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Abstract

Community question answering (cQA) forums
provide a rich source of data for facilitat-
ing non-factoid question answering over many
technical domains. Given this, there is consid-
erable interest in answer retrieval from these
kinds of forums. However this is a difficult
task as the structure of these forums is very
rich, and both metadata and text features are
important for successful retrieval. While there
has recently been a lot of work on solving this
problem using deep learning models applied to
question/answer text, this work has not looked
at how to make use of the rich metadata avail-
able in cQA forums. We propose an attention-
based model which achieves state-of-the-art
results for text-based answer selection alone,
and by making use of complementary meta-
data, achieves a substantially higher result over
two reference datasets novel to this work.

1 Introduction

Community question answering (“cQA”) forums
such as Stack Overflow have become a sta-
ple source of information for technical searches
on the web. However, often a given query will
match against multiple questions each with multi-
ple answers. This complicates technical informa-
tion retrieval, as any kind of search or question-
answering engine must decide how to rank these
answers. Therefore, it would be beneficial to be
able to automatically determine which questions
in a cQA forum are most relevant to a given query
question, and which answers to these questions
best answer the query question.

One of the challenges in addressing this prob-
lem is that cQA threads tend to have a very rich
and specific kind of structure and associated meta-
data. The basic structure of cQA threads is as fol-
lows: each thread has a unique question (usually
editable by the posting user) and any number of

answers to that question (each of which is usually
editable by the posting user); comments can be
posted by any user on any question or answer, e.g.
to clarify details, challenge statements made in the
post, or reflect the edit history of the post (on the
part of the post author); and there is some mech-
anism for selecting the “preferred” answer, on the
part of the user posting the original question, the
forum community, or both. There is also often rich
metadata associated with each question (e.g. num-
ber of views or community-assigned tags), each
answer (e.g. creation and edit timestamps), along
with every user who has participated in the thread
— both explicit (e.g. badges or their reputation
level) and implicit (e.g. activity data from other
threads they have participated in, types of ques-
tions they have posted, or the types of answers they
posted which were accepted).

Our research is aimed at improving the ability
to automatically identify the best answer within
a thread for a given question, as an initial step
towards cross-thread answer ranking/selection. In
this work we use Stack Overflow as our source
of cQA threads. More concretely, given a Stack
Overflow cQA thread with at least four answers,
we attempt to automatically determine which of
the answers was chosen by the user posting the
original question as the “preferred answer”.

A secondary goal of our research is learning
how to leverage both the question/answer text in
cQA threads, along with the associated metadata.
We show how to create effective representations
of both the thread text and the metadata, and we
investigate the relative strength of each as well as
their complementarity for preferred answer selec-
tion. By leveraging this metadata and using an at-
tentional model for constructing question/answer
pair representations, we are able to obtain greatly
improved results over an existing state-of-the-art
method for answer retrieval.
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The contributions of our research are as follows:

• we develop two novel benchmark datasets for
cQA answer ranking/selection;

• we adapt a deep learning method proposed
for near-duplicate/paraphrase detection, and
achieve state-of-the-art results for text-based
answer selection; and

• we demonstrate that metadata is critical in
identifying preferred answers, but at the same
time text-based representations complement
metadata to achieve the best overall results
for the task.

The data and code used in this research will be
made available on acceptance.

2 Related work

The work that is most closely related to ours is
Bogdanova and Foster (2016) and Koreeda et al.
(2017). In this first case, Le and Mikolov’s para-
graph2vec was used to convert question–answer
pairs into fixed-size vectors in a word-embedding
vector space, which were then fed into a simple
feed-forward neural network. In the second case,
a decompositional attentional model is applied to
the SemEval question–comment re-ranking task,
and achieved respectable results for text alone.
We improve on the standalone results for these
two methods through better training and hyperpa-
rameter optimisation. We additionally extend both
methods by incorporating metadata features in the
training of the neural model, instead of extract-
ing neural features for use in a non-deep learning
model, as is commonly done in re-ranking tasks
(Koreeda et al., 2017).

In addition to this, there is a variety of other re-
cent work on deep learning methods for answer
ranking or best answer selection. For instance,
Wang et al. (2010) used a network based on re-
stricted Bolzmann machines (Hinton, 2002), us-
ing binary vectors of the most frequent words in
the training data as input. This model was trained
by trying to reconstruct question vectors from an-
swer vectors, then at test time question vectors
were compared against answer vectors to deter-
mine their relevance.

Elsewhere, Zhou et al. (2016) used Denois-
ing Auto-Encoders (Vincent et al., 2008) to learn
how to map both questions and answers to low-
dimensional representations, which were then

compared using cosine similarity. The resulting
score was used as a feature in a learn-to-rank
setup, together with a set of hand-crafted features
including metadata, which did not have a positive
effect on the results.

In another approach, Bao and Wu (2016)
mapped questions and answers to multiple lower
dimensional layers of variable size. They then
used a 3-way tensor transformation to combine the
layers and produce one output layer.

Nassif et al. (2016) used stacked bidirectional
LSTMs with a multilayer perceptron on top, with
the addition of a number of extra features includ-
ing a small number of metadata features, to clas-
sify and re-rank answers. Although the model per-
formed well, it was no better than a far simpler
classification model using only features based on
text (Belinkov et al., 2015).

Compared to these past deep learning ap-
proaches for answer retrieval, our work differs in
that we include metadata features directly within
our deep learning model. We include a large num-
ber of such features and show, contrary to the re-
sults of previous research, that they can greatly im-
prove classification performance.

In addition to deep learning methods for answer
retrieval, there is plenty of research on answer
selection using more traditional methods. Much
of this work involves using topic models to in-
fer question and answer representations in topic
space, and retrieving based on these representa-
tions (Vasiljevic et al., 2016; Zolaktaf et al., 2011;
Chahuara et al., 2016). However, the general find-
ing is that this kind of method is insufficient to
capture the level of detail needed to determine if
an answer is truly relevant (Vasiljevic et al., 2016).
They therefore tend to rely on complementary ap-
proaches such as using translation-based language
models (Xue et al., 2008), or using category in-
formation. Given this, we do not experiment with
these kinds of approaches.

There is also some work on improving an-
swer retrieval by directly modelling answer qual-
ity (Jeon et al., 2006; Omari et al., 2016; Zhang
et al., 2014). User-level information has proven to
be very useful for this (Agichtein et al., 2008; Bu-
rel et al., 2012; Shah, 2015), which helps motivate
our use of metadata.

Finally, an alternative strategy for answer selec-
tion is analogical reasoning or collective classifi-
cation, which has been investigated by Tu et al.
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(2009), Wang et al. (2009) and Joty et al. (2016).
In this kind of approach, questions and their an-
swers are viewed as nodes in a graph connected
by semantic links, which can be either positive or
negative depending on the quality of the answer
and its relevance to the question. However, we
leave incorporating such graph-based approaches
to future work.

3 Dataset

We developed two datasets based on Stack Over-
flow question–answer threads, along with a back-
ground corpus for pre-training models.1 The eval-
uation datasets were created by sampling from
threads with at least four answers, where one of
those answers had been selected as “best” by the
question asker.2 The process for constructing our
dataset was modelled on the 10,000 “how” ques-
tion corpus (Jansen et al., 2014), similar to Bog-
danova and Foster (2016).

The two evaluation datasets, which we denote
as “SMALL” and “LARGE”, contain 10K and 70K
questions, respectively, each with a predefined
50/25/25 split between train, val, and test
questions. On average, there are approximately six
answers per question.

In addition to the sampled sub-sets, we also
used the full Stack Overflow dump (containing
a full month of questions and answers) for pre-
training; we will refer to this dataset as “FULL”.
This full dataset consists of approximately 300K
questions and 1M answers. In all cases, we to-
kenised the text using Stanford CoreNLP (Man-
ning et al., 2014).

Stack Overflow contains rich metadata, in-
cluding user-level information and question- and
answer-specific data. We leverage this metadata in
our model, as detailed in Section 4.2. Summary
statistics of SMALL, LARGE and FULL are pre-
sented in Table 1.

In addition to the Stack Overflow dataset, we
also experiment with an additional complementary
dataset: the SEMEVAL 2017 Task 3A Question-
Comment reranking dataset (Nakov et al., 2017).

1All the data was drawn from a dump dated 9/2009, which
has a month of Stack Overflow question and answers.

2Note that in Stack Overflow, the community can sepa-
rately vote for answers, with no guarantee that the top-voted
answer is the preferred answer selected by the question asker.
In this research — consistent with Bogdanova and Foster
(2016) — we do not directly train on the vote data, but it
could certainly be used to fully rank answers.

Model SMALL LARGE FULL

Questions 10,000 70,000 314,731
Answers 64,671 457,634 1,059,253
Comments 70,878 493,020 1,289,176
Words 9,154,812 64,560,178 174,055,024
Vocab size 218,683 962,506 2,428,744

Table 1: Details of the three Stack Overflow datasets.

We include this dataset to establish the competi-
tiveness of our proposed text processing networks
(noting that the data contains very little metadata
to be able to evaluate our metadata-based model).
We used the 2016 test set as validation, the 2017
test set as test. Note that there are 3 classes in
SEMEVAL: Good, PotentiallyUseful, and
Bad, but we collapse PotentiallyUseful
and Bad into a single class, following most com-
petition entries.

4 Methodology

We treat the answer ranking problem as a classi-
fication problem, where given a question/answer
pair, the model tries to predict how likely the an-
swer is to be the preferred answer to the question.
So for a given question, the answers are ranked by
descending probability.

We explore three methods, which vary based on
how they construct a question/answer pair embed-
ding. Respectively these variations leverage: (1)
only the question and answer text; (2) only the
metadata about the question, answer and users; or
(3) both text and metadata.

In all cases, given a vector embedding of a
question/answer pair (based on a text embedding
and/or metadata embedding), we feed the vector
into a feed-forward network,H , which outputs the
probability that the answer is the preferred answer
to the given question. The networkH consists of a
series of dense layers with relu activations, and
a final softmax layer. The model is trained using
SGD with standard categorical cross-entropy loss,
and implemented using TensorFlow.3

4.1 Text Only
We experiment with two methods for constructing
our text embeddings: an attentional approach, and
a benchmark approach using a simple paragraph
vector representation.

3https://www.tensorflow.org/

https://www.tensorflow.org/
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4.1.1 Decompositional Attentional Model
Parikh et al. (2016) proposed a decompositional
attentional model for identifying near-duplicate
questions. It is based on a bag-of-words model,
and has been shown to perform well over the Stan-
ford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015; Tomar et al., 2017).

We adapt their architecture for our task, running
it on question/answer pairs instead of entailment
pairs. Note that, in our case, the best answer is
in no way expected to be a near-duplicate of the
question, and rather, the attention mechanism over
word embeddings is used to bridge the “lexical
gap” between questions and answers (Shtok et al.,
2012), as well as to automatically determine the
sorts of answer words that are likely to align with
particular question words. Henceforth we refer to
our adapted model as “decatt”.

The model works as follows: first it attends
words mutually between the question and answer
pair. Then, for each word in the question (respec-
tively answer), it computes a weighted sum of
the word embeddings in the answer (respectively
question) to generate a soft-alignment vector. The
embedding and alignment vector of each word
are then combined together (by concatenation and
feed-forward neural network) to form a token-
specific representation for each word. Finally, sep-
arate question/answer vectors are constructed by
summing over their respective token representa-
tions, and these are concatenated to form the final
question/answer pair vector.

Formally, let the input question and answer be
a = (a1, ..., ala) and b = (b1, ..., blb) with lengths
la and lb, respectively. ai, bj ∈ Rd are word em-
beddings of dimensionality d. These embeddings
are not updated during training, following Parikh
et al. (2016).

We first align each question (answer) word with
other answer (question) words. Let F be a feed-
forward network with relu activations. We de-
fine the unnormalised attention weights as follows:
ei,j := F (ai)

ᵀF (bj).
We then perform softmax over the attention

weights and compute the weighted sum:

βi :=

lb∑
j=1

exp(ei,j)∑lb
k=1 exp(ei,k)

bj

αj :=

la∑
i=1

exp(ei,j)∑la
k=1 exp(ek,j)

ai

Let G be a feed-forward network with relu
activations. We define the representation for each
word as follows:

v1,i := G([ai;βi]); v2,j := G([bj ;αj ])

for i = 1, ..., la, j = 1, ..., lb, and where [·; ·] de-
notes vector concatenation. Lastly, we aggregate
the vectors in the question and answer by summing
them:

v1 =

la∑
i=1

v1,i; v2 =

lb∑
j=1

v2,i

Finally, we concatenate both vectors, vtext =
[v1;v2]. This text vector is used as the input in
the classification network H .

4.1.2 Paragraph Vectors
Our second approach uses the method of Bog-
danova and Foster (2016), who achieved state-of-
the-art performance on the Yahoo! Answers cor-
pus of Jansen et al. (2014). The method, which we
will refer to as “doc2vec”, works by indepen-
dently constructing vector representations of both
the question and answer texts, using paragraph
vectors (Le and Mikolov, 2014; Lau and Bald-
win, 2016) in the same vector space. The training
is unsupervised, only requiring an unlabelled pre-
training corpus to learn the vectors.

The doc2vec method is an extension of
word2vec (Mikolov et al., 2013) for learn-
ing document embeddings. The document embed-
dings are generated along with word embeddings
in the same vector space. word2vec learns word
embeddings that can separate the words appear-
ing in contexts of the target word from randomly
sampled words, while doc2vec learns document
embeddings that can separate the words appearing
in the document from randomly sampled words.

Given the doc2vec question and answer vec-
tors, we concatenate them to construct the text
vector, vtext, which is used as the input to H . Note
that in this model vtext is kept fixed after pre-
training (unlike in decatt where errors are prop-
agated all the way back to the vtext vectors).

4.2 Metadata Only
In order to leverage the metadata in the Stack
Overflow dataset, we extract a set of features to
form a fixed-length vector as input to our model.
Given the wide difference in scale of these fea-
tures, all feature values are linearly scaled to the
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range [0, 1]. We denote this vector as vmeta, and in
the metadata-only case this is used as the input to
the classification network H .

The raw metadata is as follows: firstly, for each
question and answer we used the number of times
the post had been viewed, the creation date of the
post, the last activity date on the post, and a list
of comments on the post, including the user ID
for each comment. Secondly, for each question we
used the top n tags for the question (based on the
number of community votes), where n is a tunable
hyperparameter. Finally, for each user we used the
account creation date, number of up/down votes,
reputation score, and list of badges obtained by the
user.4

From these raw metadata fields we constructed
sets of question-specific, answer-specific, and
user-specific features, which are summarised in
Table 2. All date features were converted to inte-
gers using seconds since Unix epoch, and all bi-
nary features were converted to zero or one. In ad-
dition, the tag-based features were converted to a
probability distribution based on simple MLE.5

One concern with this model is that concate-
nating all features together could lead to feature
groups with lots of features dominating groups
with fewer features (for example the BasicQ and
BasicA features could be overshadowed by the
QTags and UTags features). In order to control
for this, we only used the top n tags for the QTags
and UTags feature groups.

A further possible concern is that, in a real-
world scenario, not all of this metadata would be
available at classification time (e.g. some of it is
generated quite a bit after the questions and an-
swers are posted). In practice, all of the Ques-
tion and User features are available at the time
of question creation, and it is only really the An-
swer features where ambiguity comes in. With the
comments, for example, the norm is that com-
ments lead to the refinement (via post-editing) of
the answer, and the vast majority of comments
in our dataset were posted soon after the orig-
inal answer. Thus, while it is certainly possible
for comments to appear after the answer has been
finalised, any biasing effect here is minor. The
only feature which has potentially changed signifi-

4In total there were 86 badges in the dataset that users
could obtain.

5For instance if a question has 4 tags, then the QTags
feature group for that question has value 0.25 for the 4 tags
present, and 0 for the other dimensions.

cantly from the time of answer posting is the num-
ber of answer views, although as we will observe
empirically, the utility of this feature is slight.

4.3 Combining Text and Metadata

To combine textual and metadata features, we con-
catenate [vtext;vmeta] as the input question/answer
pair embedding for the classification network H .

We define the prediction ŷ := H([vtext,vmeta]),
where ŷ ∈ RC in the case of C = 2 classes (i.e.
“best” or not).

Now given training instance n, for the predic-
tion ŷ(n)c and true binary labels y(n) ∈ {0, 1}C , the
training objective is the categorical cross-entropy
loss L = 1

N

∑N
n=1

∑C
c=1 y

(n)
c log ŷ

(n)
c .

5 Experiments

To train our models, we used the Adam Optimiser
(Kingma and Ba, 2014). For decatt, we used
dropout over F,G,H after every dense layer. For
the doc2vec MLP, we included batch normali-
sation before, and dropout after, each dense layer.
For testing, we picked the best model according to
the validation results after the end of each epoch.

The parameters for decatt were initialised
with a Gaussian distribution of mean 0 and vari-
ance 0.01, and for the doc2vec MLP we used
Glorot normal initialization. For Stack Overflow,
the parameters for Word embeddings were pre-
trained using GloVe (Pennington et al., 2014)
with the FULL data (by combining all questions
and answers in the sequence they appeared) for
50 epochs. Word embeddings were set to 150 di-
mensions. The co-occurrence weighting function’s
maximum value xmax was kept at the default of
10. For SEMEVAL, we used pretrained Common
Crawl cased embeddings with 840G tokens and
300 dimensions (Pennington et al., 2014).

To train the decatt model for Stack Overflow
we split the data into 3 partitions based on the size
of the question/answer text, with separate parti-
tions where the total length of the question/answer
text was: (1) ≤ 500 words; (2) > 500 and ≤ 2000
words; and (3) > 2000 words. We used a different
batch size for each partition (32, 8, and 4 respec-
tively).6 Examples were shuffled within each par-
tition after every epoch. For SEMEVAL we did not

6This was to avoid running into memory issues when
training with a large batch size on very long question and
answer pairs.
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Type Name Size Description

Question
BasicQ 3

Number of times question has been viewed (×1), creation date of
question (×1), and date of most recent activity on question (×1).

QTags n Probability distribution over top-n tags for question (×n).

Answer
BasicA 3

Number of times answer has been viewed (×1), creation date of
answer (×1), and date of most recent activity on answer (×1).

Comments
10

Number of comments on question and answer (×2), whether
asker/answerer commented on question/answer (×4), number of
sequential comments between asker and answerer across both
question and answer (×1), average sentiment of comments on
answer using Manning et al. (2014), both including and ignoring
neutral sentences (×2), and whether there was at least one
comment on answer (×1).

User
BasicU 8

Creation date of user account (×1), number of up/down votes
received by user (×2), reputation value (×1), number questions
asked/answered (×2), number of questions answered that were
chosen as best (×1), number of comments made (×1).

Badges 86 Whether user has each badge or not (×86).

UTags 2n

Probability distribution over top-n tags across all questions
answered by user (×n), and the same distribution restricted to
questions answered by the user where their answer was chosen
as best (×n).

Table 2: Summary of the metadata features used to improve question answering performance. These features are
separated into feature groups, which in turn are separated into group types based on whether the values are specific
to a given question, to a question’s answer, or to a user.

use partitions, and instead used a batch size of 32,
since training was fast enough.

For doc2vec pre-training, we used the FULL

corpus, with train, val and test doc-
uments excluded.7 We used the dbow ver-
sion of doc2vec, and included an additional
word2vec step to learn the word embeddings si-
multaneously.8

Note that for SEMEVAL, we experiment with

7The text was additionally preprocessed by lowercas-
ing. doc2vec training and inference was done using the
gensim (Řehůřek and Sojka, 2010) implementation.

8Based on Lau and Baldwin (2016), our hyperparameter
configuration of doc2vec for training was as follows: vector
size = 200; negative samples = 5; window size = 3; mini-
mum word frequency = 5; frequent word sampling threshold
=1 · 10−5; starting learning rate (αstart) = 0.05; minimum
learning rate (αmin) = 0.0001; and number of epochs = 20.
For inferring vectors in our train, val and test sets we
used: αstart = 0.01; αmin = 0.0001; and number of epochs
= 500.

using only the text features to better understand
the competitiveness of these text-processing net-
works decatt and doc2vec.

We tuned hyperparameters for all methods
based on validation performance using the SigOpt
Bayesian optimisation service. Optimal hyperpa-
rameter configurations are detailed in Table 3.

For additional comparison, we implemented the
following baselines (some taken from Jansen et al.
(2014), plus some additional baselines of our
own), including: (1) random, which ranks the
answers randomly; (2) first-answer, which
ranks the answers in chronological order; (3)
highest-rep, which ranks the answers by de-
creasing reputation; (4) longest-doc, which
ranks the answers by decreasing length; and (5)
tf-idf, which ranks the answers by the cosine
of the tf-idf9 vector representations between the

9Generated based on the training partition.
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Model Dataset Hyperparameter

F G H Tags Dropout LR

decatt + metadata
SMALL 188, 127 110, 110 282, 32 0 0.68 2.5 · 10−6

LARGE 500, 179 221, 221 533, 523 24 0.49 6.4 · 10−5

doc2vec + metadata
SMALL N/A N/A 1000, 92, 194 0 0.90 2 · 10−3

LARGE N/A N/A 1000, 212, 968 25 0.77 6 · 10−4

metadata
SMALL N/A N/A 50, 50 0 0.65 3 · 10−3

LARGE N/A N/A 555, 600 24 0.65 8 · 10−3

decatt
SMALL 188, 127 110, 110 145, 500 N/A 0.68 1.7 · 10−4

LARGE 500, 179 221, 221 53, 44 N/A 0.37 3.1 · 10−5

SEMEVAL 200, 200 200, 200 200, 200 N/A 0.5 5 · 10−4

doc2vec
SMALL N/A N/A 791, 737, 414 N/A 0.56 6 · 10−5

LARGE N/A N/A 1000, 558, 725 N/A 0.56 3 · 10−5

Table 3: Hyperparameter settings used for each model and corpora. “LR” = learning rate; “N/A” indicates that the
hyperparameter is not relevant for the given model. All models were trained for 40 epochs.

Model SMALL LARGE SEMEVAL

decatt + metadata .432 .527 N/A

doc2vec + metadata .429 .513 N/A

metadata .403 .463 N/A

decatt .346 .363 .865
doc2vec .343 .353 .740

random .185 .185 .618
first-answer .234 .243 .726
tf-idf .245 .246 .647
highest-rep .271 .268 N/A

longest-doc .318 .337 .720

semeval-best N/A N/A .884

Table 4: Results for doc2vec, metadata and
decatt models on both Stack Overflow datasets
(P@1) and SEMEVAL (MAP).

question and answer.

5.1 Results
For a given question, we are interested both in
how accurately our model ranks the answers, and
whether it classifies the best answer correctly.
However, for simplicity we simply look at the
performance of the model in correctly predicting
the best answer. Following Bogdanova and Foster
(2016), we measure this using P@1. In all cases
this is calculated on the test set of questions,
using the gold-standard “best answer” labels from
the Stack Overflow corpus, as decided by the ques-
tion asker. For SEMEVAL we use MAP to compare
with other published results. The results are pre-
sented in Table 4. To investigate the relative im-

Model SMALL LARGE

All features .403 .496

−BasicQ .399 (−.004) .495 (−.001)
−QTags .403 (−.000) .442 (−.054)

−BasicA .400 (−.003) .497 (+.001)
−Comments .303 (−.100) .410 (−.086)

−BasicU .394 (−.009) .485 (−.011)
−Badges .408 (+.005) .499 (+.003)
−UTags .403 (−.000) .433 (−.063)

Table 5: Feature ablation results for the metadata
model, based on fixed hyperparameter settings (P@1).

portance of the different metadata feature groups,
we additionally provide feature ablation results in
Table 5 for the Stack Overflow dataset.

We can make several observations from these
results. Firstly, we can see that performance in-
creases when we increase the dataset size (from
SMALL to LARGE), showing that our models scale
well with more data. For the text-only models,
decatt outperforms doc2vec consistently over
both datasets. In addition, metadata achieves
much higher results than the text-only models,
which shows the importance of utilising the rich
metadata data available for cQA retrieval. The
best model, decatt + metadata, is the hy-
brid model that combines both sources of infor-
mation and substantially improves performance
compared to metadata. From the SEMEVAL

results, we can see that our best text model
(decatt) is competitive with the state-of-the-art
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Question Best answer Incorrect answer

Q1: ... What I’d love to hear is
what you specifically use at
your company ... 1. How do
users report bugs/feature re-
quests to you? What soft-
ware do you use to keep
track of them? 2. How
do bugs/feature requests get
turned into “work”? ...

A1,1: For my (small) company:
We design the UI first. ...
As we move towards an ac-
ceptable UI, we then write a
paper spec for the workflow
logic of the application ...

A1,2: To give a better answer, my
company’s policy is to use
XP as much as possible and
to follow the principles and
practices as outlined in the
Agile manifesto. ...

Q2: I am trying to pass a pointer
rgb that is initialized with
memset to 0 and then
looped through to place a
32 bit integer only in the
bounds ...

A2,1: I went through and ba-
sically sorted out all the
warts, and explained why.
A lot of it amounts to
the fact that if your com-
piler spits out warnings,
you have to listen to them.
...

A2,2: This actually has a number
of bugs, but your first is-
sue is assigning the pixel
value to the array ... You
don’t need to reset j to
0 ... Also, you’re misusing
sizeof() ...

Table 6: Example questions and answers that were misclassified by one of decatt or metadata.

model (semeval-best), which also incorpo-
rates a number of handcrafted metadata features
to achieve a score of 88.4%.

To better understand the attention learnt by
decatt, we plotted the attention weights for a
number of question–answer pairs in Figure 1. In
general, technical words that appear relevant to
the question and answer have a high weight. Over-
all, we find that decatt does not appear to cap-
ture word pairs which correspond to each other,
as important question words are given strong at-
tention consistently for most answer words. We do
find a few exceptions with strong mutual attention,
e.g. roughly 10-20+ connections and multiple con-
current sockets have strong mutual attention. This
may explain the small difference in performance
between the doc2vec and decatt models.

In terms of our feature ablation results, all fea-
ture types contribute to an increase in perfor-
mance. The increases are greater in LARGE, sug-
gesting that the model is better able to utilize
the information given more data. The BasicQ,
BasicA features, which include dates and view
counts, do not appear to be of much use. Niether
does Badges, which appears to hurt the model
slightly. The other features give substantial gains,
especially in LARGE. The Comments feature is
strongest, but since it includes information based
on the comments of the question asker, it may
not be as relevant for the ultimate goal of cross-
question answer retrieval.

Comparing decatt and metadata model,
we found that overall, both models perform well,
and even when a model does not predict the ac-

cepted answer it often gives a highly-voted an-
swer. We found that the metadata model tends
to favour answers which have multiple comments
involving the asker, and especially answers from
high-reputation users. For example, in answerA1,2

to question Q1 in Table 6, there were a total of
8 comments to the answer (and no comments to
any of the other answers), biasing metadata to
prefer it. In practice, however, those comments
were uniformly negative on the part of a num-
ber of prominent community members, which the
model has failed to capture. This makes sense
given the results in Table 5. However, it does not
appear to understand comments where the asker
is discussing why the answer fails to address his
question, for example I can’t choose one Polygon
class because each library operates only in its own
implementation. While we include sentiment fea-
tures in our metadata features, this alone might
not be sufficient, since the disussion may revolve
around facts and require more detailed modelling
of the discourse structure of comments. Note that
here, decatt correctly selectedA1,1, on the basis
of its content.

As an example of a misclassification by
decatt, answer A2,2 is preferred over (best-
answer) A2,1 in response to question Q2 in Ta-
ble 6, but is actually a more comprehensive answer
which deals with more issues in the original code
and receives an equal number of community votes
from the community to A2,2. However, A2,1 was
posted first and receives a comment of gratitude
from the question asker, meaning that metadata
is able to correctly classify it as best answer.
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Figure 1: Attention weights for a question–answer pair, e, normalized to [0, 1]. Due to the long length of question
and answers we only plot weights above some threshold.

5.2 Future Work

There are multiple avenues for future research
based on our work. Our model’s use of attention
in the Stack Overflow dataset appears to be very
limited, so a model which can make full use of
attention could be a good direction of investiga-
tion. Another approach would be to extend our
model to incorporate the entire list of answers
and comments, possibly using graph-based ap-
proaches, instead of relying on individual ques-
tion/answer pairs and manually engineered com-
ment features. Ultimately, we would like to ex-
tend our methodology for cross-question answer
retrieval, rather than just answer retrieval from a
single question, given the goal of utilising the data
in cQA forums to facilitate general-purpose non-
factoid question answering

6 Conclusions

In this paper we built a state-of-the-art model for
cQA answer retrieval model based on a deep-
learning framework. Unlike recent work on this
problem we successfully utilised metadata to sub-
stantially boost performance. In addition, we adapt
an attentional component in our model, which im-
proves results over the simple paragraph vector-
based approach used in our benchmark, which was
previously the state-of-the-art model. It is our hope
that this work facilitates future research on utilis-
ing cQA data for non-factoid question answering.
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Täckström, Jakob Uszkoreit, and Dipanjan Das.
2017. Neural paraphrase identification of questions
with noisy pretraining. In arXiv:1704.04565 [Cs].

Xudong Tu, Xin-Jing Wang, Dan Feng, and Lei Zhang.
2009. Ranking community answers via analogical
reasoning. In Proceedings of the 18th International
World Wide Web Conference, pages 1227–1228.



147

Jelica Vasiljevic, Tom Lampert, and Milos Ivanovic.
2016. The application of the topic modeling to ques-
tion answer retrieval. In Proceedings of the 6th In-
ternational Conference of Information Society and
Technology (ICIST), pages 241–246.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th International
Conference on Machine Learning, pages 1096–
1103.

Baoxun Wang, Xiaolong Wang, Chengjie Sun,
Bingquan Liu, and Lin Sun. 2010. Modeling
semantic relevance for question-answer pairs in web
social communities. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics (ACL 2010), pages 1230–1238.

Xin-Jing Wang, Xudong Tu, Dan Feng, and Lei Zhang.
2009. Ranking community answers by modeling
question-answer relationships via analogical reason-
ing. In Proceedings of the 32nd International Con-
ference on Research and Development in Informa-
tion Retrieval (SIGIR 2009), pages 179–186.

Xiaobing Xue, Jiwoon Jeon, and W Bruce Croft. 2008.
Retrieval models for question and answer archives.
In Proceedings of the 31st International Conference
on Research and Development in Information Re-
trieval (SIGIR 2008), pages 475–482.

Kai Zhang, Wei Wu, Haocheng Wu, Zhoujun Li, and
Ming Zhou. 2014. Question retrieval with high qual-
ity answers in community question answering. In
Proceedings of the 23rd ACM International Confer-
ence on Information and Knowledge Management
(CIKM), pages 371–380.

Guangyou Zhou, Yin Zhou, Tingting He, and Wen-
sheng Wu. 2016. Learning semantic representa-
tion with neural networks for community question
answering retrieval. Knowledge-Based Systems,
93:75–83.

Zainab Zolaktaf, Fatemeh Riahi, Mahdi Shafiei, and
Evangelos Milios. 2011. Modeling community
question-answering archives. In Proceedings of the
2nd Workshop on Computational Social Science and
the Wisdom of Crowds, pages 1–5.


