Amobee at IEST 2018: Transfer Learning from Language Models

Alon Rozental*, Daniel Fleischer*, Zohar Kelrich*
Amobee Inc., Tel Aviv, Israel
alon.rozental@amobee.com
daniel.fleischer@amobee.com
zohar.kelrich@amobee.com

Abstract

This paper describes the system developed
at Amobee for the WASSA 2018 implicit
emotions shared task (IEST). The goal of this
task was to predict the emotion expressed by
missing words in tweets without an explicit
mention of those words. We developed
an ensemble system consisting of language
models together with LSTM-based networks
containing a CNN attention mechanism. Our
approach represents a novel use of language
models—specifically trained on a large Twitter
dataset—to predict and classify emotions. Our
system reached 1st place with a macro F; score
of 0.7145.

1 Introduction

Sentiment analysis (SA) is a sub-field of natural
language processing (NLP) that explores the
automatic deduction of feelings and attitudes from
textual data. One popular choice of source to
study is Twitter, a social network website where
people publish short messages, called tweets, with
a maximum length of 280 characters. People
write on various topics, including global and
local events, public figures, brands and products.
Twitter data has attracted the interest of both
academia and industry for the last several years.
It contains some unique features, such as emojis,
misspelling and slang that are of interest to
NLP researchers while also containing insights
relevant for business intelligence, marketing and
e-governance.

The implicit emotions shared task (IEST) is
part of the WASSA 2018 workshop, and is
concerned with classifying tweets into one of 6
emotions—anger, disgust, fear, joy, sadness and
surprise—without an explicit mention of emotion
words. There were 30 teams who participated in

*These authors contributed equally to this work.

43

the task; for a description and analysis of the task
and the datasets, see Klinger et al. (2018).

This paper describes our specially developed
system for the shared task; it comprises several
ensembles, where our new contribution is the use
of a language model as an emotion classifier.
A language model, based on the Transformer-
Decoder architecture (Vaswani et al., 2017) was
trained using a large Twitter dataset, and used to
produce probabilities for each of the 6 emotions.

The paper is organized as follows: Sections 2
and 3 describe our data sources and the embedding
training, Section 4 describes the training and usage
of the language models. In Section 5 we describe
the resources that are used as features; Section
6 describes the architecture, broken into smaller
components. Finally, we review and conclude in
Section 7.

2 Data Sources
We used several data sources for the shared task:

1. Twitter Firehose: we took a random sample
of 5 billion unique tweets using the Twitter
Firehose service. The tweets were used to
train language models and word embeddings;
in the following, we will refer to this as the
Tweets_5B dataset.

. Semeval 2018 shared task 1 datasets, specif-
ically subtasks 1 and 5 in which tweets are
classified into one of 4 emotions (anger, fear,
joy and sadness; subtask 1) and a multi-
label classification of tweets into 11 emotions
(sub-task 5). We used both the datasets and
our trained models; Rozental and Fleischer
(2018) describes the system and Mohammad
et al. (2018) describes the shared task.

. The official IEST 2018 task datasets; the
missing emotion words are replaced by the

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 43—49

Brussels, Belgium, October 31, 2018. (©2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17

http://implicitemotions.wassa2018.com/
https://wt-public.emm4u.eu/wassa2018/

Label Train Dev Test
Anger 25562 1600 4794
Disgust 25558 1597 4794
Fear 25575 1598 4791
Joy 27958 1736 5246
Sad 23165 1460 4340
Surprise 25565 1600 4792

Total 153383 9591 28757

Table 1: Distributions of labels in the train, dev and test
datasets.

keyword [#TRIGGERWORD#]. Table 1
presents the label distributions; refer to the
task paper for a description of the dataset.

We used different pre-processing procedures
on the aforementioned tweets for our different
learning algorithms. Those procedures ranged
from no pre-processing at all (for language
models), through a simple cleanup (for word
embeddings) to an extensive pre-processing, used
with our Semeval (2018) system to produce
predictions, with the following processing steps:
word tokenization, part of speech tagging, regex
treatment, lemmatization, named entity recogni-
tion, synonym replacement and word replacement
using a wikipedia-based dictionary.

3 Embeddings Training

Word embeddings are a set of algorithms de-
signed to encode a large vocabulary using low-
dimensional real vectors. Depending on the
algorithm, the vectors carry additional semantic
information, and are used in down-stream NLP
tasks. We trained word embeddings specifically
for the task; first, starting with the Tweets_5B
dataset, we removed exact duplicates. Then
we used a regex process: URLs, emails and
Twitter usernames were replaced with special
keywords. Next we removed tweets by using a
text similarity threshold!. Finally, we replaced
rare words with a special token; the criterion was
to have a vocabulary of 300K unique tokens in
total. We used the Gensim package (Rehiiek
and Sojka, 2010) to train 4 embeddings with sizes
of 300, 500, 700 and 1000 with the Word2vec
(Mikolov et al.,, 2013) algorithm. Similarly,
we trained 4 embeddings using the FastText

! Using the SequenceMat cher module in Python.

44

algorithm (Bojanowski et al., 2017). We found
that for the purpose of downstream tasks, the
Word2vec embeddings outperformed the FastText
embeddings for each of the 4 sizes. In addition,
the Word2vec embedding of size 1000 performed
better than the others, provided that the training
set is large enough. The size of the IEST 2018
train set was sufficiently large for us to use that
single word embedding. The embeddings usage is
described in the architecture section 6.

4 Language Models

We trained a language model (LM) using the
Transformer-Decoder architecture, introduced in
Vaswani et al. (2017). We used the Tensor2Tensor
library (Vaswani et al., 2018) with the built-in
transformer-big parameter set, where we
only set the tweet maximum length to be 64
tokens. The model was trained for 2 days using
the Tweets_ 5B dataset on 8 Nvidia Tesla V100
GPUs. We will refer to this model as LM1. We
built a pipeline around the trained model, such that
given a sentence, its probability to be randomly
generated by the model is returned. For example,
under LMI1 the probability of the text “I was
surprised to see you here” (S1) being generated
is exp (—25.76) and the text “I was afraid to see
you here” (S2) has a probability of exp (—27.86).
One can then calculate the conditional probability
of having S1 given only S1 or S2 were generated,
with a resulting value of 0.89.

In order to use LM1 to predict the correct label
for a tweet, we created a list of possible words for
each of the six emotions, presented in appendix A.
For each tweet, we replaced the trigger word with
each of the words from the list and then selected
the most probable version of each emotion. The
resulting 6 normalized probabilities are considered
to be the probabilities assigned by the LM for the
possible labels. See table 2 for a more detailed
example with 3 emotions.

In addition to LM1, we trained another lan-
guage model, denoted by LM2; it was generated
by taking LMI1 and continuing its training using
just the tweets of the shared task dataset, where the
trigger word was replaced by the most probable
word (according to LMI1 predictions) in the
emotional category matching the label. LM2
was trained for a day using a single V100 GPU.
The prediction procedure was the same as for
LMI. For the purposes of downstream analysis,

https://radimrehurek.com/gensim/index.html
https://github.com/tensorflow/tensor2tensor

Emotion Possible Tweet Log Probability = Max Final Probability

I’'m ha than you. —24.38

Joy PRy fhan y —19.7 0.89995
I’m happier than you. —-19.7
I’'m angry than you. —26.8

Angry . —-21.9 0.09972
I’m angrier than you. —-21.9
. I’m surprise than you. —27.6

Surprise . —27.6 0.00033
I’m surprised than you. —-31.5

Table 2: Probability calculation of the sentence “I'm #{ TRIGGERWORD} than you.” with 3 emotions using the
language models. Notice that the sentences which are grammatically incorrect have much lower probabilities.

the features we extracted from these models are
the final 6 probabilities p; (s), the log probability
to generate the most likely candidate tweet by
random—referred to as tweet complexity—given
by comp (s) = max log pu (), where W is the set

of possible replacement words and finally, for each
candidate tweet, its shifted log probability, given

by log pu (s) = log pw (s) — comp ().
5 Features

We used 4 types of features in our system:
first we used predictions from the language
models; we took both the log-probabilities of
the tweets with the trigger words replaced by
each word from appendix A, as well as the
final 6 probabilities for each tweet, for each of
the two language model. Next, we used our
system for the Semeval 2018 task 1 competition
to generate features and predictions for sub-
tasks 1 and 5 (as mentioned in section 2).
Next we used 2 external resources for tweets
embedding: Universal Sentence Embedding (Cer
et al., 2018), using the Tensorflow Hub service
and the DeepMoji package (Felbo et al., 2017).
We created 7 versions of each tweet by replacing
the trigger word with one of the 6 emotions and
an unrecognized word, thus creating 7 Universal
Sentence Embedding of dimension 512. The
DeepMoji embedding size is 2304 and only one
was produced for each tweet. Finally, we added
a binary feature that captures whether the trigger
word has a prefix in each tweet. These features
are used in the 1st (6.2) and 2nd (6.3) ensembles.

6 Architecture Overview

The system comprises of a multi-level soft-
voting ensemble. Each building block described
in this section is a classifier by itself and is

45

presented as such. For our submitted solution, the
building blocks were trained jointly in the manner
described in the next section, using a single
Nvidia GTX 1080 Ti GPU. We used the Keras
library (Chollet et al., 2015) and the TensorFlow
framework (Abadi et al., 2016).

6.1 Mini ASC Modules

This component consists of a bi-LSTM layer
with a CNN-based attention mechanism, similar
to a single module in the Amobee Sentiment
Classifier (ASC) architecture described in (2018).
A Dropout layer (Srivastava et al., 2014) of
0.5 was applied between each 2 consecutive
layers except for the word embedding layer;
for an illustration, see figure 1. The input
was the official dataset, transformed using our
trained embeddings, where the trigger word was
embedded as an unknown word using the rare-
words token. We concatenated an additional bit
to each word vector, denoting whether it is the
missing trigger-word, differentiating it from other
unknown words. There are three key differences
from our original work:

1. The GRU layer was replaced by an LSTM
layer.

Residual connections were added from the
output of the max-pooling layer to the
network output.

. Hyper parameters values were in the follow-
ing ranges: embedding size=1000, LSTM
hidden size=[128, 512], number of fil-
ters=[128, 512] and dense layer size=[16,
32].

Training a single mini-ASC module on the IEST
2018 training set using the Adam optimizer
(Kingma and Ba, 2014), categorial cross entropy

https://www.tensorflow.org/hub/modules/google/universal-sentence-encoder/2
https://deepmoji.mit.edu/
https://keras.io/
https://www.tensorflow.org/

am

very
#TRIGGER#

NEIEE

d=1000+1

Mini Amobee Sentiment Classifier (ASC)

Sentence Embedding Bi-directional LSTM
40x1001 d=128

LSTM LSTM LST™M LSTM
()) (5] ()
LST™M LST™M LSTM LST™M
®) ®) ®) ®)

Hidden States
(40x2)x128

256 Filters
5 Sizes

Pool-Max +
Concat.

SR
HHHH

Fully connected
layers

cccccc

Figure 1: Architecture of the mini Amobee sentiment classifier.

loss function and a batch size of 32, results
in an average accuracy of 0.669 on the official
validation set.

6.2 First Ensemble

The first level ensemble incorporates 4 mini ASC
modules and 3 identical sub-networks (see figure
2). The sub-networks share the same architecture
and their inputs are the following:

1. Universal + DeepMoji embeddings; this
network reaches an average F; score of 0.587
by itself on the validation set.

. The LM1 + LM2 predictions; this network
reaches an average F; score of 0.637 by itself
on the validation set.

. The Semeval 2018 predictions, together with
the LM1 predictions; this network reaches an
average F; score of 0.646 by itself on the
validation set.

These networks share the same structure: the input
is connected to a dense layer of dimension 16 and
then concatenated with the input going into a final
dense layer of size 6 with a softmax activation
function. Dropout layers of 0.5 are applied after
the input and before the output layers.

The other 4 models are copies of the architec-
ture described in 6.1. All orange layers of size 6
are outputs of the model and are trained against
the labels with equal contribution to the total loss.
We used the Adam optimizer with a batch size
of 32, a learning rate of 5 - 10~% and a decay of
5-10° (decay in Adam is introduced in Keras, and
is not part of the original algorithm; it represents
decay between batches). This network reaches an
average F; score of 0.700 on the validation set.
This first ensemble is denoted by E1.

46

6.3 Second Ensemble

In the second level ensemble (figure 3), we
started with 8 copies of the aforementioned E1l
models (with different parameters for the Mini
ASC modules in the ranges described in section
6.1) and combined them with a concatenation
of the following features (described in section
5): two external embeddings (Universal Sentence
Embedding, DeepMoji) and our Semeval 2018
pipeline predictions.

We have used a dense layer of size 16 over
the outputs of the 8 E1 models and a dense
layer of size 100 over all of the above features
(including the E1 outputs). These two layers were
concatenated into a softmax layer of size 6 which
was the output of the second ensemble; we denote
this by E2. This E2 network reaches an average
F; score of 0.702 on the validation set. The final
model is a soft voting ensemble, comprising 128
networks of type E2; this probability averaging
is meant to decrease the variance of the model
which reaches an average F; score of 0.705 on the
validation set.

Since the final model is an ensemble, where
some models are somewhat overfitted with respect
to the training dataset (e.g. E1) and some models
are not overfitted at all (LM1), we decided to use
the validation dataset to train the final model for
an additional 4 epochs using a large batch size of
900. After this procedure, the system scored an F;
of 0.7145 on the test dataset.

7 Review and Conclusions

In this paper we described the system developed
for the WASSA 2018 implicit emotion shared
task. It consists of a multi-level ensemble,
combining a novel use of language models to
predict the right emotion word, together with

d=6 (TTTTT]

weighted average pooling

a=t6 [[T T [[TTTTT] F——
— CIIIII]d=6
I
AN N N A I O] S
Universal+DeepMoji I
LM1 + LM2 | =
LM1+Semeval I N=4

Figure 2: Architecture of the first-level ensemble.

d=6 |:|:|7|§:|:| mean pooling

\

\

\

d=6

0Bl
-

Figure 3: Architecture of the second-level ensemble.

previous high-ranking architecture, used in the
Semeval 2018 sentiment shared task, and two
external embeddings. The system reached Ist
place with macro F; of 0.7145, with the next
system scoring 0.7105. Examining the nature of
the this task, it is a combination of both sentiment
classification and word prediction; this was the
motivation of using the Semeval 2018 models,
which were designed to classify emotions. On
the other hand, the language model is specifically
trained to maximize the likelihood of matching a
word to a given sentence, thus naturally lending
itself to the word prediction aspect of the task.

We have seen that splitting the dataset into
two parts, one for training our models and the
other for the ensembling process (in this case

47

the second part is the validation set) is much
more beneficial than training our models on the
combined bigger dataset, in cases when some
of the models are expected to be much less
generalizable than others.

It is interesting to note the task organizers have
tested human performance on a subset sample,
achieving macro F; of 0.45, which is much lower
than the automated systems.

We plan to release the word embeddings and
language models as open-source in the near future
to benefit further research and increase sharing of
resources.

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265—
283.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the
Association for Computational Linguistics, 5:135—
146.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.

2018. Universal sentence encoder. CoRR,
abs/1803.11175.
Frangois Chollet et al. 2015. Keras. https://

github.com/keras—team/keras.

Bjarke Felbo, Alan Mislove, Anders Sggaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using
millions of emoji occurrences to learn any-domain
representations for detecting sentiment, emotion and
sarcasm. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Mo-
hammad, and Alexandra Balahur. 2018. Test:
Wassa-2018 implicit emotions shared task. In
Proceedings of the 9th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, Brussels, Belgium. Association for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 3111-3119. Curran Associates,
Inc.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In
Proceedings of International Workshop on Semantic
Evaluation (SemEval-2018), New Orleans, LA,
USA.

Radim Rehiifek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45—
50, Valletta, Malta. ELRA. http://is.muni.
cz/publication/884893/en.

48

Alon Rozental and Daniel Fleischer. 2018. Amobee
at semeval-2018 task 1: GRU neural network
with a CNN attention mechanism for sentiment
classification. CoRR, abs/1804.04380.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958.

Ashish Vaswani, Samy Bengio, Eugene Brevdo,
Francois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

https://github.com/keras-team/keras
https://github.com/keras-team/keras
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

A Emotions Lexicon

Emotion Words

Anger Anger, angry, fuming, angrily, angrier, angers, angered, furious.
Disgust Disgust, disgusted, disgusting, disgustedly, disgusts.
Fear Fear, feared, fearing, fearfully, frightens, fearful, afraid, scared.
Joy Joy, happy, thrilling, joyfully, happily, happier, delights, joyful, joyous.
Sad Sad, sadden, depressing, depressingly, sadder, depresses, sorrowful, saddened.
Surprise Surprise, surprised, surprising, surprisingly, surprises, shocked.

Table 3: Emotion lexicon used to produce predictions using the language models.

49

