A Comparison of Entity Matching Methods
between English and Japanese Katakana

Michiharu Yamashita

Hideki Awashima

Hidekazu Oiwa*

Recruit Co., Ltd. / Megagon Labs
Tokyo, Japan
{chewgen, awashima}@r.recruit.co.jp, hidekazu.oiwa@gmail.com

Abstract

Japanese Katakana is one component of the
Japanese writing system and is used to express
English terms, loanwords, and onomatopoeia
in Japanese characters based on the phonemes.
The main purpose of this research is to find the
best entity matching methods between English
and Katakana. We built two research ques-
tions to clarify which types of entity match-
ing systems works better than others. The
first question is what transliteration should be
used for conversion. We need to transliter-
ate English or Katakana terms into the same
form in order to compute the string similar-
ity. We consider five conversions that translit-
erate English to Katakana directly, Katakana
to English directly, English to Katakana via
phoneme, Katakana to English via phoneme,
and both English and Katakana to phoneme.
The second question is what should be used
for the similarity measure at entity match-
ing. To investigate the problem, we choose
six methods, which are Overlap Coefficient,
Cosine, Jaccard, Jaro-Winkler, Levenshtein,
and the similarity of the phoneme probability
predicted by RNN. Our results show that 1)
matching using phonemes and conversion of
Katakana to English works better than other
methods, and 2) the similarity of phonemes
outperforms other methods while other simi-
larity score is changed depending on data and
models.

1 Introduction

Cleansing and preprocessing data is one of the es-
sential tasks in data analysis such as natural lan-
guage processing (Witten et al., 2016). In particu-
lar, finding the same entity from multiple datasets
is a important task. For example, when the same
entities are expressed by different languages, you
need to convert them to the same writing format
before entity matching.

*The author is now at Google Inc.

84

The Japanese language has three kinds of char-
acter types, and they are used for different pur-
poses (Nagata, 1998). One of the character types
is Katakana, which is used to convert English
words, foreign languages, and alphabet letters into
Japanese characters (Martin, 2004). Katakana
is often transliterated by phonemes unique to
Japanese and that is similar but different from En-
glish pronunciation. In addition, whether terms
are expressed in English or Katakana is dependent
on sites. For example, on Japanese web pages,
there are many restaurants written in English and
Japanese even if they are the same stores such as
“Wendy’ s” and “7 x> 5 1 —X" Ifitisthe
same type of character, it is easier to identify the
entity simply by calculating the similarity of the
string, but in the case of different writing systems
like English and Katakana, it is difficult to identify
the entity.

In this research, we clarify the problem by ex-
ploring the following two research questions.

(1) What transliteration should be used for con-
version?

In order to change the same string form, the fol-
lowing method can be considered.

1 [Bnglish |—] Katakana | ~—
o] —
| Katakana | «—
{ Phoneme |—{ English | «—>

5 ‘ English H Phoneme ‘ — ‘ Phoneme |<—| Katakana ‘

2 ‘ Katakana |

3 ‘ English | '{Phoneme‘

4 ‘ Katakana |

Figure 1: Method to Convert the Entity Name.

The first and second methods are to convert En-
glish to Katakana or Katakana to English and then
match the entities.

The third and fourth methods are to use pro-
nunciation information. Katakana is based on
phonemes and is a syllable system, where each

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 84-92

Brussels, Belgium, October 31, 2018. (©2018 The Special Interest Group on Computational Morphology and Phonology
https://doi.org/10.18653/v1/P17

syllabogram corresponds to one sound in the
Japanese language. Therefore, the methods match
the entities after converting English or Katakana
into phonemes and converting the transliterated
phonemes to Katakana or English.

The fifth method also uses phonemes. This
method matches the entities based on the translit-
erated phoneme from both English and Katakana.
(2) What should be used for the similarity mea-
sure?

In order to calculate the similarity of a charac-
ter string for entity matching, it is necessary to se-
lect measures from many similarity measures. In
this research, as commonly used similarity mea-
sures, we use the similarity of Overlap Coeffi-
cient, Cosine, Jaccard, Jaro-Winkler, and Leven-
shtein (Cohen et al., 2003). Moreover, we propose
a similarity method using the probability of the
phonemes by prediction model. We clarify which
of the six similarity methods should be used to
compare the accuracy.

2 Related Work

Entity matching is a crucial task, and there is a
lot of research on entity matching (Shen et al.,
2015; Caietal, 2013; Carmeletal, 2014;
Mudgal et al., 2018). In these studies, the attribute
information of an entity is used. In the case
where there is no attribute and there is only the
entity name, the character name information must
be used. Different from general entity linking
tasks, some works match entities only on entries
in tables (Mufoz et al., 2014; Sekhavat et al.,
2014). Although these studies match entities by
collecting additional information on the entity,
pronunciation information is not used.

In addition to studies of entity matching,
transliteration is also studied. Transliteration
is a task that converts a word in a language
into a character of a different language and
makes it as closely as possible to the native
pronunciation. ~ Many studies on translitera-
tion are also conducted such as those on Hindi
and Myanmar (Pandey and Roy, 2017; Thu et al.,
2016). Some studies consider pronunciation in-
formation in transliteration (Yao and Zweig, 2015;
Toshniwal and Livescu, 2016; Rao et al., 2015).
Transliteration differs from entity matching itself
in the purpose of the task, but it is applicable to
entity matching because transliteration can extend
the information of the entity. Therefore, we use

85

transliteration to solve the task of entity matching.
There are some transliteration and entity match-
ing studies, but there is little research that solves
entity matching using transliteration information.
Our motivation is to extend our database from ex-
ternal data by entity matching because we have
relations of many types of clients such as restau-
rants, beauty salons, and companies and extension
of data is essential for discovery of new clients.
Therefore, we need to transform the name of the
entities and to find which methods are the best for
entity matching between English and Katakana.

3 Japanese Characters

Japanese characters are normally written in a com-
bination of three character types. One type is
ideographic characters, Kanji, from China, and the
other two types, Hiragana and Katakana, are pho-
netic characters. Kanji is mainly used for nouns
and stems of adjectives and verbs, and Hiragana is
used for helpful markings of adjectives, verbs and
Japanese words that are not expressed in Kanji. On
the other hand, Katakana is used to write sound ef-
fects and transcribe foreign words (Martin, 2004).
When we try entity matching with Japanese data,
we usually face English expressed in Japanese
Katakana in restaurants, companies, books, elec-
trical items, and so on. We usually cannot find
two names where one is written in English and the
other is written in Katakana within enormous data
because Japanese speakers use both English and
Katakana to write foreign words.

Dictionaries already exist for English words
with Japanese meanings, but few dictionaries also
exist for English with Katakana. The report
(Benson et al., 2009) mentions that the Japanese
language is based on morae rather than syllables.
A mora is a unit of sound that contributes to a
syllable’ s weight. Katakana is more accurately
described as a way to write the set of Japanese
morae rather than the set of Japanese syllables, as
each symbol represents not a syllable but a unit of
sound of Japanese speech. A mora-based writing
system in Japanese represents a dimension of the
language that has no corresponding representation
in English. This challenges the transliteration task
of English and Katakana. Therefore, it is not easy
to convert English into Katakana.

The Japanese language also has a method to
transliterate Katakana into alphabet characters,
and this transliterated alphabet is called Romaji,

which is a phoneme of Japanese characters (Smith,
1996). Romaji is used in any context for non-
Japanese speakers who cannot read Japanese char-
acters, such as for names, passports, and any
Japanese entities. Romaji is the most common
way to input Japanese into computers and to dis-
play Japanese on devices that do not support
Japanese characters (DeFrancis, 1984), and almost
all Japanese people learn Romaji and are able to
read and write Japanese using Romaji. There-
fore, generally speaking, Japanese people who do
not write in English usually use Romaji to express
Katakana or foreign terms without Japanese char-
acters.

4 Methods

To solve the task of entity matching between En-
glish and Katakana, the entity name must some-
how be transliterated. Figure 2 shows the frame of
the task. For example, the word “angel” has four
features which are English, phonemes of English,
Japanese Katakana and Romaji. We state how to
convert the entity name, how to calculate the sim-
ilarity, and what the baseline is below.

English Character

angel

Japanese Katakana

b T VL

Entity Matching -

\ Phoneme [Romaji | ‘

\ emdzol \ enjeru |

Figure 2: Entity Matching Task between English and
Japanese Katakana.

4.1 Baseline

As the baseline, we used Romaji transliteration,
which is characters used to transliterate Katakana
to an alphabet sequence (DeFrancis, 1984). We
converted Katakana to English using Romaji and
then perform entity matching using both alpha-
bets. There are many different popular ways
of romanizing Katakana, and we use the Hep-
burn romanization because the romanization of a
Katakana word generally faithfully represents the
pronunciation of that Japanese word and many
Japanese speakers use it to express Katakana and
foreign terms without Japanese characteres. We
used the module romkan' for this method. For ex-
ample, in terms of “Japan” , the Romaji translitera-
tionis “>’ ¥ /¥>” and the actual Katakana is also
”Y ¥ /X327, As another example, in terms of “Or-
ange” , the Romaji transliteration is “% 7 > 77”

"https://pypi.python.org/pypi/romkan

86

but the actual Katakanais ”4 L > 2. In addition,
we also used Soundex? as a benchmark of entity
matching between phoneme pairs. Soundex is a
phonetic algorithm for indexing names by sound,
as pronounced in English.

4.2 Predictive Model

We used a sequence to sequence model for translit-
eration. For example, the input is the sequence of
English characters (z1, ..., x,), and the output is
the sequence of phoneme characters (y1, ..., Ym)-
In our model, we estimated the conditional prob-
ability p of an output sequence (Y1, ..., ¥m) given
an input sequence (1, ..., T,) as follows:

p(y].?"'vympjla“'al‘n) (l)
Given an input sequence (z1,...,2,), LSTM
computes a sequence of hidden states (h1, ..., hyp).

During decoding, it defines a distribution over the
output sequence (Y1, ..., Ym) given the input se-
quence P(Y1, -, Ym|T1, vy Ty i8:

m
p(y17 cey ym|$1, ooy :En) = Hp(yt‘thrt*l’yt*l)

t=1

2)
We also used a bi-directional recurrent neural
network (Schuster and Paliwal, 1997). In our ar-
chitecture, one RNN processes the input from left
to right, while another processes it right to left.
The outputs of the two subnetworks are then com-
bined. This model has been applied to machine
translation and, in this case, the phoneme pre-
diction depends on the whole character sequence.
Figure 3 shows an architecture of our models in
this research. The combinations of input and
output are English-Katakana, Katakana-English,
English-Phoneme, Katakana-Phoneme, Phoneme-
English, and Phoneme-Katakana. The input and
the output of Figure 3 shows English-Phoneme as
an example, and our other models were created in

the same manner.

A N

e s [e e
BidncclionalLSTM/ l__rlg-l:llﬂa] ! |

N e O e N e B
{

e e e
s s s e

Input Layer G E L <EOS>

Embedding

LSTM

[

dz > 1

Activa

Output Layer

Figure 3: Architecture of the Predictive Model.

“https://www.archives.gov/research/census/soundex.html

4.3 Model Settings

We chose each hyper parameter of the model by
grid search. Targets of the hyper parameter were
word embedding, hidden layers, and input reverse.
Input of embedding and hidden layers was set to
256, 512, or 1024, and input of reverse is True or
False. In the experiment, we chose the best model
that has the lowest loss value for validation data
and applied the model for validation data. We used
categorical cross entropy as the loss value and
the optimizer was Adam (Kingma and Ba, 2014).
The hyper parameters used are shown in Table
1. Regarding the six models with RNN, we tried
to match the entities of the transliterated word as
shown in Figure 1.

At last, we created all word combinations with
the dataset and then calculated their similarity
score. Each model was trained by 80% of train
dataset and 20% was used as test data. Test data
was also used as an experiment for this research.

4.4 Similarity Metric

We implemented the module
py_stringmatching”™® that consists of a com-
prehensive and scalable set of string tokenizers
such as alphabetical tokenizers, whitespace
tokenizers, and string similarity measures. We
used this module to calculate the string similarity.
We chose Overlap Coefficient, Cosine, Jacquard,
Jaro-Winkler, and Levenshtein from the modules.
In addition to these similarities, we also proposed
a new method that uses a probability of predicted
phonemes from a term and compares each string
similarity in the tasks of matching entity names.
Definitions of each method are as follows.

Overlap coefficient measures the overlap be-
tween two sets, and is defined as the size of the
intersection divided by the smaller of the size of
the two sets. For two sets X and Y, the overlap
coefficient is:

X NY]

S el N 3
wmin (X[, ©)

Cosine similarity measures the cosine of the an-
gle between two non-zero vectors, and we use
Ochiai coefficient as the angular cosine similar-
ity and the normalized angle. This measure com-
putes:

*https://pypi.python.org/pypi/py_stringmatching

87

X NY|

b @

Jaccard similarity measures the similarity be-
tween finite sample sets, and is defined as the size
of the intersection divided by the size of the union
of the sample sets. For two sets X and Y, Jaccard
similarity score is:

X NY|

X UY] ®)

Jaro-Winkler similarity (Winkler, 1999) mea-
sures the edit distance between two sequences. It
uses a prefix scale which gives weights to strings
that match from the beginning for a set prefix
length. For two sets X and Y, when s; is the length
of the string s;, m is the number of matching char-
acters, t is half the number of transpositions, and
[is the length of the common prefix at the start of
a string up to a maximum of four characters, Jaro-
Winkler similarity sim,, is:

simy, = simj + (- 0.1(1 — sim;))

. (6)
lsx|

Levenshtein distance measures the edit distance
between two sequences. It computes the minimum
cost to transform all edit procedures. Transform-
ing a string is to delete a character, insert a charac-
ter, and substitute one character for another.

The last similarity metric is the similarity of
the probability of a predicted phoneme for a
term, which we proposed. RNN model predicts
phoneme probability, and we applied this met-
ric for English-Phoneme and Katakana-Phoneme
models. The output layer is the sequence, and the
output of a predicted phoneme at the time ¢ in our
model are calculated as {’ei” :0.37, “e” :0.31,
“ee”:0.23, ***} using the vector of the hidden layer
of the decoder at time ¢. In this metric, we calcu-
late the distance of dynamic time warping (Miiller,
2007) between two temporal sequences. Dynamic
time warping calculates an optimal match between
two-time series sequences with certain restric-
tions. We regard the probability vector as a time
point and use cosine similarity as a distance be-
tween two vectors. We computed all of the prob-
ability vectors from English and Katakana, and
measured the distance of dynamic time warping.

Table 1: Hyper Parameters of the Best Model (Acc is accuracy for validation data of train data.)

Input Output Embedding Hidden Layers Input Reverse Acc

English Katakana 512 512 False 0.765
Katakana English 1024 512 True 0.785
English ~ Phoneme 1024 512 True 0.826
Katakana Phoneme 512 512 True 0.811
Phoneme English 512 512 True 0.815
Phoneme Katakana 1024 512 False 0.764

S Experiments

5.1 Dictionary Data

We prepared corpora of English, Katakana, and
phonemes for training and creating models. We
found a corpus of English and phonemes, and a
corpus of English and Katakana. We created the
data by merging each dictionary and made the
original data ourselves as Japanese speakers.

At first, we used the dataset consisting of En-
glish, Katakana, and phonemes of English from
Benson’s dictionary?, which is made from JMDict
dictionary (Breen, 1995) and the sum of entries
is 17798. However, in this dataset, there are a
lot of mistakes because the creators are not na-
tive Japanese speakers, and they made it automati-
cally. So, we removed the noise by hand as native
Japanese speakers and then succeeded in cleansing
the data of which 20% was occupied by noise.

Second, we used the CMU Pronouncing Dic-
tionary” that includes a large amount of English
terms and pronunciation signs but not Japanese
Katakana. We combined them with Katakana by
mecab-ipadic-NEologd®. mecab-ipadic-NEologd
is a customized dictionary-system for MeCab
(Kudo, 2006) that is an open-source text segmen-
tation library for text written in the Japanese lan-
guage, and some terms have both expression of
English and Katakana. We merged the CMU Pro-
nouncing Dictionary and mecab-ipadic-NEologd
where both of the dictionaries had terms.

At last, we created an original dictionary by ran-
domly extracting 3000 terms from the CMU Pro-
nouncing Dictionary and attached each Katakana
term by hand. We eventually concatenated those
dictionaries and deleted duplicates. The total num-
ber of entries is 26815.

*https://github.com/eob/englishjapanese-
transliteration/blob/master/data/dictionary.txt

Shttp://www.speech.cs.cmu.edu/cgi-bin/cmudict

Shttps://github.com/neologd/mecab-ipadic-neologd

88

5.2 Experimental Methodology

For the experiment, we prepared three valida-
tion datasets. One was test data that comprised
20% of the dictionary. Another was city names
in the U.S. from Google Maps API’. Google
Maps provide a city name and we were able to
find the same U.S. city expressed by English and
Japanese. We collected 1110 terms from Google
Maps. The last is the restaurant store names in
Japan from HOT PEPPER GOURMET?, which
is called HPG. HPG is one of the most famous
search services that provides information and dis-
count coupons for restaurants, cafes, bars, and any
place to eat in Japan. We know some restaurants
that have both names in alphabet characters and
Katakana from HPG, and built a validation dataset.
Table 2 shows all of the data we used.

In terms of measuring accuracy, we used a top-
five precision. We calculated the similarity scores
of all combinations of entities in the experiment
data and evaluated the precision of the entities in-
cluded in the top-five entities, and then compared
the value of top-five’s precision for each model
and similarity measure. The procedure of translit-
erating and measuring was as follows:

(1) En2Kana

We transliterated the sequence of alphabet char-
acters into Katakana through RNN model and
computed the similarity between the transliterated
Katakana and Katakana terms.

(2) Kana2En

We transliterated the sequence of Katakana into
English through RNN model and computed the
similarity between the transliterated English and
English terms.

(3) Both2Ph

We transliterated the sequence of alphabet
characters into phonemes through RNN model,
transliterated the sequence of Katakana into

"https://developers.google.com/maps
8https://www.hotpepper-gourmet.com/en

Table 2: Dataset for Experiment

Dataset Numbers of Entities Data Source

Example

Total: 26815

Train and Test Data Train: 21452

Modified E. Benson’ s dictionary
CMU Pronouncing Dictionary and mecab-ipadic-NEologd

English: artist
Katakana: 7 —7 ¢ A b

Test: 5363 Our original dictionary Phoneme: AARTIX ST AX
. . English: Phoenix
City Names in the U.S. 1110 Google Maps Katakana: 7 © = v 2 &
Restaurant Names 2458 HOT PEPPER GOURMET English: ### Cafe

Katakana: ###75 7 =

phonemes through RNN model, and computed
the similarity between both of the transliterated
phonemes to regard one phoneme character as one
index. In addition, we also used the probability
vector similarity in terms of this method as we
stated the end of subsection 4.4.
(4) En2Ph2Kana

We transliterated the sequence of alphabet
characters into phonemes through RNN model,
transliterated the transliterated phonemes into
Katakana through RNN model, and computed the
similarity between the transliterated Katakana and
Katakana terms.
(5) Kana2Ph2En

We transliterated the sequence of Katakana
into phonemes through RNN model, transliterated
the transliterated phonemes into English through
RNN model, and computed the similarity between
the transliterated English and English terms.
(6) En2Romaji

We converted the sequence of alphabet charac-
ters into Katakana based on Romaji and computed
the similarity between the Katakana of Romaji and
Katakana terms.
(7) Kana2Romaji

We converted the sequence of Katakana into al-
phabets based on Romaji and computed the simi-
larity between the alphabets of the Romaji and En-
glish terms.
(8)Both2Soundex

We transliterated the sequence of alphabet char-
acters into Soundex as pronunciation, transliter-
ated the sequence of Katakana based on Romaji
into Soundex, and computed the score of both
of the transliterated phonemes. We regarded one
Soundex character as one index.

5.3 Results

Figure 4 shows the top-five precision graph of all
methods and similarity metrics for each validation
dataset, and Table 3 shows the top-five precision
of predicted phoneme probability similarity.

&9

Dictionary Test Data

Top 5 Precision
=)
&

Overlap Cosine Jaccard Jaro-Winkler Levenshtein

Similarity Methods

City Names in the U.S.

- - -
5 0.6 [} ../ . 25
3 s 7 -z
Sos b o7 Armmor=ns a7 .
x 05 ¢ . - e
/ - :
n R v rd
o R E — .
204 fop—m———— - R
’ i e
e ke
03 [t Ve
‘/_// _______ -
x g
02 . e
7 -
7
0.1 /'
0
Overlap Cosine Jaccard Jaro-Winkler Levenshtein

Similarity Methods

Restautant Names

Top 5 Precision
°
&

Overlap Cosine Jaccard Jaro-Winkler Levenshtein

Similarity Methods

Figure 4: Top-Five Precision for Each Method and
Similarity Measure.

First, we compared each of the eight methods
with the similarity scores of Overlap coefficient,
Cosine, Jacquard, Jaro-Winkler, and Levenshtein.
The tendency of accuracy is similar in almost all
methods in each dataset. In terms of the dictio-
nary test data and the city name data, Kana2En
and Both2Ph have the highest accuracy at 0.83
and 0.81 in Levenshtein distance. En2Kana was
the next highest with an accuracy of 0.74 in Lev-
enshtein. Regarding En2Ph2Kana, Kana2Ph2En,
and Kana2Romaji, the accuracy was not high in
any data. Likewise, even in the restaurant data, the
accuracy of Kana2En and Both2Ph was relatively
high at 0.55 and 0.46 in Levenshtein. However,
regarding En2Romaji, it clarified that the accu-
racy was quite different depending on the dataset.
In the dictionary test data, the accuracy was the
lowest at 0.36 in Levenshtein distance, and in the
city name data, the accuracy of En2Romaji is rel-
atively low. On the other hand, in the restaurant
data, En2Romaji was the highest accuracy at 0.57
in Levenshtein.

Second, focusing on the similarity measure, the
accuracy trends are similar in almost all meth-
ods in each data set although the accuracy differs
depending on the dataset. Levenshtein and Jaro-
Winkler are the highest in almost all methods, and
Overlap is the lowest. In other words, it shows
that it is better to use the editing distance for word
similarity in entity matching than other distance to
compute the same character string.

Lastly, we considered the similarity of proba-
bility vectors. In fact, this similarity achieved the
highest score. The test data of the dictionary and
the data of city names’ accuracy was over 0.9 and
that is about 10% higher than the second high-
est score. The restaurant data accuracy was 0.62,
which is 5% higher than the second highest score.
These results insist that pronunciation is crucial
for entity matching.

Table 3: Top 5 Precision of similarity of predicted
Phoneme Probability Vector

Test Data of Dict
0.91

Restaurant Names

0.62

City Names
0.92

5.4 Error Analysis and Discussion

Regarding the dictionary test data and the city
name data, the accuracy was over 80%, whereas
the accuracy of the restaurant data was under 70%.

90

Focusing on this phenomena, we analyzed how
words were converted in each dataset. Table 4
shows some examples of each conversion.

While short words such as “switch” and “Ben-
ton” succeeded in being transformed cleanly, long
words such as “coconut milk” and “South San
Francisco” could not be predicted accurately. This
is caused by the lack of long words in the train-
ing data. As the solution, it would be beneficial
to adjust the algorithm to long terms and extend
the dataset. However, in the case of Japanese, it
is difficult to divide a long word into two or more
words, because in comparison to English terms,
Japanese terms are not separated by spaces.

Furthermore, in the restaurant data, we mined
the reason why the accuracy was extremely low
and found three considerable reasons in addition
to the reason of word length. One reason is that
there were many alphabetical representations of
foreign languages other than English. For exam-
ple, “Amore” is Italian, and “MAI-THAI” is
Thai. Since our training data consisted only of
pure English words, and the model was created
for English, we can treat pure English terms as
dictionary data or American city name data, but
terms of other foreign languages cannot be con-
verted accurately. To solve the problem, it is es-
sential to create a model besides English for each
language, and to create a model to recognize what
language is written in words. The second is that
there are some shops written in Romaji charac-
ters such as “AKICHI” , which is not English but
the Romaji representation of Katakana. Therefore,
there should also be a model to determine whether
the word is a foreign word or Romaji. Third is
the mistakes of the datasets. In this study, we ex-
tracted both alphabetical and Katakana stores au-
tomatically from HPG database, but there was a
pattern in which English and Katakana combina-
tions did not correspond completely. One of them
is an abbreviation such as “Cafe X” and “X” .
Prefixes are sometimes omitted in the data.

Considering similarities, the predicted phoneme
probability had the highest score. Katakana is seg-
mental scripts, and each term is based on sounds,
but some exceptions are changed somehow by im-
plicit Japanese rules. Therefore, we can not pre-
dict the pronunciation perfectly. However, be-
cause we can predict candidates of the pronuncia-
tion as phoneme probability vector like {ei”:0.37,
“e” :0.31, “&” :0.23, --'}, we could match enti-

Dataset English Katakana En2Ph Kana2Ph

En2Kana

Kana2En En2Ph2Kana Kana2Ph2En En2Romaji Kana2Romaji

switch A v F swihch swihch 274 vF swicch 24 v F switch s 1 tch suicchi
chicken FE chihkahn chihkahn Fxvrv chicken FH chickon Feirv chikin
Dictionary Test Data kaxk axk axn tmmih
coconut milk oy b7 kaxkyntttihihkax axax EER VAN &4 coconantiiill axhhhhyy cococononmmanm aaRtIlk kokonattsumiruku
airport ESEIEN ehrpaort ehrpowrt =27 H— b airpott =7 HR— b airooort 7 A rafirt eapoto
Phoenix Trmv X fiynihks fehnihks Je==) Y phenixs T =yl X phnix pRT =x fenikkusu
Benton ~_yhr behntaxn behntahn ~_y by benton Ay b benton BTl benton
City Names in the U.S. Mountain View v YTy s Ea— mawnttnnyuw mawntixnvyuw wZL L EAf E— mouttinnbwe v b hr=a— mouttinveww ETUHAL T 4w mauntenbyu
San Jose Y ¥ saenjhowz saennowz PSS sannoss Y- sannose #rYat sannoze
South San Francisco H#r 2 R jy 75y sowffaensssskkk serssaxssaensaxk #2A2F 7/ VU= ousscennnnssccoo 27 T T AT AR macancucces Y Tthih £ oef sc saususanfuransisko
A= ax rss ES 27 4
Adesso Ty axdehsow aedehsow TRy adesso TF adeso TFyY adesso
Amore FE—L ahmaor ahmowrey FE— amorel 7E— amora TEL amore

Restaurant Names MAI-THAI v A 54 meythey maytay

rihnstraxntehhhehr
ow

Ristorante YANTT rihstowtt

AKICHI TxF aekiychiy ae kchiy

AALT
YRRTALTT

TEF

mitite AAA mithte AT A maitai

resteraatttttooo Ukbhaoe77 resternaaarr VAT risutorante

aciih THEF— acchi TEF akichi

Table 4: Example Results of Transliteration.

ties using vector similarity more accurately. This
is why the probability vector metric outperforms
all other metrics. We also computed the other top-
N precision, and the result was precision (N=10) at
67% and precision (N=30) at 74%. This opens the
way for narrowing down by entity matching with
the name alone.

For future work, in order to improve accuracy
on restaurant data, we could implement a few pro-
cedures. The first would be cleaning the datasets
because there are some pairs that do not corre-
spond. This time we checked the non-matching
pairs quickly but because of large volume of
the datasets, there could remain some amount of
noise. It could be solved by crowdsourcing of
many Japanese speakers. The second would be
polishing the transliteration model. We tried to use
an attention mechanism for RNN model, but the
accuracy was not good. We may polish the model
by adjusting the best hyper parameter. Moreover,
we could train pair data of English and Katakana
at the same time instead of independently to create
the model. In the entity matching task of the ac-
tual restaurant data, if we detect 60% through the
top-five precision, entity matching would be easy
through using additional data such as postal code
level addresses.

6 CONCLUSION

In this paper we built two research questions to
clarify how to solve heterogeneous entity match-
ing. The first question was what should be used
for conversion in entity matching between English
and Japanese Katakana. We proposed an entity
matching method that considers phoneme sym-
bols, and compared models to convert a term into

91

English, Katakana, and phonemes. The second
question was what should be used for the simi-
larity metric. We proposed a similarity method
that uses a phoneme probability vector predicted
by sequence to sequence models and compared six
metrics, which are Overlap Coefficient, Cosine,
Jacquard, Jaro-Winkler, Levenshtein, and the sim-
ilarity of phonemes.

Our experiments in the three real datasets
showed that 1) a phoneme matching system works
better than other methods, and 2) the similarity of
phoneme in the phoneme method and Levenshtein
similarity in other methods suit the entity match-
ing problems. We insist that phoneme information
is crucial for heterogeneous entity matching.

Based on these results, we will build an entity
matching system between English and Japanese
Katakana, and publish a part of it as an open-
source software. We can apply the system to ex-
tension of a dataset from a vast amount of data on
the web and to rare query expansion on a search
engine. Almost of our services have a search en-
gine and in some services, we are using a part of
the entity matching system to reduce outputs of 0
hits result. In the future, the model is expected to
be polished and applied to other languages. In this
paper it is tested on Japanese and English, but po-
tentially could be used on other languages. We be-
lieve that our method could apply to any language
that has phonetic characters.

Acknowledgments

In this research, we would like to thank Wang-
Chiew Tan and Akiko Ito for crucial advice and
supports of this work. We also thank the reviewers
for valuable feedbacks.

References

Edward Benson, Stephen Pueblo, Fuming Shih, and
Robert Berwick. 2009. English-japanese translitera-
tion.

Jim Breen. 1995. Building an electronic japanese-
english dictionary. In Japanese Studies Association
of Australia Conference. Citeseer.

Zhiyuan Cai, Kaiqi Zhao, Kenny Q Zhu, and Haixun
Wang. 2013. Wikification via link co-occurrence.
In Proceedings of the 22nd ACM international con-
ference on Conference on information & knowledge
management, pages 1087-1096. ACM.

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich,
Bo-June Paul Hsu, and Kuansan Wang. 2014.
Erd’14: entity recognition and disambiguation chal-
lenge. In ACM SIGIR Forum, volume 48, pages 63—
77. ACM.

William Cohen, Pradeep Ravikumar, and Stephen Fien-
berg. 2003. A comparison of string metrics for
matching names and records. In Kdd workshop on
data cleaning and object consolidation, volume 3,

pages 73-78.
John DeFrancis. 1984. Digraphia. Word, 35(1):59-66.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo. 2006. Mecab: Yet
part-of-speech and morphological
http://mecab.sourceforge.net.

another
analyzer.

Assunta Martin. 2004. The ‘katakana effect’ and
teaching english in japan. English Today, 20(1):50—
55.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, An-
Hai Doan, Youngchoon Park, Ganesh Krishnan, Ro-
hit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep learning for entity matching: A design
space exploration. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
19-34. ACM.

Meinard Miiller. 2007. Dynamic time warping. Infor-
mation retrieval for music and motion, pages 69—84.

Emir Mufioz, Aidan Hogan, and Alessandra Mileo.
2014. Using linked data to mine rdf from
wikipedia’s tables. In Proceedings of the 7th ACM
international conference on Web search and data
mining, pages 533-542. ACM.

Noriko Nagata. 1998. Input vs. output practice in ed-
ucational software for second language acquisition.
Language Learning and Technology, 1:23-40.

Pramod Pandey and Somnath Roy. 2017. A generative
model of a pronunciation lexicon for hindi. arXiv
preprint arXiv:1705.02452.

92

Kanishka Rao, Fuchun Peng, Hagim Sak, and
Frangoise Beaufays. 2015. Grapheme-to-phoneme
conversion using long short-term memory recurrent
neural networks. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015 IEEE International
Conference on, pages 4225-4229. IEEE.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673-2681.

Yoones A Sekhavat, Francesco Di Paolo, Denilson Bar-
bosa, and Paolo Merialdo. 2014. Knowledge base
augmentation using tabular data. In LDOW.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Transactions on Knowl-
edge and Data Engineering, 27(2):443—-460.

Janet S Smith. 1996. Japanese writing. The world s
writing systems, pages 209-217.

Ye Kyaw Thu, Win Pa Pa, Yoshinori Sagisaka, and
Naoto Iwahashi. 2016. Comparison of grapheme-
to-phoneme conversion methods on a myanmar pro-
nunciation dictionary. In Proceedings of the 6th
Workshop on South and Southeast Asian Natural
Language Processing (WSSANLP2016), pages 11—
22.

Shubham Toshniwal and Karen Livescu. 2016. Jointly
learning to align and convert graphemes to
phonemes with neural attention models. In Spoken
Language Technology Workshop (SLT), 2016 IEEE,
pages 76-82. IEEE.

William E Winkler. 1999. The state of record linkage
and current research problems. In Statistical Re-
search Division, US Census Bureau. Citeseer.

Ian H Witten, Eibe Frank, Mark A Hall, and Christo-
pher J Pal. 2016. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-
to-sequence neural net models for grapheme-to-
phoneme conversion. In INTERSPEECH 2015,
pages 3330-3334. ISCA.

