
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018), pages 66–74
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

66

SUD or Surface-Syntactic Universal Dependencies:
An annotation scheme near-isomorphic to UD

Kim Gerdes*, Bruno Guillaume†, Sylvain Kahane◊, Guy Perrier†

*LPP, Sorbonne Nouvelle & CNRS
†Loria, Université de Lorraine & CNRS & INRIA, Nancy;

◊Modyco, Université Paris Nanterre & CNRS
kim@gerdes.fr, bruno.guillaume@inria.fr,
sylvain@kahane.fr, guy.perrier@loria.fr

Abstract

This article proposes a surface-syntactic
annotation scheme called SUD that is
near-isomorphic to the Universal
Dependencies (UD) annotation scheme
while following distributional criteria for
defining the dependency tree structure and
the naming of the syntactic functions.
Rule-based graph transformation
grammars allow for a bi-directional
transformation of UD into SUD. The
back-and-forth transformation can serve as
an error-mining tool to assure the intra-
language and inter-language coherence of
the UD treebanks.

1 Introduction

Universal Dependencies (UD) is an astonishing
collaborative project of dozens of research groups
around the world, developing an annotation
scheme that is applicable to all languages and
proposing treebanks based on that scheme for
more than 70 languages from different language
families (Nivre et al. 2016). From the start,
considerable efforts have been made to avoid an
anglocentric scheme, going as far as analyzing
English prepositions as case markers. The project
is based on an ongoing and constantly evolving
collaborative construction of the annotation
scheme itself by means of an open online
discussion group. The project welcomes and
collaborates with enrichment efforts such as the
enhanced UD annotation of deep syntax (Schuster
& Manning 2016) or the annotation of multi-word
expressions (Savary et al. 2015).

Just as any annotation project, UD had to make
choices among the different annotation options
that commonly reflect opposing goals and
downstream applications of the resulting
treebanks. UD decided to stick to simple tree
structures (compared to graphs with multiple
governors) and to favor content words as heads,

which is supposed to maximize “parallelism
between languages because content words vary
less than function words between languages” (UD
Syntax: General Principles page http://universal
dependencies.org/u/overview/syntax.html). The
goal of “maximizing parallelism between
languages” might be of use for parser
development of neighboring languages, but
reducing language differences makes the resulting
treebank by definition less interesting for
typological research on syntax. In particular, UD
does not account for the hierarchy between
functional words and tends to flatten syntactic
structures. The content-word-centric annotation is
also problematic for the internal cohesion of the
treebank (cf. the difficulty of coherently
annotating complex prepositions that usually
contain a content word, Gerdes & Kahane 2016)
and it marks a break with syntactic traditions,
where headedness is defined by distributional
properties of individual words (Bloomfield 1933),
see Section 2.1

One of the central advantages of dependency
grammar is the clear distinction of category (the
POS, i.e. an intrinsic distributional class) and
function (i.e. the specific role a word plays
towards another word). Sentences such as She
became an architect and proud of it which have
given rise to a considerable amount of scholarly
discussions (Sag 2003) because an X-bar based
phrase structure analysis requires deciding on the
category of the coordinated argument first. UD
inherited from the Stanford parser2 a mixed
annotation scheme where relation labels include
1 UD defines headedness indirectly via the category of the
word: Content words are heads in UD and content words
are usually understood as words belonging to open
distributional classes, such as nouns, verbs, adjectives, and
adverbs.
2 The first versions of the Stanford parser were phrase
structure based, providing trees that did not include
functional information. The dependency output was a
conversion from the phrase structure tree where the
relations were computed from the category of the
constituents (de Marneffe et al. 2006).

 1

67

categories, as for example nsubj where the “n”
indicates the category of the dependent. As a
consequence of including the POS of the
dependent in the relation name, UD has different
labels for the same paradigm occupying the same
syntactic position. For instance the complement of
consider can be nominal or clausal as in I
consider this point / to leave / that you leave and
receives three different UD relation labels
(obj/xcomp/ccomp).

We propose a new surface-syntactic annotation
scheme, similar to UD, that we name SUD for
Surface-syntactic Universal Dependencies. We
want dependency links as well as the dependency
labels to be defined based on purely syntactic
criteria (Mel’čuk 1988), giving dependency
structures closer to traditional dependency syntax
(Meaning-Text Theory, Mel’čuk 1988; Word
Grammar, Hudson 1984, 2007; Prague
Dependency Treebank, Hajič et al. 2017) and
headed constituency trees in phrase structure
grammar (X-bar Syntax, Jackendoff 1977; Penn
Treebank, Marcus et al. 1993). We also propose a
hierarchy of SUD dependency relations that
allows for under-specifications of dependency
labeling.

We conceived the SUD scheme as an
alternative to UD and not as a competing
annotation scheme, which means that the
annotation scheme should have the same
information content, the information being only
expressed another way. Put differently, we looked
for an annotation scheme based on distributionial
criteria with an elementary conversion going both
ways without loss, i.e. an “isomorphic”
annotation. Since the principles underlying SUD
are different, the isomorphism with UD cannot be
perfect. As a result, SUD is near-isomorphic to
UD, and we have developed two treebank
conversion grammars for the Grew platform
(http://grew.fr, Bonfante et al. 2018): UD to SUD
and SUD to UD. We will evaluate the differences
between a UD treebank and the results of a
double-conversion through SUD in Section 4.

SUD treebanks can be obtained by simple
conversion from UD treebanks and can be useful
for teaching and typological studies. Inversely,
annotations can be done directly in SUD, and
ultimately converted into UD. SUD annotations
are less redundant and more economical than UD
annotations. For instance SUD uses a simple subj
relation because the nominal character of a
subject should be indicated only once (as a POS).
The distinction between clausal and nominal
subjects can be recovered automatically from the
POS of the subject and its context, but how this

context is taken into account depends on the
language.3

The conversion tool Grew and the conversion
grammars are freely distributed, and we envision
to propose the UD treebanks also under the
automatically converted SUD scheme on the UD
website.4 This SUD annotation scheme proposal
could benefit from future discussions and
evolutions of the UD ecosystem.

As a side effect, the double UD→SUD→UD
conversion provides a powerful error mining tool
for UD treebanks. Trees that are not stable under
this conversion very often contain non-standard
uses of the UD annotation scheme that deserve
special attention.

Section 2 explain what is surface syntax, what
are the criteria defining a surface syntactic
structure and how such a structure differs from
UD trees. Our SUD annotation scheme is
introduced in Section 3. The conversion between
UD and SUD is presented in Section 4 and
evaluated on the whole set of UD treebanks.

2 Surface Syntax

We will present defining criteria for a surface
syntactic analysis following Mel’čuk 1988 who
proposes three types of criteria: A: When to
connect two words? B: Who is the governor in a
connection? C: How to classify the dependencies?

2.1 Criteria for structural choices

The basic type A criterion is the stand-alone
property or “autonomizability”: Two words are
connected if they can form a speech turn. For
example in the sentence The little boy talked to
Mary “the boy” or “to Mary” can stand alone
with the same meaning, for instance as an answer
to a question such as Who talked to Mary? or
Who did the little boy talk to?. Autonomizability
is not sufficient to determine a dependency
structure as the set of connections does not
necessarily form a tree, and we need further
structural criteria to decide which links to
preserve (Gerdes & Kahane 2011).
For instance, there are no simple criteria to
establish a connection between talk and to or talk
and Mary because both talk to, and talk Mary are
ungrammatical speech turns. This connection can
3 The clausal character of a phrase is more or less explicit
depending on the language. If a language allows for clauses
without subjects, without subordinating conjunctions, or
without verbs, the conversion SUD → UD has to be
adapted accordingly. If all three indicators are absent while
the clause-noun distinction remains relevant, we would
have to rely on an additional feature in SUD in order to
obtain a correct transformation.
4 For the time being, the SUD treebanks are available on
https://gitlab.inria.fr/grew/SUD

 2

68

be established by means of criteria of type B
determining who, to or Mary, is the head of to
Mary. At this point, UD parts with surface syntax
criteria and applies the criterion of “content word
as head” whereas surface syntax uses
distributional criteria of each individual word.
The main criterion is that the surface syntactic
head determines the distribution of the unit.
For instance, Mary and to Mary have a
profoundly different distribution as they can never
commute:
Mary slept vs. *To Mary slept.
The boy talked to Mary vs. *The boy talked Mary.

This suffices to show that Mary is not the head.
Although we cannot test whether to has the same
distribution as to Mary because a preposition such
as to never appears without a noun or a verb, we
consider to to be the head, a choice that is
consistent with most if not all theoretical syntactic
frameworks.5 The same reasoning can be applied
to the auxiliary-verb connection such as has
chosen or the copula-adjective connection such as
is happy: chosen never commutes with has
chosen.6

A less clear case of function words as heads is
the case of a conjunct in a coordination: I invited
Bill and Mary. In most positions, Mary and and
Mary cannot commute (again and cannot stand
alone and cannot be tested). Here a second
distributional criterion can be used: A dependent
does not change the distribution of its governor.
This shows that Mary cannot be considered as a
dependent of and, because the commutation of
Mary with units of other POSs (and red, and is

5 The tokenization is quintessential here. If an annotation
scheme of a inflectional language decides to separate case
markers, such a case marker will become the head of the
word (Groß 2011).
6 If the dependent of an aux relation is optional, invariable,
and non-verbal, it should be tagged as PART. Then it will
not be promoted to the head-position in the UD → SUD
conversion.

sleeping, etc.) completely changes the distribution
of the phrase.

Note that the case of the determiner-noun
connections is less clear-cut. Both UD and
traditional surface syntax (Mel’čuk 1988) chooses
the noun as the head although boy and the boy do
not have the same distribution. The DP analysis
makes the opposite choice (Hudson 1984, 2007,
Abney 1987). For these two controversial cases,
we keep the UD analysis with the functional word
as a dependent.

As an illustration of the flat UD structures
compared to SUD, consider Figure 1 showing the
analyses of I am out of the office today but will be
back tomorrow. The UD tree has depth 3 and a
maximum number of 8 dependents per node
whereas the SUD tree has depth 5 and only a
maximum number of 5 dependents per node. We
generalize this observation into a general
principle: We believe that the syntactic structure
follows the dependency length minimization
principle: “Languages tend to minimize the
surface syntactic dependency length” because this
reduces the cognitive load of language processing
(Liu 2008, Futrell et al. 2015). We use this
argument to attach each conjunct to its closest
neighbor conjuncts and to attach shared
dependents to the closest conjunct. This gives us a
chaining analysis of coordination instead of UD’s
bouquet analysis.7 Figure 2 shows an example that
illustrates the structural differences for
coordination between UD and SUD.

7 One of the arguments in favor of a bouquet analysis is to
allow the disambiguation of embedded coordinations such
as A and B or C: For (A and B) or C, or C depends on A,
while for A and (B or C), or C depends on B. Nevertheless,
this disambiguation is partial because in case of a flat
coordination such as A, B, or C, we see that or C also
depends on A and thus, the bouquet structure cannot
distinguish the embedded (A and B) or C situation from the
flat A, B, or C situation.

 3

Figure 1: UD and SUD analysis of the same sentence (UD_English-EWT@2.2 email-enronsent38_01-0114)

I
PRON

am
AUX

out
ADP

of
ADP

the
DET

office
NOUN

today
NOUN

but
CCONJ

will
AUX

be
AUX

back
ADV

tomorrow
NOUN

.
PUNCT

.

det obl:tmod cop obl:tmod

case aux

case cc

cop

nsubj

conj

punct

I
PRON

am
AUX

out
ADP

of
ADP

the
DET

office
NOUN

today
NOUN

but
CCONJ

will
AUX

be
AUX

back
ADV

tomorrow
NOUN

.
PUNCT

.

subj obl:arg dep det cc comp:aux obl:arg

comp mod

mod

conj

punct

69

2.2 Criteria for dependency labels

We need criteria to decide whether two
dependencies (in two different sentences) must be
labeled by the same relation or not. Our first
criterion allows us to decide when the governors
are the same: If two dependents occupy the same
position, i.e. they are mutually exclusive, they
must be connected to their governor by the same
relation.8 This implies that in This apple is good
for you and Eating this apple is good for you,
both this apple and eating this apple must have
the same function. Equally, that apple and to eat
that apple have the same function in I want that
apple and I want to eat that apple. This criterion
is currently not used in UD (cf. nsubj vs. csubj for
subjects and obj vs. xcomp for objects).

Our second criterion is used to decide whether
a dependent D that appears in two governor-
dependent relations in two different sentences
should be labeled with the same function: The
relations are the same if the paradigms of units
that can commute with D in the two positions are
roughly the same, semantic constraints apart. As
an example of a semantic selectional restriction,
we establish the same subject positions for
“think” and “sink” although the paradigms are not
exactly the same: the boat sinks vs. ???the boat
thinks.9 Inversely, the French verbs parler ‘talk’
and penser ‘think’ both have a complement with
the preposition à ‘to’, but the pronominalization
of these arguments is different: parler à Mary
‘talk to Mary’ → lui parler ‘speak to her’ vs.

8 The inverse is not a necessary condition: We can decide to
group together under one relation label two dependents that
can co-occur with the same governor, in particular
modifiers of verbs or of nouns, which can be repeated.
9 Put differently, the set of elements that can occupy sink’s
subject position and the set of elements that can occupy
think’s subject position are different. But the two sets are
sufficiently similar and the restriction seems to be of
semantic nature that we decide not to introduce an
“animate-subject” relation and an “inanimate-subject”
relation, but to simply use the subj function for these verbs’
first positions.

penser à Mary ‘think of Mary’ → penser à elle
‘think of her’. This could lead us to distinguishing
two types of arguments (e.g. “indirect object” vs.
“oblique complement”).10

Two positions only rarely have exactly the
same paradigms and constraints, but they can be
more or less similar. Thus, the notion of function
is not absolute but rather relative, which justifies a
hierarchy of functions, thus allowing for choosing
between coarser or finer grained analyses.

Although, as we have shown, UD has a
tendency to use several relation labels for the
same syntactic function, the UD annotation
scheme can also combine two syntactic functions
into one: For example, all PP dependents of a verb
are connected with the same relation obl to their
governor, conflating prepositional arguments and
repeatable modifiers.11

3 SUD

With this basis, we have developed an annotation
scheme that attempts to remain as close as
possible to the UD annotation scheme while
obeying to surface-syntactic criteria. The SUD
annotation scheme is a surface-syntax annotation

10 A third criterion states that redistribution and agreement
constraints for both dependency should be the same. As an
example of different redistributions, consider cost vs. win:
Peter won 100€ can be passivized but not The book costs
100€. Accordingly, an annotation scheme can decide to
establish two distinct functions (e.g. “direct object” vs
“measure complement”).
In SUD, we unite all these cases under the function name
comp, see Section 3.1, therefore not distinguishing “indirect
objects” from “oblique complements” or “direct objects”
from “measure complements”.
11 Several UD treebanks decided to keep the verbal valency
and thus to mark the distinction between prepositional
arguments and modifiers, for example by means of obl:arg
vs. obl:mod, such as Arabic, Cantonese, Chinese, Czech,
French, Hindi, Polish, Sanskrit, and Slovak. The secondary
annotation label of this argument vs. modifier distinction
has not yet been unified across languages and some
treebanks use :tmod, :npmod, and :loc vs. :agent among
others.

 4

Figure 2: Coordination in UD and in SUD
(UD_English-LinES@2.2 257, comma attachment as in the original treebank).

70

scheme, which implies in particular that:
1. Contrarily to UD, function words such as
adpositions, subordinating conjunctions,
auxiliaries, and copulas are heads. 2. Words that
are in the same paradigm of commutation (and
thus occupy the same syntactic position) have the
same function, i.e. they are connected to their
governor by the same syntactic relation.

3.1 Structural choices

In a nutshell, UD’s case, mark, aux, and cop
dependencies are inverted while other UD
dependency directions are preserved. In particular,
we kept coordinating conjunctions and
determiners as dependents (see Section 2.1).

The directional changes of a relation opens the
question of the attachment of the dependents
involved in the changes. In UD, function words
do not have dependents, but in surface syntax,
modifiers of the whole phrase are traditionally
attached to the head, which can now be a function
word. Put differently, we have to decide which
dependents are attached to the function word and
which remains on the lexical word. It is generally
accepted that the subject is a dependent of the
auxiliary or the copula, with whom it agrees in
inflectional languages. Highly grammaticalized
elements such as negation should go onto the
auxiliary whereas arguments should remain on the
lexical element. For the sake of simplicity, all
modifiers have been attached on the auxiliary in
SUD and all arguments except the subject remain
on the lexical verb.12 Conjuncts need special rules
to be handled correctly, because sometimes they
must be raised (Mary was sleeping and knew it)
and sometimes not (Mary was sleeping and
snoring).

3.2 Labeling choices

SUD introduces four new relations: subj, comp,
mod, and unknown and reassign a more specific
meaning to the dep label. All subjects have the
function subj, grouping together UD’s nsubj and
csubj. All other arguments of adjectives and verbs
have the function comp, bundling UD’s obj, iobj,
xcomp, and ccomp; comp is also used for all
complements of function words such as auxilia-
ries, copulas, adpositions, and subordinating
conjunctions, thus replacing UD’s aux, cop, case,
and mark. Modifiers have the function mod
wherever we can clearly distinguish the modifiers

12 A native SUD annotation might choose to propose more
specific rules defining the distribution of modifiers between
the function verb and the lexical verb. This has no incidence
on the automatically obtained corresponding UD analysis,
because such a distinction is flattened when converting into
UD.

from arguments. If not, we use the dep relation to
indicate that we cannot.13 This dep relation is
particularly useful for PP attachments to nouns
but also for UD’s obl relation if it is not specified
further as obl:arg or obl:mod. If we have the
argument-modifier distinction for PP dependents
of verbs we classify obl:arg as comp and obl:mod
as mod. If the nature of the relation cannot be
determined, we use the unknown label (where
UD used the dep label), which becomes the
hypernym of all SUD relations (Figure 3).
Compared to UD we thus grouped together
relation labels whenever the distinction between
them is purely categorical, i.e. contingent on the
POS of the governor or the dependent. To avoid
annotation redundancy, we do not use UD’s acl,
advcl, advmod, amod, aux, case, ccomp, cop,
csubj, iobj, mark, nmod, nsubj, nummod, obj, obl,
and xcomp relations. All other UD relation labels
are preserved.
SUD dependency Corresponding UD dependencies

dep acl, amod, nmod, nummod, obl

comp
aux, ccomp, iobj, obj, obl:arg, xcomp,
cop, mark, case

mod advcl, advmod, obl:mod

subj csubj, nsubj

Table 1: SUD and corresponding UD relation labels

As a general principle of allowing a varying
granularity of dependency relation labels, but also
to assure the convertibility with UD, SUD relies
heavily on secondary relation labels that are, just
like in UD, separated from the main label by a
colon: primary:secondary. These secondary
labels are optional in a simple native SUD
annotation but necessary for a full convertibility
into UD. On the contrary, the converted SUD uses
the distinction between comp:aux and comp:pass
to discriminate the complement of an AUX used
as a tense auxiliary and as a passive auxiliary, and
it also uses comp:cop or comp:caus for the
conversion of UD’s cop and aux:caus. The UD
relations iobj and obl:arg both give comp:obl in
SUD, ccomp and obj give comp:obj, and xcomp
gives comp:rais (Table 2).14

13 The dep relation thus becomes a hypernym of comp, mod
and subj, as well as cc and det.
14 Although comp:obj and comp:obl are clearly sub-
functions of comp, this is not stricto sensu the case of
comp:rais. For example, we consider that (Fr.) dormir ‘to
sleep’ and que tu dormes ‘that you sleep’ have the same
function comp:obj in the context Je veux _ ‘I want _’, while
que tu dormes has a different function comp:obl in the
context Je m’étonne _ ‘I’m surprised _’, where it commutes
with a PP de ça ‘of that’. A native SUD annotation could
thus distinguish comp:obj:rais from comp:obl:rais by
means of triple labels.

 5

71

4 Convertibility between UD and SUD

The conversion UD → SUD is done in three main
steps: 1) transforming the bouquet structure into a
chaining analysis (for relations conj, fixed and
flat); 2) reversing relations aux, cop, mark and
case; 3) mapping UD relations to SUD relations
following Table 2. The reverse conversion (SUD
→ UD) also proceeds in three steps in the same
vein.

The second step is the most problematic
because a lexical head can have several function
words depending on it (up to 7 in UD_Japanese!).
In such a case, we must decide which one
depends on which one.

To do this, we rely on a universal hierarchy of
relations that the auxiliaries have with the main
verb, in particular mark relations are higher than
aux relations and time and aspect auxiliaries are
higher than voice auxiliaries (Van Valin 1984,
Cinque 1999). When this information is
unavailable we rely on the word order: The
closest function word is the SUD governor of the
lexical head, the next one is the SUD governor of
the first one, and so on.

The conversions (UD → SUD and SUD →
UD) we proposed are encoded in a rule-based
system. The rules are organized by means of a
separation of a universal core rule set and a
language specific rule set, which for the time
being has only been implemented for French.

We use the Grew software (http://grew.fr)
based on a computational Graph Rewriting
Model. Each conversion is encoded as a graph
rewriting system (GRS): a set of rules and a
strategy describing how the rule applications must
be ordered. Below, we give an example of an UD
→ SUD rule for the inversion of mark:

rule left_mark {
pattern { e:H-[mark]->X1; X1 << H }
without { H-[aux|aux:pass|aux:caus|cop|

mark|case]->X2; X1 << X2 }
commands {

del_edge e;
add_edge X1-[comp]-> H;
shift_out H =[aux|aux:pass|aux:caus|

cop|mark|case|conj|cc|root]=> X1; } }

The rule contains three parts: the pattern part says
that the rule applies on a dependency e labeled
mark, with a dependent X1 preceding its head H;
the without part ensures that there is no other
element aux, cop, case or mark depending on H
between X1 and H; the commands part describes
the required modifications on the structure: delete
the matched edge e, add a new edge comp in the
reverse order, and the shift_out command gives
the list of relations that must be moved from node
H to node X1. It is worth noting that aux, case,
cop, and mark that remain to be inverted must be
raised onto the auxiliary.

 6

Table 2: UD-SUD transformation correspondences

UD
dependency

SUD
dependency

UPOS of the governor UPOS of the dependent

obl

dep

ADJ|VERB

acl
NOUN|PROPN|PRON ADP comp -> VERB
NOUN|PROPN|PRON VERB

amod ADJ
nmod NOUN|PROPN|PRON ADP comp -> NOUN|PROPN|PRON

nummod NUM

advcl
mod

ADJ|VERB
ADP comp -> VERB

ADJ|VERB
advmod ADV
obl:mod ADP comp -> NOUN|PROPN|PRON

obj
comp:obj

NOUN|PROPN|PRON

ccomp
VERB
SCONJ comp -> VERB

comp:obl

SCONJ comp -> VERB
iobj PRON

obl:arg
ADP comp -> NOUN|PROPN|PRON
ADV

csubj
subj

VERB
nsubj NOUN|PROPN|PRON
xcomp comp:rais

Other relations

starting on the dependent

72

We have evaluated the results of the double
conversion (from UD to SUD first and then from
SUD back to UD) against the original UD
annotation with the 122 corpora of version 2.2.
The experiment were conducted on the test part of
each corpus. The median value of the LAS scores
is 94.1%. Three corpora have a LAS score below
75%: UD_Korean-Kaist (71.8%), UD_Japanese-
BCCWJ (74.0%) and UD_Japanese-GSD
(74.4%). The 3 highest values are for
UD_Hungarian-Szeged (98.6%), UD_Italian-
ParTUT (98.4%), and UD_Italian-PoSTWITA
(98.3%). The median value of the UAS scores is
98.8%. The 3 lowest scores are for UD_Yoruba-
YTB (85.0%), UD_Japanese-GSD (87.5%) and
UD_Japanese-PUD (87.9%). Two corpora have a
100% UAS score: UD_Warlpiri-UFAL and
UD_Telugu-MTG.

Figure 4 shows the distribution of LAS (blue
curve) and UAS (green curve) on the 122
treebanks. The two curves present the ordered set
of values of LAS/UAS (not corresponding to the
same corpus ordering). Although the scores are
very high, the procedure does not allow to
evaluate the two conversion systems separately: A
dependency may remain unaffected by both
conversions when it should have been, and this
error will not be detected.

One central source of the discrepancy between
a corpus and its double conversion is the
inconsistency between a relation name and the
POS of its dependent. For instance, the
conversion UD→SUD always produces dep for
an amod, but the SUD→UD is not able to recover
amod if the dependent is not an ADJ. In the
corpus with the lowest LAS score (UD_Korean-
Kaist), we observed many unusual associations of
relation and POS. In the whole corpus
UD_Korean-PUD, 22.4% of the advmod relations
have a dependent that is not an ADV, and 43.5%

of the aux relations have a dependent which is not
an AUX. In the corpus UD_Korean-PUD, all the
323 aux relations have a dependent which is not
an AUX. Until now, we have only designed a set
of generic rules that may be refined for each
language and it is difficult to draw conclusions
about the full set of corpora.

A part of these inconsistencies may also be
linked to MWEs: An MWE as a whole often has a
POS which is different from the POS of its first
token. In UD 2.2, 4 corpora contain the feature
MWEPOS to annotate the POS of the MWEs (the
conversion in the evaluation curves above does
not uses this feature). If this information is taken
into account in the conversions, the LAS scores
significantly increase in 3 of the 4 cases
(UD_French-Sequoia: +1.05%, UD_Catalan-
AnCora: +0.80%, UD_Spanish-AnCora: +0.75%
and UD_Portuguese-Bosque: +0.08%).

We believe that a further exploration of these
inconsistencies could provide a crucial step for
the improvement of the treebanks as well as the
conversion rules. As a next experiment, we plan
to introduce a new feature UDPOS to add the
expected POS where the current UD POS is
unexpected. Then, each UDPOS have to be
interpreted as: 1) an annotation error, 2) a place
where a MWEPOS is missing, or 3) a special
usage of the relation that should be taken into
account in the language specific conversion rules.

5. Conclusion

Based on UD, we propose a new annotation
scheme, SUD, which follows standard
distributional criteria for headedness and relation
labeling and is thus closer to traditional
constituency-based surface syntax as well as to
dependency-based surface syntax. This means in
particular that this new scheme can be employed
more easily by users and annotators that are
trained in more traditional forms of syntax. As an
experiment, we are now developing a new
treebank directly in SUD and this treebank will
subsequently be converted into UD, the automatic
transformation providing a quality and coherence
control of the SUD annotation.

Such a format is useful for every computation
that concerns the form of the sentence such as
word order (Chen et al. submitted) and the
relation to prosody, etc. Conversely, UD might be
a better entry point to the semantic content of the
sentence.

The lower dependency length gives
psycholinguistic support to SUD treebanks.
Possibly related is the fact that various
experiments on parser performance also

 7

Figure 3: LAS and UAS of UD→SUD→UD
transformations across the UD 2.2 treebanks,

displayed on the X-axis by ascending LAS (resp.
UAS) order.

73

consistently give an advantage to function-word-
headed structures (Schwartz et al. 2012, Silveira
and Manning 2015, Kirilin and Versley 2015,
Rehbein et al. 2017)15 which provides another
raison d’être for parallel SUD treebanks.

The whole UD 2.2 database, with its 122
treebanks, has been converted into SUD and is
already accessible at https://gitlab.inria.fr/grew/
SUD. We would like to see this alternative to be
distributed on the UD website as soon as possible
and hope that the new scheme will benefit from
discussions with the whole community and evolve
in parallel to the UD scheme. Then SUD would
become an alternative annotation option for UD
treebank developers.

As a last point, it appears that the conversion
between UD and SUD sheds light on some
potential problems in UD treebanks. We have to
better understand why the double conversion
UD→SUD→UD gives bad results on some
treebanks and to what extent this is due to
problems in our conversion grammar, or rather
caused by an unexpected usage of the UD scheme
that could be fixed, either by correcting the
treebank or by adapting the annotation reference
guide to include and standardize the new analyses
of a given construction. It might be useful to adapt
the SUD conversion for each language, which
could eventually allow for isomorphic
transformations.16 Making the UD treebanks SUD
compliant would lead to a more homogeneous
annotation and could lead the way in the ongoing
discussion towards the upcoming UD 3.0
annotation scheme.

References

Leonard Bloomfield. 1933. Language.

Xinying Chen, Kim Gerdes, Sylvain Kahane.
Submitted. Typometrics: From Implicational to
Quantitative Universals in Word Order Typology.

Guglielmo Cinque, 1999. Adverbs and functional
heads: A cross-linguistic perspective. Oxford
University Press.

Marie-Catherine de Marneffe, Bill MacCartney,
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses.
Proceedings of LREC.

Richard Futrell, Kyle Mahowald, Edward Gibson.
2015. Large-scale evidence of dependency length

15 Although the advances in neural parsers trained on
sufficient data probably will ultimately wipe out any
differences (because the parser can independently learn the
UD-SUD transformation rules).
16 This aspect distinguishes SUD from Enhanced UD. The
latter is clearly a new level of annotation with additional
information. On the contrary, SUD is an alternative
encoding of UD information.

minimization in 37 languages. Proceedings of the
National Academy of Sciences, 112(33), 10336-
10341.

Kim Gerdes, Sylvain Kahane. 2011. Defining
dependencies (and constituents). Proceedings of
the First International Conference on Dependency
Linguistics (Depling 2011).

Kim Gerdes, Sylvain Kahane. 2016. Dependency
annotation choices: Assessing theoretical and
practical issues of universal dependencies.
Proceedings of the 10th Linguistic Annotation
Workshop held in conjunction with ACL 2016
(LAW-X 2016).

Thomas Groß. 2011. Catenae in morphology.
Proceedings of the First International Conference
on Dependency Linguistics (Depling 2011).

Guillaume Bonfante, Bruno Guillaume, Guy Perrier.
2018. Application of Graph Rewriting to Natural
Language Processing. John Wiley & Sons.

Jan Hajič, Eva Hajičová., Marie Mikulová, Jiří
Mírovský. 2017. Prague Dependency Treebank.
Handbook of Linguistic Annotation. Springer,
Dordrecht. 555-594.

Ray Jackendoff. 1977. X-bar syntax: A Study of
Phrase Structure, Linguistic Inquiry Monograph 2.
Cambridge, MA: MIT Press.

Angelika Kirilin, Yannick Versley. 2015. What is hard
in Universal Dependency Parsing. Proceedings of
the 6th Workshop on Statistical Parsing of
Morphologically Rich Languages (SPMRL 2015).

Haitao Liu. 2008. Dependency distance as a metric of
language comprehension difficulty. Journal of
Cognitive Science, 9(2), 159-191.

Mitchell P. Marcus, Mary Ann Marcinkiewicz,
Beatrice Santorini. 1993. Building a large
annotated corpus of English: The Penn Treebank.
Computational linguistics 19.2: 313-330.

Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice, SUNY Press.

Ines Rehbein, Julius Steen, Bich-Ngoc Do. 2017.
Universal Dependencies are hard to parse–or are
they? Proceedings of the Fourth International
Conference on Dependency Linguistics (Depling
2017).

Ivan A. Sag. 2003. Coordination and
underspecification. Proceedings of the 9th
International Conference on HPSG.

Agata Savary, et al. 2015. PARSEME–PARSing and
Multiword Expressions within a European
multilingual network. 7th Language & Technology
Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics
(LTC 2015).

Sebastian Schuster, Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An

 8

74

Improved Representation for Natural Language
Understanding Tasks." Proceedings of LREC.

Roy Schwartz, Omri Abend, Ari Rappoport. 2012.
Learnability-based syntactic annotation design. In
Proceedings of COLING 24, 2405–2422.

Natalia Silveira, Christopher Manning. 2015. Does
Universal Dependencies need a parsing
representation? An investigation of English.
Proceedings of the Third International Conference
on Dependency Linguistics (Depling 2015).

Robert D. Van Valin Jr. 1984. A typology of syntactic
relations in clause linkage. In Annual meeting of
the Berkeley Linguistics Society (Vol. 10, pp. 542-
558).

 9

	Abstract
	1 Introduction
	2 Surface Syntax
	2.1 Criteria for structural choices
	2.2 Criteria for dependency labels

	3 SUD
	3.1 Structural choices
	3.2 Labeling choices

	4 Convertibility between UD and SUD
	5. Conclusion
	References

