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Abstract

We propose a new word embedding method
called word-like character n-gram embed-
ding, which learns distributed representations
of words by embedding word-like character n-
grams. Our method is an extension of recently
proposed segmentation-free word embedding,
which directly embeds frequent character n-
grams from a raw corpus. However, its n-gram
vocabulary tends to contain too many non-
word n-grams. We solved this problem by in-
troducing an idea of expected word frequency.
Compared to the previously proposed meth-
ods, our method can embed more words, along
with the words that are not included in a given
basic word dictionary. Since our method does
not rely on word segmentation with rich word
dictionaries, it is especially effective when the
text in the corpus is in unsegmented language
and contains many neologisms and informal
words (e.g., Chinese SNS dataset). Our ex-
perimental results on Sina Weibo (a Chinese
microblog service) and Twitter show that the
proposed method can embed more words and
improve the performance of downstream tasks.

1 Introduction

Most existing word embedding methods re-
quire word segmentation as a preprocessing
step (Mikolov et al., 2013; Pennington et al., 2014;
Bojanowski et al., 2017). The raw corpus is first
converted into a sequence of words, and word
co-occurrence in the segmented corpus is used to
compute word vectors. This conventional method
is referred to as Segmented character N -gram Em-
bedding (SNE) for making a distinction clear in
the argument below. Word segmentation is almost
obvious for segmented languages (e.g., English),
whose words are delimited by spaces. On the other
hand, when dealing with unsegmented languages
(e.g., Chinese and Japanese), whose word bound-
aries are not obviously indicated, word segmenta-

Table 1: Top-10 2-grams in Sina Weibo and 4-grams in
Japanese Twitter (Experiment 1). Words are indicated
by boldface and space characters are marked by .

FNE WNE (Proposed)
Chinese Japanese Chinese Japanese

1 ][ wwww 自己 フォロー
2 。␣ ！！！！ 。␣ ありがと
3 ！␣ ありがと ][ wwww
4 .. りがとう 一个 ！！！！
5 ]␣ ございま 微博 めっちゃ
6 。。 うござい 什么 んだけど
7 ，我 とうござ 可以 うござい
8 ！！ ざいます 没有 line
9 ␣我 がとうご 吗？ 2018
10 了， ください 哈哈 じゃない

tion tools are used to determine word boundaries
in the raw corpus. However, these segmenters re-
quire rich dictionaries for accurate segmentation,
which are expensive to prepare and not always
available. Furthermore, when we deal with noisy
texts (e.g., SNS data), which contain a lot of neolo-
gisms and informal words, using a word segmenter
with a poor word dictionary results in significant
segmentation errors, leading to degradation of the
quality of learned word embeddings.

To avoid the difficulty, segmentation-free word
embedding has been proposed (Oshikiri, 2017).
It does not require word segmentation as a pre-
processing step. Instead, it examines frequencies
of all possible character n-grams in a given cor-
pus to build up frequent n-gram lattice. Subse-
quently, it composes distributed representations of
n-grams by feeding their co-occurrence informa-
tion to existing word embedding models. In this
method, which we refer to as Frequent character
N -gram Embedding (FNE), the top-K most fre-
quent character n-grams are selected as n-gram
vocabulary for embedding. Although FNE does
not require any word dictionaries, the n-gram vo-
cabulary tends to include a vast amount of non-
words. For example, only 1.5% of the n-gram vo-
cabulary is estimated as words at K = 2M in Ex-
periment 1 (See Precision of FNE in Fig. 2b).
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Pi

Corpus 海 鮮 料 理 美 味 い ！ (  ﾟ ∀  ﾟ )
SNE seafood dish delicious ！

FNE

delicious ！ (emoticon)
seafood dish delicious i (kana)
sea ingredient reason tasty taste

WNE

seafood dishes delicious ！ (emoticon)
seafood dish delicious i (kana)
sea ingredient reason tasty taste

0.04         0.69         0.05         0.93        0.05         0.89          0.85         0.85  0.38    0.06     0.06   0.34

Figure 1: A Japanese tweet with manual segmentation.
The output of a standard Japanese word segmenter4 is
shown in SNE. The n-grams included in the vocab-
ularies of each method are shown in FNE and WNE
(K=2×106). Words are black and non-words are gray.

Since the vocabulary size K is limited, we
would like to reduce the number of non-words in
the vocabulary in order to embed more words. To
this end, we propose another segmentation-free
word embedding method, called Word-like char-
acter N -gram Embedding (WNE). While FNE
only considers n-gram frequencies for construct-
ing the n-gram vocabulary, WNE considers how
likely each n-gram is a “word”. Specifically, we
introduce the idea of expected word frequency
(ewf ) in a stochastically segmented corpus (Mori
and Takuma, 2004), and the top-K n-grams with
the highest ewf are selected as n-gram vocabulary
for embedding. In WNE, ewf estimates the fre-
quency of each n-gram appearing as a word in the
corpus, while the raw frequency of the n-gram is
used in FNE. As seen in Table 1 and Fig. 1, WNE
tends to include more dictionary words than FNE.

WNE incorporates the advantage of dictionary-
based SNE into FNE. In the calculation of ewf, we
use a probabilistic predictor of word boundary. We
do not expect the predictor is very accurate—If it
is good, SNE is preferred in the first place. A naive
predictor is sufficient for giving low ewf score to
the vast majority of non-words so that words, in-
cluding neologisms, are easier to enter the vocab-
ulary. Although our idea seems somewhat simple,
our experiments show that WNE significantly im-
proves word coverage while achieving better per-
formances on downstream tasks.

2 Related work

The lack of word boundary information in unseg-
mented languages, such as Chinese and Japanese,
raises the need for an additional step of word seg-
mentation, which requires rich word dictionaries

to deal with corpora consisting of a lot of ne-
ologisms. However, in many cases, such dic-
tionaries are costly to obtain or to maintain up-
to-date. Though recent studies have employed
character-based methods to deal with large size
vocabulary for NLP tasks ranging from machine
translation (Costa-jussà and Fonollosa, 2016; Lu-
ong and Manning, 2016) to part-of-speech tag-
ging (Dos Santos and Zadrozny, 2014), they still
require a segmentation step. Some other studies
employed character-level or n-gram embedding
without word segmentation (Schütze, 2017; Dhin-
gra et al., 2016), but most cases are task-specific
and do not set their goal as obtaining word vec-
tors. As for word embedding tasks, subword (or n-
gram) embedding techniques have been proposed
to deal with morphologically rich languages (Bo-
janowski et al., 2017) or to obtain fast and sim-
ple architectures for word and sentence represen-
tations (Wieting et al., 2016), but these methods
do not consider a situation where word bound-
aries are missing. To obtain word vectors with-
out word segmentation, Oshikiri (2017) proposed
a new pipeline of word embedding which is effec-
tive for unsegmented languages.

3 Frequent n-gram embedding

A new pipeline of word embedding for unseg-
mented languages, referred to as FNE in this pa-
per, has been proposed recently in Oshikiri (2017).
First, the frequencies of all character n-grams in a
raw corpus are counted for selecting the K-most
frequent n-grams as the n-gram vocabulary in
FNE. This way of determining n-gram vocabulary
can also be found in Wieting et al. (2016). Then
frequent n-gram lattice is constructed by enumer-
ating all possible segmentations with the n-grams
in the vocabulary, allowing partial overlapping of
n-grams in the lattice. For example, assuming that
there is a string “短い学術論文” (short academic
paper) in a corpus, and if短い (short),学術 (aca-
demic),論文 (paper) and学術論文 (academic pa-
per) are included in the n-gram vocabulary, then
word and context pairs are (短い,学術), (短い,学
術論文) and (学術,論文). Co-occurrence frequen-
cies over the frequent n-gram lattice are fed into
the word embedding model to obtain vectors of n-
grams in the vocabulary. Consequently, FNE suc-
ceeds to learn embeddings for many words while
avoiding the negative impact of the erroneous seg-
mentations.
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Although FNE is effective for unsegmented lan-
guages, it tends to embed too many non-words.
This is undesirable since the number of embed-
ding targets is limited due to the time and memory
constraints, and the non-words in the vocabulary
could degrade the quality of the word embeddings.

4 Word-like n-gram embedding

To reduce the number of non-words in the n-gram
vocabulary of FNE, we change the selection cri-
terion of n-grams. In FNE, the selection criterion
of a given n-gram is its frequency in the corpus.
In our proposal WNE, we replace the frequency
with the expected word frequency (ewf ). ewf is the
expected frequency of a character n-gram appear-
ing as a word over the corpus by taking account
of context information. For instance, given an in-
put string “美容院でカラーリングする” (Do hair
coloring at a beauty shop), FNE simply counts the
occurrence frequency ofリング (ring) and ignores
the fact that it breaks the meaning ofカラーリン
グ (coloring), whereas ewf suppresses the count-
ing ofリング by evaluating how likely theリング
appeared as a word in the context. ewf is called as
stochastic frequency in Mori and Takuma (2004).

4.1 Expected word frequency
Mori and Takuma (2004) considered the stochas-
tically segmented corpus with probabilistic word
boundaries. Let x1x2 · · ·xN be a raw corpus of
N characters, and Zi be the indicator variable
for the word boundary between two characters xi
and xi+1; Zi = 1 when the boundary exists and
Zi = 0 otherwise. The word boundary probability
is denoted by P (Zi = 1) = Pi and P (Zi = 0) =
1− Pi, where Pi is calculated from the context as
discussed in Section 4.2.

Here we explain ewf for a character n-gram w
by assuming that the sequence of word boundary
probabilities PN

0 = (P0, P1, · · · , PN ) is already at
hand. Let us consider an appearance of the speci-
fied n-gram w in the corpus as xixi+1 · · ·xj = w
with length n = j − i + 1. The set of all
such appearances is denoted as I(w) = {(i, j) |
xixi+1 · · ·xj = w}. By considering a naive inde-
pendence model, the probability of xixi+1 · · ·xj
being a word is P (i, j) = Pi−1Pj

∏j−1
k=i (1− Pk),

and ewf is simply the sum of P (i, j) over the
whole corpus

ewf(w) =
∑

(i,j)∈I(w)

P (i, j),

while the raw frequency of w is expressed as

freq(w) =
∑

(i,j)∈I(w)

1.

4.2 Probabilistic predictor of word boundary
In this paper, a logistic regression is used for
estimating word boundary probability. For ex-
planatory variables, we employ the association
strength (Sproat and Shih, 1990) of character n-
grams; similar statistics of word n-grams are used
in Mikolov et al. (2013) to detect phrases. The
association strength of a pair of two character n-
grams a, b is defined as

A(a, b) = log

(
freq(ab)

N

)
−log

(
freq(a)freq(b)

N2

)
.

For a specified window size s, all the combina-
tions of a ∈ {xi, xi−1xi, . . . , xi−s+1 · · ·xi} and
b ∈ {xi+1, xi+1xi+2, . . . , xi+1 · · ·xi+s} are con-
sidered for estimating Pi.

5 Experiments

We evaluate the three methods: SNE, FNE and
WNE. We use 100MB of SNS data, Sina Weibo1

for Chinese and Twitter2 for Japanese and Korean,
as training corpora. Although Korean has spac-
ing, the word boundaries are not obviously deter-
mined by space. The implementation of the pro-
posed method is available on GitHub3.

5.1 Comparison word embedding models
The three methods are combined with Skip-gram
model with Negative Sampling (SGNS) (Mikolov
et al., 2013), where the dimension of word embed-
dings is 200 and the number of epochs is 20. The
initial learning rate γ and the number of negative
samples nneg are grid searched over (γ, nneg) ∈
{0.01, 0.025}×{5, 10}. The context window size
h is grid searched over h ∈ {1, 5, 10} in SNE, and
h = 1 is used for FNE and WNE.
SGNS-SNE (baseline): The standard word seg-
menters4 are used to obtain segmented corpora.
SGNS-FNE (baseline): SGNS is extended to al-
low frequent n-gram lattice in Oshikiri (2017). In

1We used 100MB of Leiden Weibo Corpus (van Esch,
2012) from the head.

2We collected Japanese and Korean tweets using the Twit-
ter Streaming API.

3https://github.com/kdrl/WNE
4MeCab with IPADIC is used for Japanese, jieba with

jieba/dict.txt.small are used for Chinese, and MeCab-ko with
mecab-ko-dic is used for Korean.

https://github.com/kdrl/WNE
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Figure 2: Precision-Recall curves for Japanese in two
sets of dictionaries (Experiment 1). The maximum K
of SNE (KSNE) is indicated by star.

this model, the n-gram vocabulary is constructed
with the K-most frequent n-grams and the embed-
dings of n-grams are computed by utilizing its co-
occurrence information over the frequent n-gram
lattice.
SGNS-WNE (Proposed model): We modified
SGNS-FNE by replacing the n-gram frequency
with ewf. To estimate word boundary probabili-
ties, the logistic regression of window size s = 8
is trained with randomly sampled 1% of the corpus
segmented by the same basic word segmenters4

used in SNE. Again, we do not expect here the
probabilistic predictor of word boundary is very
accurate. A naive predictor is sufficient for giving
low ewf score to the vast majority of non-words.

5.2 Experiment 1: Selection criteria of
embedding targets

We examine the number of words and non-words
in the n-gram vocabulary. The n-gram vocabular-
ies of size K are prepared by the three methods.
For evaluating the vocabularies, we prepared three
types of dictionaries for each language, namely,
basic, rich5 and noun. basic is the standard dic-
tionary for the word segmenters, and rich is a
larger dictionary including neologisms. noun is
a word set consists of all noun words in Wiki-
data (Vrandečić and Krötzsch, 2014).

Each n-gram in a vocabulary is marked as

5For Japanese, Chinese, and Korean, respectively, basic
dictionaries are IPADIC, jieba/dict.txt.small, mecab-ko-dic,
and rich dictionaries are NEologd, jieba/dict.txt.big, NIADic

Table 2: Classification accuracies [%] (Experiment 2)

Model Lang. Recalla Accuni
b Accint

c

SGNS-SNE 18.07 61.31 81.19
SGNS-FNE Chinese 11.36 35.61 86.44
SGNS-WNE 20.68 73.64 87.23
SGNS-SNE 0.78 44.50 79.56
SGNS-FNE Japanese 0.81 39.06 80.50
SGNS-WNE 1.70 69.76 81.70
SGNS-SNE 7.36 62.51 77.35
SGNS-FNE Korean 4.21 43.87 84.30
SGNS-WNE 9.38 74.50 84.32

a Dictionary = rich, b Union of the three vocabularies,
c Intersection of the three vocabularies.

“word” if it is included in a specified dictionary.
We then compute Precision as the ratio of marked
words in the vocabulary and Recall as the ratio of
marked words in the dictionary. Precision-Recall
curve is drawn by changing K from 1 to 1× 107.

5.3 Experiment 2: Noun category prediction

We performed the noun category prediction task
with the learned word vectors. Most of the set-
tings are the same as Oshikiri (2017). Noun words
and their categories are extracted from Wikidata
with the predetermined category set6. The word
set is split into train (60%) and test (40%) sets.
The hyperparameters are tuned with 5-folds CV
on the train set, and the performance is measured
on the test set. This is repeated 10 times for ran-
dom splits, and the mean accuracies are reported.
C-SVM classifiers are trained to predict categories
from the word vectors, where unseen words are
skipped in training and treated as errors in testing.
We performed a grid search over (C, classifier) ∈
{0.5, 1, 5, 10, 50} × {1-vs.-1, 1-vs.-all} of linear
SVM. The vocabulary size is set to K = 2 × 106

for FNE and WNE, while K = KSNE is fixed
at the maximum value, i.e., the number of unique
segmented n-grams for SNE.

5.4 Result

The results of experiments are shown in Fig. 2 and
Table 2. PR-curves for Chinese and Korean are
similar to Japanese and omitted here. As expected,
SNE has the highest Precision. WNE improves
Precision of FNE greatly by reducing non-words
in the vocabulary. On the other hand, WNE has the
highest Recall (the coverage of dictionary words)
for large K, followed by FNE. Since SNE cannot
increase K beyond KSNE, its Recall is limited.

6{human, fictional character, manga, movie, girl group,
television drama, year, company, occupation, color, country}
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Looking at the classification accuracies com-
puted for the intersection of the vocabularies of
SNE, FNE and WNE, they are relatively similar,
while looking at those for the union of the vo-
cabularies, WNE is the highest. This indicates
that the quality of the word vectors is similar in
the three methods, but the high coverage of WNE
contributes to the performance improvement of the
downstream task compared to SNE and FNE.

6 Conclusion

We proposed WNE, which trains embeddings for
word-like character n-grams instead of segmented
n-grams. Compared to the other methods, the
proposed method can embed more words, along
with the words that are not included in the given
word dictionary. Our experimental results show
that WNE can learn high-quality representations
of many words, including neologisms, informal
words and even text emoticons. This improvement
is highly effective in real-world situations, such as
dealing with large-scale SNS data. The other word
embedding models, such as FastText (Bojanowski
et al., 2017) and GloVe (Pennington et al., 2014),
can also be extended with WNE.
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