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Abstract

This paper presents a novel approach to the
segmentation of orthographic word forms in
contemporary Hebrew, focusing purely on
splitting without carrying out morphological
analysis or disambiguation. Casting the anal-
ysis task as character-wise binary classifica-
tion and using adjacent character and word-
based lexicon-lookup features, this approach
achieves over 98% accuracy on the benchmark
SPMRL shared task data for Hebrew, and 97%
accuracy on a new out of domain Wikipedia
dataset, an improvement of ≈4% and 5% over
previous state of the art performance.

1 Introduction

Hebrew is a morphologically rich language in
which, as in Arabic and other similar languages,
space-delimited word forms contain multiple units
corresponding to what other languages (and most
POS tagging/parsing schemes) consider multiple
words. This includes nouns fused with preposi-
tions, articles and possessive pronouns, as in (1),
or verbs fused with preceding conjunctions and
object pronouns, as in (2), which uses one ‘word’
to mean “and that they found him”, where the first
two letters correspond to ‘and’ and ‘that’ respec-
tively, while the last two letters after the verb mean
‘him’.1

(1) |מהבית
〈m.h.byt〉 [me.ha.bayit]
from.the.house

(2) ושמצאוהו
〈w.š.mc’w.hw〉 [ve.še.mtsa’u.hu]
and.that.found-3-PL.him

1In all Hebrew examples below, angle brackets denote
transliterated graphemes with dots separating morphemes,
and square brackets represent standard Hebrew pronuncia-
tion. Dot-separated glosses correspond to the segments in
the transliteration.

This complexity makes tokenization for Hebrew
a challenging process, usually carried out in two
steps: tokenization of large units, delimited by
spaces or punctuation as in English, and a sub-
sequent segmentation of the smaller units within
each large unit. To avoid confusion, the rest of
this paper will use the term ‘super-token’ for large
units such as the entire contents of (1) and ‘sub-
token’ for the smaller units.

Beyond this, three issues complicate Hebrew
segmentation further. Firstly, much like Arabic
and similar languages, Hebrew uses a consonantal
script which disregards most vowels. For exam-
ple in (2) the sub-tokens ve ‘and’ and še ‘that’ are
spelled as single letters 〈w〉 and 〈š〉. While some
vowels are represented (mainly word-final or et-
ymologically long vowels), these are denoted by
the same letters as consonants, e.g. the final -u in
vešemtsa’uhu, spelled as 〈w〉, the same letter used
for ve ‘and’. This means that syllable structure, a
crucial cue for segmentation, is obscured.

A second problem is that unlike Arabic, He-
brew has morpheme reductions creating segments
which are pronounced, but not distinguished in the
orthography.2 This affects the definite article after
some prepositions, as in (3) and (4), which mean
‘in a house’ and ‘in the house’ respectively.

(3) בבית
〈b.byt〉 [be.bayit]
in.house

(4) בבית
〈b..byt〉 [b.a.bayit]
in.the.house

2A reviewer has mentioned that Arabic does have some
reductions, e.g. in the fusion of articles with the preposition
li- ‘to’ in li.l- ‘to the’. This is certainly true and problematic
for morphological segmentation of Arabic, however in these
cases there is always some graphical trace of the existence of
the article, whereas in the Hebrew cases discussed here, no
trace of the article is found.



102

In (4), the definite article ha merges with the
preposition be to produce the pronounced form ba;
however the lack of vowel orthography means that
both forms are spelled alike.

A final problem is the high degree of ambiguity
in written Hebrew, which has often been exempli-
fied by the following example, reproduced from
Adler and Elhadad (2006), which has a large num-
ber of possible analyses.

(5) Mבצל
〈b.cl.m〉 be.cil.am - in.shadow.their
〈b.clm〉 (be./b.a.)celem - in.(a/the).image
〈b.clm〉 (be./b.a.)calam in.(a/the).photographer

〈bcl.m〉 bcal.am - onion.their
〈bclm〉 becelem - Betzelem (organization)

Because some options are likelier than others, in-
formation about possible segmentations, frequen-
cies and surrounding words is crucial. We also
note that although there are 7 distinct analyses in
(5), in terms of segmenting the orthography, only
two positions require a decision: either 〈b〉 is fol-
lowed by a boundary or not, and either 〈l〉 is or
not.

Unlike previous approaches which attempt a
complete morphological analysis, in this paper the
focus is on pure orthographic segmentation: de-
ciding which characters should be followed by
a boundary. Although it is clear that full mor-
phological disambiguation is important, I will ar-
gue that a pure splitting task for Hebrew can be
valuable if it produces substantially more accu-
rate segmentations, which may be sufficient for
some downstream applications (e.g. sequence-to-
sequence MT)3, but may also be fed into a mor-
phological disambiguator. As will be shown here,
this simpler task allows us to achieve very high
accuracy on shared task data, substantially out-
performing the pure segmentation accuracy of the
previous state of the art while remaining robust
against out-of-vocabulary (OOV) items and do-
main changes, a crucial weakness of existing tools.

The contributions of this work are threefold:

1. A robust, cross-domain state of the art model
for pure Hebrew word segmentation, inde-
pendent of morphological disambiguation,
with an open source implementation and pre-
trained models

3cf. Habash and Sadat (2006) on consequences of pure
tokenization for Arabic MT.

2. Introducing and evaluating a combination of
shallow string-based features and ambiguous
lexicon lookup features in a windowed ap-
proach to binary boundary classification

3. Providing new resources: a freely available,
out-of-domain dataset from Wikipedia for
evaluating pure segmentation; a converted
version in the same format as the origi-
nal Hebrew Treebank data used in previous
work; and an expanded morphological lexi-
con based on Universal POS tags.

2 Previous Work

Earlier approaches to Hebrew morphological seg-
mentation include finite-state analyzers (Yona and
Wintner, 2005) and multiple classifiers for mor-
phological properties feedings into a disambigua-
tion step (Shacham and Wintner, 2007). Lattice
based approaches have been used with variants of
HMMs and the Viterbi algorithm (Adler and El-
hadad, 2006) in order to generate all possible anal-
yses supported by a broad coverage lexicon, and
then disambiguate in a further step. The main dif-
ficulty encountered in all these approaches is the
presence of items missing from the lexicon, either
due to OOV lexical items or spelling variation, re-
sulting in missing options for the disambiguator.
Additionally, there have been issues in comparing
results with different formats, datasets, and seg-
mentation targets, especially before the creation of
a standard shared task dataset (see below).

Differently from work on Arabic segmentation,
where state of the art work operates as either a
sequence tagging task (often using BIO-like en-
coding and CRF/RNN sequence models, Mon-
roe et al. 2014), or a holistic character-wise seg-
mentation ranking task (Abdelali et al., 2016),
work on Hebrew segmentation has focused on seg-
mentation in the context of complete morpholog-
ical analysis, including categorical feature out-
put (gender, tense, etc.). This is in part due to
tasks requiring the reconstruction of orthograph-
ically unexpressed articles as in (4) and other or-
thographic changes which require morphological
disambiguation, such as recovering base forms of
inflected nouns and verbs, and inserting segments
which cannot be aligned to any orthographic ma-
terial, as in (6) below. In this example, an un-
expressed possessive preposition šel is inserted,
in contrast to segmentation practices for the same
construction e.g. in Arabic and other languages,
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where the pronoun sub-token is interpreted as in-
herently possessive.

(6) ביתה
〈byt.h〉 [beyt.a] ‘her house’ (house.her)
Target analysis:
〈byt šl hy’〉 [bayit šel hi] ‘house of she’

Most recently, the shared task on Statistical Pars-
ing of Morphologically Rich Languages (SPMRL
2013-2015, see Seddah et al. 2014) introduced a
standard benchmark dataset for Hebrew morpho-
logical segmentation based on the Hebrew Tree-
bank (Sima’an et al. 2001; the data has ≈94K
super-tokens for training and ≈21K for testing
and development), with a corresponding shared
task scored in several scenarios. Systems were
scored on segmentation, morphological analysis
and syntactic parsing, while working from raw
text, from gold segmentation (for morphological
analysis and parsing), or from gold segmentation
and morphology (for parsing).

The current state of the art is the open source
system yap (‘yet another parser’, More and Tsar-
faty 2016), based on joint morphological and syn-
tactic disambiguation in a lattice-based parsing ap-
proach with a rich morphological lexicon. This
will be the main system for comparison in Section
5. Although yap was designed for a fundamentally
different task than the current system, i.e. canoni-
cal rather than surface segmentation (cf. Cotterell
et al. 2016), it is nevertheless currently also the
best performing Hebrew segmenter overall and
widely used, making it a good point for compar-
ison. Conversely, while the approach in this paper
cannot address morphological disambiguation as
yap and similar systems do, it will be shown that
substantially better segmentation accuracy can be
achieved using local features, evaluated character-
wise, which are much more robustly attested in the
limited training data available.

3 Character-wise Classification

In this paper we cast the segmentation task as
character-wise binary classification, similarly to
approaches in other languages, such as Chinese
(Lee and Huang, 2013). The goal is to predict for
each character in a super-token (except the last)
whether it should be followed by a boundary. Al-
though the character-wise setup prevents a truly
global analysis of word formation in the way that a
lattice-based model allows, it turns out to be more

robust than previous approaches, in large part be-
cause it does not require a coherent full analysis in
the case of OOV items (see Section 5).

3.1 Feature Extraction

Our features target a window of n characters
around the character being considered for a fol-
lowing boundary (the ‘target’ character), as well
as characters in the preceding and following super-
tokens. In practice we set n to ±2, meaning each
classification mainly includes information about
the preceding and following two characters.

The extracted features for each window can be
divided into three categories: character identity
features (i.e. which letters are observed), numer-
ical position/length features and lexicon lookup
features. The lexicon is based on the fully in-
flected form lexicon created by the MILA center,
also used by More and Tsarfaty (2016), but POS
tags have been converted into much less sparse
Universal POS tags (cf. Petrov et al. 2012) match-
ing the Hebrew Treebank data set. Entries not
corresponding to tags in the data (e.g. compound
items that would not be a single unit, or additional
POS categories) receive the tag X, while complex
entries (e.g. NOUN + possessive) receive a tag af-
fixed with ‘CPLX’. Multiple entries per word form
are possible (see Section 4.2).

Character features For each target character
and the surrounding 2 characters in either direc-
tion, we consider the identity of the letter or punc-
tuation sign from the set {",-,%,',.,?,!,/} as a cat-
egorical feature (using native Hebrew characters,
not transliteration). Unavailable characters (less
than 2 characters from beginning/end of word)
and OOV characters are substituted by the under-
score. We also encode the first and last letter of the
preceding and following super-tokens in the same
way. The rationale for choosing these letters is that
any super-token always has a first and last charac-
ter, and in Hebrew these will also encode definite
article congruence and clitic pronouns in adjacent
super-tokens, which are important for segment-
ing units. Finally, for each of the five character
positions within the target super-token itself, we
also encode a boolean feature indicating whether
the character could be ‘vocalic’, i.e. whether it is
one of the letters sometimes used to represent a
vowel: {’,h,w,y}. Though this is ostensibly redun-
dant with letter identity, it is actually helpful in the
final model (see Section 7).
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location substring lexicon response
super token [šmhpkny] _
str so far [šmh]... ADV|NOUN|VERB

str remaining ..[pkny] _
str -1 remain ..[hpkny] _
str -2 remain .[mhpkny] ADJ|NOUN|CPLXN

str from -4 [__šmh].... _

str from -3 [_šmh].... _

str from -2 [šmh].... ADV|NOUN|VERB

str from -1 .[mh].... ADP|ADV

str to +1 ..[hp]... _
str to +2 ..[hpk].. NOUN|VERB

str to +3 ..[hpkn]. _
str to +4 ..[hpkny] _
prev string [xšbnw] VERB

next string [hw’] PRON|COP

Table 1: Lexicon lookup features for character 3 in the
super-token š.mhpkny. Overflow positions (e.g. sub-
string from char -4 for the third character) return ‘_’.

Lexicon lookup Lexicon lookup is performed
for several substring ranges, chosen using the de-
velopment data: the entire super-token, and char-
acters up to the target inclusive and exclusive; the
entire remaining super-token characters inclusive
and exclusive; the remaining substrings starting at
target positions -1 and -2; 1, 2, 3 and 4-grams
around the window including the target charac-
ter; and the entire preceding and following super-
token strings. Table 1 illustrates this for character
#3 in the middle super-token from the trigram in
(7). The value of the lexicon lookup is a categori-
cal variable consisting of all POS tags attested for
the substring in the lexicon, concatenated with a
separator into a single string.

(7) הוא שמהפכני חשבנו
〈xšbnw š.mhpkny hw’〉
[xašavnu še.mahapxani hu]
thought-1PL that.revolutionary is
‘we thought that it is revolutionary’

Numerical features To provide information
about super-token shape independent of lexicon
lookup, we also extract the super-token lengths of
the current, previous and next super-token, and en-
code the numerical position of the character being
classified as integers. We also experimented with
a ‘frequency’ feature, representing the ratio of the
product of frequencies of the substrings left and
right of a split under consideration divided by the

frequency of the whole super-token. Frequencies
were taken from the IsraBlog dataset word counts
provided by Linzen (2009).4 While this fraction
in no way represents the probability of a split, it
does provide some information about the relative
frequency of parts versus whole in a naive two-
segment scenario, which can occasionally help the
classifier decide whether to segment ambiguous
cases (although this feature’s contribution is small,
it was retained in the final model, see Section 7).

Word embeddings For one of the learning ap-
proaches tested, a deep neural network (DNN)
classifier, word embeddings from a Hebrew dump
of Wikipedia were added for the current, preced-
ing and following super-tokens, which were ex-
pected to help in identifying the kinds of super-
tokens seen in OOV cases. However somewhat
surprisingly, the approach using these features
turned out not to deliver the best results despite
outperforming the previous state of the art, and
these features are not used in the final system (see
Section 5).

Note that although we do not encode word iden-
tities for any super-token, and even less so for
models not using word embeddings, length infor-
mation in conjunction with lexicon lookup and
first and last character can already give a strong
indication of the surrounding context, at least for
those words which turn out to be worth learning.
For example, the frequent purpose conjunction
〈kdy〉 kedey ‘in order to’, which strongly signals
a following infinitive whose leading 〈l〉 should not
be segmented, is uniquely identifiable as a three
letter conjunction (tag SCONJ) beginning with 〈k〉
and ending with 〈y〉. This combination, if rel-
evant for segmentation, can be learned and as-
signed weights for each of the characters in ad-
jacent words.

3.2 Learning Approach

Several learning approaches were tested for the
boundary classification task, including decision
tree based classifiers, such as a Random Forest
classifier, the Extra Trees variant of the same al-
gorithm (Geurts et al., 2006), and Gradient Boost-
ing, all using the implementation in scikit-learn
(Pedregosa et al., 2011), as well as a DNN clas-
sifier implemented in TensorFlow (Abadi et al.,
2016). An initial attempt using sequence-to-
sequence learning with an RNN was abandoned

4Online at http://tallinzen.net/frequency/

http://tallinzen.net/frequency/
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early as it underperformed other approaches, pos-
sibly due to the limited size of the training data.

For tree-based classifiers, letters and categori-
cal lexicon lookup values were pseudo-ordinalized
into integers (using a non-meaningful alphabetic
ordering), and numerical features were retained
as-is. For the DNN, the best feature represen-
tation based on the validation set was to encode
characters and positions as one-hot vectors, lex-
icon lookup features as trainable dense embed-
dings, and to bucketize length features in single
digit buckets up to a maximum of 15, above which
all values are grouped together. Additionally, we
prohibit segmentations between Latin letters and
digits (using regular expressions), and forbid pro-
ducing any prefix/suffix not attested in training
data, ruling out rare spurious segmentations.

4 Experimental Setup

4.1 Data

Evaluation was done on two datasets. The bench-
mark SPMRL dataset was transformed by discard-
ing all inserted sub-tokens not present in the in-
put super-tokens (i.e. inserted articles). We re-
vert alterations due to morphological analysis (de-
inflection to base forms), and identify the seg-
mentation point of all clitic pronouns, prepositions
etc., marking them in the super-tokens.5 Figure
1 illustrates the procedure, which was manually
checked and automatically verified to reconstitute
correctly back into the input data.

A second test set of 5,000 super-tokens (7,100
sub-tokens) was constructed from another domain
to give a realistic idea of performance outside the
training domain. While SPMRL data is taken
from newswire material with highly standard or-
thography, this dataset was taken from Hebrew
Wikipedia NER data made available by Al-Rfou
et al. (2015). Since that dataset was not seg-
mented into subtokens, manual segmentation of
the first 5,000 tokens was carried out, which repre-
sent shuffled sentences from a wide range of top-
ics. This data set is referred to below as ‘Wiki5K’.
Both datasets are provided along with the code for
this paper via GitHub6 as new test sets for future

5For comparability with previous results, we use the exact
dataset and splits used by More and Tsarfaty (2016), despite a
known mid-document split issue that was corrected in version
2 of the Hebrew Treebank data. We thank the authors for
providing the data and for help reproducing their setup.

6https://github.com/amir-zeldes/
RFTokenizer

evaluations of Hebrew segmentation.

4.2 Lexicon extension
A major problem in Hebrew word segmentation
is dealing with OOV items, and especially those
due not to regular morphological processes, but to
foreign names. If a foreign name begins with a
letter that can be construed as a prefix, and neither
the full name nor the substring after the prefix is
attested in the lexicon, the system must resort to
purely contextual information for disambiguation.
As a result, having a very complete list of possible
foreign names is crucial.

The lexicon mentioned above has very exten-
sive coverage of native items as well as many for-
eign items, and after tag-wise conversion to Uni-
versal POS tags, contains over 767,000 items, in-
cluding multiple entries for the same string with
different tags. However its coverage of foreign
names is still partial. In order to give the sys-
tem access to a broader range of foreign names,
we expanded the lexicon with proper name data
from three sources:

• WikiData persons with a Hebrew label, ex-
cluding names whose English labels contain
determiners, prepositions or pronouns

• WikiData cities with a Hebrew label, again
excluding items with determiners, preposi-
tions or pronouns in English labels

• All named entities from the Wikipedia NER
data found later than the initial 5K tokens
used for the Wiki5K data set

These data sources were then white-space tok-
enized, and all items which could spuriously be
interpreted as a Hebrew article/preposition + noun
were removed. For example, a name ‘Leal’ 〈l’l〉
is excluded, since it can interfere with segment-
ing the sequence 〈l.’l〉 la’el ‘to God’. This pro-
cess added over 15,000 items, or ≈2% of lexi-
con volume, all labeled PROPN. In Section 7 per-
formance with and without this extension is com-
pared.

4.3 Evaluation Setup
Since comparable segmentation systems, includ-
ing the previous state of the art, do insert recon-
structed articles and carry out base form transfor-
mations (i.e. they aim to produce the gold format
in Figure 1), we do not report or compare results to

https://github.com/amir-zeldes/RFTokenizer
https://github.com/amir-zeldes/RFTokenizer


106

Input: שכר לעובדים ‘pay for (the) workers’ 
SPMRL gold: 
 ’NN… ‘pay שכר שכר 21
 ’PREP… ‘for ל ל 22
 ’DEF… ‘(the) ה ה 23
 ’NN… ‘workers עובד עובדים 24
 
Transformed: 
 ’pay‘  שכר
 ’for|workers‘  ל|עובדים
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input: עליו ‘on him’ 
SPMRL gold: 
 ’-IN…     ‘on על עלי 29
 ’S_PRN…   ‘he הוא הוא 30
 
 
 
Transformed: 
 ’on|him‘  עלי|ו
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Transformation of SPMRL style data to pure segmentation information. Left: inserted article is deleted;
right: a clitic pronoun form is restored.

previously published scores. All systems were re-
run on both datasets, and no errors were counted
where these resulted from data alterations. Specif-
ically, other systems are never penalized for re-
constructing or omitting inserted units such as ar-
ticles, and when constructing clitics or alternate
base forms of nouns or verbs, only the presence
or absence of a split was checked, not whether
inferred noun or verb lemmas are correct. This
leads to higher scores than previously reported, but
makes results comparable across systems on the
pure segmentation task.

5 Results

Table 2 shows the results of several systems on
both datasets.7 The column ‘% perf’ indicates the
proportion of perfectly segmented super-tokens,
while the next three columns indicate precision,
recall and F-score for boundary detection, not in-
cluding the trivial final position characters.

The first baseline strategy of not segmenting
anything is given in the first row, and unsurpris-
ingly gets many cases right, but performs badly
overall. A more intelligent baseline is provided
by UDPipe (Straka et al. 2016; retrained on the
SPMRL data), which, for super-tokens in mor-
phologically rich languages such as Hebrew, im-
plements a ‘most common segmentation’ baseline

7An anonymous reviewer suggested that it would also be
interesting to add an unsupervised pure segmentation system
such as Morfessor (Creutz and Lagus, 2002) to evaluate on
this task. This would certainly be an interesting comparison,
but due to the brief response period it was not possible to
add this experiment before publication. It can however be
expected that results would be substantially worse than yap,
given the centrality of the lexicon representation to this task,
which can be seen in detail in the ablation tests in Section 7.

% perf P R F
SPMRL
baseline 69.65 – – –
UDPipe 89.65 93.52 68.82 79.29
yap 94.25 86.33 96.33 91.05
RF 98.19 97.59 96.57 97.08
DNN 97.27 95.90 95.01 95.45
Wiki5K
baseline 67.61 – – –
UDPipe 87.39 92.03 64.88 76.11
yap 92.66 85.55 92.34 88.81
RF 97.63 97.41 95.31 96.35
DNN 95.72 94.95 92.22 93.56

Table 2: System performance on the SPMRL and
Wiki5K datasets.

(i.e. each super-token is given its most common
segmentation from training data, forgoing seg-
mentation for OOV items).8 Results for yap repre-
sent pure segmentation performance from the pre-
vious state of the art (More and Tsarfaty, 2016).

The best two approaches in the present paper
are represented next: the Extra Trees Random For-
est variant,9 called RFTokenizer, is labeled RF and
the DNN-based system is labeled DNN. Surpris-
ingly, while the DNN is a close runner up, the best
performance is achieved by the RFTokenizer, de-

8UDPipe also implements an RNN tokenizer to seg-
ment punctuation spelled together with super-tokens; how-
ever since the evaluation dataset already separates such punc-
tuation symbols, this component can be ignored here.

9Extra Trees outperformed Gradient Boosting and Ran-
dom Forest in hyperparameter selection tuned on the dev
set. Using a grid search led to the choice of 250 estimators
(tuned in increments of 10), with unlimited features and de-
fault scikit-learn values for all other parameters.
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spite not having access to word embeddings. Its
high performance on the SPMRL dataset makes
it difficult to converge to a better solution using
the DNN, though it is conceivable that substan-
tially more data, a better feature representation
and/or more hyperparameter tuning could equal or
surpass the RFTokenizer’s performance. Coupled
with a lower cost in system resources and external
dependencies, and the ability to forgo large model
files to store word embeddings, we consider the
RFTokenizer solution to be better given the cur-
rent training data size.

Performance on the out of domain dataset is en-
couragingly nearly as good as on SPMRL, sug-
gesting our features are robust. This is especially
clear compared to UDPipe and yap, which de-
grade more substantially. A key advantage of the
present approach is its comparatively high pre-
cision. While other approaches have good re-
call, and yap approaches RFTokenizer on recall for
SPMRL, RFTokenizer’s reduction in spurious seg-
mentations boosts its F-score substantially. To see
why, we examine some errors in the next section,
and perform feature ablations in the following one.

6 Error Analysis

Looking at the SPMRL data, RFTokenizer makes
relatively few errors, the large majority of which
belong to two classes: morphologically ambigu-
ous cases with known vocabulary, as in (8), and
OOV items, as in (9). In (8), the sequence 〈qch〉
could be either the noun katse ‘edge’ (single super-
token and sub-token), or a possessed noun kits.a
‘end of FEM-SG’ with a final clitic pronoun pos-
sessor (two sub-tokens). The super-token coinci-
dentally begins a sentence “The end of a year ...”,
meaning that the preceding unit is the relatively
uninformative period, leaving little local context
for disambiguating the nouns, both of which could
be followed by šel ‘of’.

(8) שנה של
Gold:

קצה
Pred:

〈qc.h šl šnh〉 〈qch šel šnh〉
[kits.a šel šana] [katse šel šana]
end.SG-F of year edge of year
“The end of a year” “An edge of a year”

A typical case of an OOV error can be seen in (9).
In this example, the lexicon is missing the name
〈w’r’lh〉 ‘Varela’, but does contain a name 〈’r’lh〉
‘Arela’. As a result, given the context of a preced-

ing name ‘Maria’, the tokenizer opts to recognize
a shorter proper name and assigns the letter ‘w’ to
be the word ‘and’.

(9) . ואראלה |מריה
Gold: Pred:
〈mryh w’r’lh .〉 〈mryh w.’r’lh .〉
[mariya varela] [mariya ve.arela]
‘Maria Varela.’ ‘Maria and Arela.’

To understand the reasons for RFTokenizer’s
higher precision compared to other tools, it is use-
ful to consider errors which RFTokenizer succeeds
in avoiding, as in (10)-(11) (only a single bold-
faced word is discussed in detail for space rea-
sons; broader translations are given for context,
keeping Hebrew word order). In (10), RF and yap
both split w ‘and’ from the OOV item 〈bwrmwr〉
‘Barmore’ correctly. The next possible boundary,
‘b.w’, is locally unlikely, as a spelling ‘bw’ makes
a reading [bo] or [bu] likely, which is incompatible
with the segmentation. However, yap considers
global parsing likelihood, and the verb ‘run into’
takes the preposition b ‘in’. It segments the ‘b’
in the OOV item, a decision which RFTokenizer
avoids based on low local probabilities.

(10) “ran into Campbell and Barmore”
RF: yap:
〈w.bwrmwr〉 〈w.b.wrmwr〉

(11) “meanwhile continues the player, who re-
turned to practice last week, to-train”
RF: yap:
〈lht’mn〉 〈l.ht’m.n〉

In (11), RF leaves the medium frequency verb ‘to
train’ unsegmented. By contrast, yap considers the
complex sentence structure and long distance to
the fronted verb ‘continues’, and prefers a locally
very improbable segmentation into the preposition
l ‘to’, a noun ht’m ‘congruence’ and a 3rd per-
son feminine plural possessive n: ‘to their congru-
ence’. Such an analysis is not likely to be guessed
by a native speaker shown this word in isolation,
but becomes likelier in the context of evaluating
possible parse lattices with limited training data.

We speculate that lower reliance on complete
parses makes RFTokenizer more robust to errors,
since data for character-wise decisions is densely
attested. In some cases, as in (10), it is possible
to segment individual characters based on similar-
ity to previously seen contexts, without requiring
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super-tokens to be segmentable using the lexicon.
This is especially important for partially correct
results, which affect recall, but not necessarily the
percentage of perfectly segmented super-tokens.

In Wiki5K we find more errors, degrading per-
formance ≈0.7%. Domain differences in this data
lead not only to OOV items (esp. foreign names),
but also distributional and spelling differences.
In (12), heuristic segmentation based on a sin-
gle character position backfires, and the tokenizer
over-zealously segments. This is due to neither the
place ‘Hartberg’, nor a hypothetical ‘Retberg’ be-
ing found in the lexicon, and the immediate con-
text being uninformative surrounding commas.

(12) , הרטברג ,
Gold: Pred:
〈hrt.brg〉 〈h.rt.brg〉
[hartberg] [ha.retberg]
‘Hartberg’ ‘the Retberg’

7 Ablation tests

Table 3 gives an overview of the impact on per-
formance when specific features are removed: the
entire lexicon, lexicon expansion, letter identity,
‘vowel’ features from Section 3.1, and both of the
latter. Performance is high even in ablation sce-
narios, though we keep in mind that baselines for
the task are high (e.g. ‘most frequent lookup’, the
UDPipe strategy, achieves close to 90%).

The results show the centrality of the lexicon:
removing lexicon lookup features degrades per-
formance by about 3.5% perfect accuracy, or 5.5
F-score points. All other ablations impact perfor-
mance by less than 1% or 1.5 F-score points. Ex-
panding the lexicon using Wikipedia data offers
a contribution of 0.3–0.4 points, confirming the
original lexicon’s incompleteness.10

Looking more closely at the other features, it is
surprising that identity of the letters is not crucial,
as long as we have access to dictionary lookup us-
ing the letters. Nevertheless, removing letter iden-
tity impacts especially boundary recall, perhaps

10An anonymous reviewer has asked whether the same re-
sources from the NER dataset have been or could be made
available to the competing systems. Unfortunately it was
not possible to re-train yap using this data, since the lexicon
used by that system has a much more complex structure com-
pared to the simple PROPN tags used in our approach (i.e. we
would need to codify much richer morphological information
for the added words). However the ablations show that even
without the expanded lexicon, RFTokenizer outperforms yap
by a large margin. For UDPipe no lexicon is used, so that this
issue does not arise.

% perf P R F
SPMRL
FINAL 98.19 97.59 96.57 97.08
-expansion 98.01 97.25 96.35 96.80
-vowels 97.99 97.55 95.97 96.75
-letters 97.77 96.98 95.73 96.35
-letr-vowl 97.57 97.56 94.44 95.97
-lexicon 94.79 92.08 91.46 91.77
Wiki5K
FINAL 97.63 97.41 95.31 96.35
-expansion 97.33 96.64 95.31 95.97
-vowels 97.51 97.56 94.87 96.19
-letters 97.27 96.89 94.71 95.79
-letr-vowl 96.72 97.17 92.77 94.92
-lexicon 94.72 92.53 91.51 92.01

Table 3: Effects of removing features on performance,
ordered by descending F-score impact on SPMRL.

because some letters receive identical lookup val-
ues (e.g. single letter prepositions such as b ‘in’, l
‘to’) but have different segmentation likelihoods.

The ‘vowel’ features, though ostensibly redun-
dant with letter identity, help a little, causing 0.33
SPMRL F-score point degradation if removed. A
cursory inspection of differences with and with-
out vowel features indicates that adding them al-
lows for stronger generalizations in segmenting af-
fixes, especially clitic pronouns (e.g. if a noun is
attested with a ‘vocalic’ clitic like h ‘hers’, it gen-
eralizes better to unseen cases with w ‘his’). In
some cases, the features help identify phonotacti-
cally likely splits in a ‘vowel’ rich environment,
as in (13) with the sequence 〈hyy〉 which is seg-
mented correctly in the +vowels setting.

(13) Nהייתכ
+Vowels: -Vowels:
〈h.yytkn〉 〈hyytkn〉
[ha.yitaxen]
QUEST.possible
‘is it possible?’

Removing both letter and vowel features essen-
tially reduces the system to using only the sur-
rounding POS labels. However since classification
is character-wise and a variety of common situa-
tions can nevertheless be memorized, performance
does not break down drastically. The impact on
Wiki5k is stronger, possibly because the necessary
memorization of familiar contexts is less effective
out of domain.
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8 Discussion

This paper presented a character-wise approach to
Hebrew segmentation, relying on a combination
of shallow surface features and windowed lexi-
con lookup features, encoded as categorical vari-
ables concatenating possible POS tags for each
window. Although the approach does not corre-
spond to a manually created finite state morphol-
ogy or a parsing-based approach, it can be conjec-
tured that the sequence of possible POS tag com-
binations at each character position in a sequence
of words gives a similar type of information about
possible transitions at each potential boundary.

The character-wise approach turned out to be
comparatively robust, possibly thanks to the dense
training data available, when compared to the
smaller order of magnitude if data is interpreted
with each super-token, or even each sentence
forming a single observation. Nevertheless, there
are multiple limitations to the current approach.

Firstly, RFTokenizer does not reconstruct unex-
pressed articles. Although this is an important task
in Hebrew NLP, it can be argued that definiteness
annotation can be performed as part of morpholog-
ical analysis after basic segmentation has been car-
ried out. An advantage of this approach is that the
segmented data corresponds perfectly to the input
string, reducing processing efforts needed to keep
track of the mapping of raw and tokenized data.

Secondly, there is still room for improvement,
and it seems surprising that the DNN approach
with embeddings could not outperform the RF
approach. More training data is likely to make
DNN/RNN approaches more effective, similarly
to recent advances in tokenization for languages
such as Chinese (cf. Cai and Zhao 2016, though
we recognize Hebrew segmentation is much more
ambiguous, and embeddings are likely more use-
ful for ideographic scripts).11 We are currently ex-
perimenting with word representations optimized
to the segmentation task, including using embed-
dings or Brown clusters grouping super-tokens
with different distributions. Finally, the frequency

11During the review period of this paper, a paper by Shao
et al. (2018) appeared which nearly matches the performance
of yap on Hebrew segmentation using an RNN approach.
Achieving an F-score of 91.01 compared to yap’s score of
91.05, but on a dataset with slightly different splits, this sys-
tem gives a good baseline for a tuned RNN-based system.
However comparing to RFTokenizer’s score of 97.08, it is
clear that while RNNs can also do well on the current task,
there is still a substantial gap compared to the windowed,
lexicon-based binary classification approach take here.

data obtained from Linzen (2009) is relatively
small (only 20K forms), and not error-free due to
automatic processing, meaning that extending this
data source may yield improvements as well.
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