NER

Sen
Tub

e-A

Sen
Tub

e-T

Sem
Eva

l

M
ac

ro-
Avg

.

B
as

el
in

es

Bow 40.3 80.7 77.1 60.6 66.0 65.5 65.0

Ave 300 41.6 80.3 76.3 61.5 64.3 63.6 64.6

LSTM

50 43.3 (1.0) 80.5 (0.4) 81.1 (0.4) 58.9 (0.8) 63.4 (3.1) 63.9 (1.7) 65.2 (1.2)

100 44.1 (0.8) 79.5 (0.6) 82.4 (0.5) 58.9 (1.1) 63.1 (0.4) 67.3 (1.1) 65.9 (0.7)

200 44.1 (1.6) 80.9 (0.6) 82.0 (0.6) 58.6 (0.6) 65.2 (1.6) 66.8 (1.3) 66.3 (1.1)

300 45.3 (1.9) 81.7 (0.7) 82.3 (0.6) 57.4 (1.3) 63.6 (0.7) 67.6 (0.6) 66.3 (1.0)

600 44.5 (1.4) 83.1 (0.9) 81.2 (0.8) 57.4 (1.1) 65.7 (1.2) 67.5 (0.7) 66.5 (1.0)

BiLSTM

50 43.6 (1.2) 82.9 (0.7) 79.2 (0.8) 59.5 (1.1) 65.6 (1.2) 64.3 (1.2) 65.9 (1.0)

100 43.8 (1.1) 79.8 (1.0) 82.4 (0.6) 58.6 (0.8) 66.4 (1.4) 65.2 (0.6) 66.0 (0.9)

200 44.0 (0.9) 80.1 (0.6) 81.7 (0.5) 58.9 (0.3) 63.3 (1.0) 66.4 (0.3) 65.7 (0.6)

300 45.6 (1.6) 82.6 (0.7) 82.5 (0.6) 59.3 (1.0) 66.2 (1.5) 65.1 (0.9) 66.9 (1.1)

600 43.2 (1.1) 83.0 (0.4) 81.5 (0.5) 59.2 (1.6) 66.4 (1.1) 68.5 (0.7) 66.9 (0.9)

CNN

50 39.9 (0.7) 81.7 (0.3) 80.0 (0.9) 55.2 (0.7) 57.4 (3.1) 65.7 (1.0) 63.3 (1.1)

100 40.1 (1.0) 81.6 (0.5) 79.5 (0.9) 56.0 (2.2) 61.5 (1.1) 64.2 (0.8) 63.8 (1.1)

200 39.1 (1.1) 80.7 (0.4) 79.8 (0.7) 56.3 (1.8) 64.1 (1.1) 65.3 (0.8) 64.2 (1.0)

300 39.8 (0.7) 81.3 (1.1) 80.3 (0.9) 57.3 (0.5) 62.1 (1.0) 63.5 (1.3) 64.0 (0.9)

600 40.7 (2.6) 82.7 (1.2) 79.2 (1.4) 56.6 (0.6) 61.3 (2.0) 65.9 (1.8) 64.4 (1.5)

Se
lf

-A
tte

nt
io

n
M

od
el

s

1-Layer
SSAN + RPR

50 42.8 (0.8) 79.6 (0.3) 78.6 (0.5) 64.1 (0.4) 67.0 (1.0) 67.1 (0.5) 66.5 (0.6)

100 44.6 (0.3) 82.3 (0.3) 81.6 (0.5) 61.6 (1.3) 68.6 (0.6) 68.6 (0.5) 67.9 (0.6)

200 45.4 (0.4) 83.1 (0.5) 82.3 (0.4) 62.2 (0.6) 68.4 (0.8) 70.5 (0.4) 68.6 (0.5)

300 48.1 (0.4) 84.2 (0.4) 83.8 (0.2) 62.5 (0.3) 68.4 (0.8) 72.2 (0.8) 69.9 (0.5)

600 47.7 (0.7) 83.6 (0.4) 83.1 (0.4) 62.0 (0.4) 68.8 (0.7) 70.5 (0.8) 69.2 (0.5)

2-Layer
SSAN + RPR

50 43.2 (0.9) 79.8 (0.2) 79.2 (0.6) 63.0 (1.3) 66.6 (0.5) 67.5 (0.7) 66.5 (0.7)

100 45.0 (0.4) 81.6 (0.9) 81.1 (0.4) 63.3 (0.7) 67.7 (0.5) 68.7 (0.4) 67.9 (0.5)

200 46.5 (0.7) 82.8 (0.5) 82.3 (0.6) 61.9 (1.2) 68.0 (0.8) 69.6 (0.8) 68.5 (0.8)

300 48.1 (0.8) 83.8 (0.9) 83.3 (0.9) 62.1 (0.8) 67.8 (1.0) 70.7 (0.5) 69.3 (0.8)

600 47.6 (0.5) 83.7 (0.4) 82.9 (0.5) 60.7 (1.4) 68.2 (0.7) 70.3 (0.3) 68.9 (0.6)

Transformer
Encoder + RPR 300 47.3 (0.4) 83.8 (0.4) 84.2 (0.5) 62.0 (1.4) 68.2 (N1.6) 72.0 (0.5) 69.6 (0.8)

Transformer
Encoder + PE 300 45.0 (0.7) 82.0 (0.6) 83.3 (0.7) 62.3 (2.4) 66.9 (0.8) 68.4 (0.8) 68.0 (1.0)

1-Layer
SSAN 300 47.2 (0.5) 83.9 (0.7) 83.6 (0.6) 62.1 (2.5) 68.7 (1.0) 70.2 (1.2) 69.3 (1.1)

1-Layer
SSAN + PE 300 45.0 (0.3) 82.9 (0.2) 80.7 (0.6) 62.6 (2.3) 67.8 (0.4) 69.1 (0.3) 68.0 (0.7)

Table 2: Modified Table 3 from [Barnes et al., 2017]. Test accuracy averages and standard deviations (in
brackets) of 5 runs. The baseline results are taken from [Barnes et al., 2017]; the self-attention models
results are ours. Best model for each dataset is given in bold .

feed-forward layer is applied followed by an output
softmax layer. Here, dropout is applied to input
embeddings as well as after the convolution layers.

The LSTM, BiLSTM, and CNN baselines are
trained using ADAM [Kingma and Ba, 2014] with
cross-entropy loss and mini-batches of size 32. Hid-
den layer dimension, dropout amount, and the num-
ber of training epochs are tuned on the validation
set for each (model, input embedding, dataset) com-
bination.

4.4 Self-Attention Architectures

We use 1-Layer SSAN + RPR and 2-Layer SSAN
+ RPR to compare the self-attention mechanism
to the recurrence and convolution mechanisms in
LSTM, BiLSTM, and CNN models. We compare
these models using all word embeddings sizes.

Next, we explore the performance of a modified
Transformer Encoder described in 3. We do this
to determine if a more complex architecture that
utilized multi-head attention is more beneficial.

Finally, we compare the performance of using
positional encodings (+PE) and relative positional
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Model # of Parameters GPU VRAM Usage (Mb)
Training
Time (s)

Inference Time
(s)

LSTM 722,705 419Mb 235.9s 7.6s
BiLSTM 1,445,405 547Mb 416.0s 12.7s
CNN 83,714 986Mb 21.1s 0.85s
1-Layer SSAN + RPR 465,600 381Mb 64.6s 8.9s
1-Layer SSAN + PE 453,000 381Mb 58.1s 8.5s
2-Layer SSAN + RPR 839,400 509Mb 70.3s 9.3s
Transformer + RPR 1,177,920 510Mb 78.2s 9.7s

Table 3: Neural networks architecture characteristics. A comparison of number of learnable parameters,
GPU VRAM usage (in megabytes) during training, as well as training and inference times (in seconds).

representations (+RPR) for the Transformer En-
coder and 1-Layer-SSAN architectures. We also
test 1-Layer SSAN without using any positional
information techniques.

For the self-attention networks, we simplify the
training process to only tune one parameter and
apply the same process to all models. Only the
learning rate is tuned for every (model, input em-
bedding) pair. We fix the number of batches to
train for to 100,000 and pick the model with high-
est validation accuracy. Each batch is constructed
by randomly sampling the training set. Model
dimensionality dmodel is fixed to being the same
as the input word embeddings. Learning rate is
tuned based on the size of dmodel. For dmodel di-
mensions [50, 100, 200, 300, 600] we use learning
rates of [0.15, 0.125, 0.1, 0.1, 0.05] respectively,
because the larger dmodel models tend to over-fit
faster. Dropout of 0.7 is applied to all models, and
the ADADELTA [Zeiler, 2012] optimizer is used
with cross-entropy loss.

5 Analysis

Table 2 contains the summary of all the experi-
mental results. For all neural network models we
report mean test accuracy of five runs as well as
the standard deviations. Macro-Avg results are the
average accuracy of a model across all datasets. We
focus our discussion on the Macro-Avg column as
it demonstrates the models general performance for
sentiment analysis.

Our results show general better performance for
self-attention networks in comparison to LSTM,
BiLSTM and CNN models. Using the same word
embedding, all of the self-attention models receive
higher Macro-Avg accuracy than all baseline mod-
els. 1-Layer-SSAN+RPR models generally perform

the best for all (input embeddings, dataset) com-
binations, and getting top scores for five out of
six datasets. Transformer Encoder+RPR also per-
forms comparatively well across all datasets, and
achieves top accuracy for the OpeNER dataset.

Using 2-Layer-SSAN+RPR does not yield bet-
ter performance results compared to 1-Layer-
SSAN+RPR. We believe that one self-attention
layer is sufficient as the datasets that we have tested
on were relatively small. This is reinforced by
the results we see from Transformer Encoder +
RPR since it achieves similar accuracy as 2-Layer-
SSAN+RPR and 1-Layer-SSAN+RPR while having
greater architectural complexity and more trainable
parameters, see Table 3.

Using relative positional representations for 1-
Layer-SSAN+RPR increases the Macro-Avg accu-
racy by 2.8% compared to using positional encod-
ings for 1-Layer-SSAN+PE, and by 0.9% compared
to using no positional information at all (1-Layer-
SSAN). Interestingly enough, we observe that using
no positional information performs better than us-
ing positional encodings. This could be attributed
once again to small dataset size, as [Vaswani et al.,
2017] successfully used positional encodings for
larger MT datasets.

Another observation is that SenTube dataset tri-
als achieve a low accuracy despite having binary
classes. This is unexpected as generally with a low
number of classes it is easier to train on the dataset
and achieve higher accuracy. We suspect that this
is because SenTube contains longer sentences and
very low word embedding coverage. Despite this,
SSANs perform relatively well on the SenTube-A
dataset, which suggests that they are superior at
capturing long-range dependencies compared to
other models.
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Smaller dmodel SSAN models perform worse for
lower dimension input embeddings on SST-fine,
SST-binary and OpeNER datasets while still per-
forming well on SenTube and SemEval. This is
caused by the limitations of our training process
where we forced the network dmodel to be same size
as the input word embeddings and use the same
learning rate for all datasets. We found that work-
ing with smaller dimensions of dmodel the learn-
ing rate needed to be tuned individually for some
datasets. For example, using a learning of 0.15
for 50D models would work well for SenTube and
SemEval, but would under-fit for SST-fine, SST-
binary and OpeNER datasets. We decided to not
modify the training process for the smaller input
embeddings in order to keep our training process
simplified.

5.1 Model Characteristics

Here we compare training and test efficiency, mem-
ory consumption and number of trainable param-
eters for every model. For all models, we use the
SST-fine dataset, hidden dimension size of 300,
Google 300D embeddings, batch sizes of 32 for
both training and inference, and the ADAM opti-
mizer [Kingma and Ba, 2014]. The Training Time
test is the average time it takes every model to
train on 10 epochs of the SST-fine train set ( 2670
batches of size 32). The Inference Time test is the
average time it takes a model to produce predictions
for the validation set 10 times ( 344 batches of size
32). Table 3 contains the summary of model char-
acteristics. The GPU VRAM usage is the amount
of GPU video memory that is used during training.

CNN has the lowest number of parameters but
consumes the most GPU memory. It also has the
shortest training and inference time, which we at-
tributed to the low number of parameters.

Using relative position representations compared
to positional encoding for 1-Layer-SSAN increases
the number of trainable parameters by only 2.7%,
training time by 11.2%, and inference time by 4.7%.
These findings are similar to what [Shaw et al.,
2018] reported.

BiLSTM has double the number of parameters
as well as near double training and inference times
compared to LSTM. This is reasonable due to the
nature of the architecture being two LSTM lay-
ers. Much like BiLSTM, going from 1-Layer-SSAN
to 2-Layer-SSAN doubles the number of trainable
parameters. However, the training and inference

times only increase by 20.1% and 9.4% respec-
tively. This demonstrates the efficiency of the self-
attention mechanism due to it utilizing only matrix
multiply operations, for which GPUs are highly-
optimized.

We also observe that self-attention models are
faster to train than LSTM by about 3.4 times, and
5.9 times for BiLSTM. However, inference times
are slower than LSTM by 15.5% and faster than
BiLSTM by 41%.

6 Conclusion

In this paper we focused on demonstrating that self-
attention networks achieve better accuracy than
previous state-of-the-art techniques on six datasets.
In our experiments, multiple SSAN networks per-
formed better than CNN and RNN architectures;
Self-attention architecture resulted in higher ac-
curacy than LSTMs while having 35% fewer pa-
rameters and shorter training time by a factor of
3.5. Additionally, we showed that SSANs achieved
higher accuracy on the SenTube datasets, which
suggests they are also better at capturing long-term
dependencies than RNNs and CNNs. Finally, we re-
ported that using relative positional representation
is superior to both using positional encodings, as
well as not incorporating any positional informa-
tion at all. Using relative positional representations
for self-attention architectures resulted in higher
accuracy with negligible impact on model training
and inference efficiency.

For future work, we plan to extend the SSAN net-
works proposed to achieve state-of-the-art results
on the complete SST dataset. We are also interested
to see the behaviour of the models explored in this
work on much larger datasets, we hypothesize that
stacked multi-head self-attention architectures will
perform significantly better than RNN and CNN
counterparts, all while remaining more efficient at
training and inference.
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