
Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 66–77
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

66

Modeling reduplication with 2-way finite-state transducers

Hossep Dolatian, Jeffrey Heinz
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

hossep.dolatian,jeffrey.heinz@stonybrook.edu

Abstract
This article describes a novel approach to
the computational modeling of reduplication.
Reduplication is a well-studied linguistic phe-
nomenon. However, it is often treated as
a stumbling block within finite-state treat-
ments of morphology. Most finite-state im-
plementations of computational morphology
cannot adequately capture the productivity of
unbounded copying in reduplication, nor can
they adequately capture bounded copying. We
show that an understudied type of finite-state
machines, two-way finite-state transducers (2-
way FSTs), captures virtually all reduplica-
tive processes, including total reduplication.
2-way FSTs can model reduplicative typol-
ogy in a way which is convenient, easy to de-
sign and debug in practice, and linguistically-
motivated. By virtue of being finite-state, 2-
way FSTs are likewise incorporable into exist-
ing finite-state systems and programs. A small
but representative typology of reduplicative
processes is described in this article, alongside
their corresponding 2-way FST models.

1 Introduction

Reduplication is a cross-linguistically common
word-formation process. Reduplication is roughly
divided into two categories, total reduplication
where an unbounded number of segments are
copied (1) vs. partial reduplication where a
bounded number of segments are copied (2). In
spoken language, reduplication usually involves
making at most two copies, though making three
copies is attested in spoken language (3) and is
common in sign language (Wilbur, 2005).

1) wanita→wanita∼wanita
‘woman’→‘women’
Indonesian (Cohn, 1989, 308)

2) takki→tak∼takki
‘leg’→‘legs’ Agta (Moravcsik, 1978, 311)

3) roar→ roar∼roar∼roar
‘give a shudder’→‘continue to shudder’
Mokilese (Moravcsik, 1978, 301)

Most of the world’s languages include at least
one reduplicative process, with the most com-
mon reduplicative process being total reduplica-
tion. The WALS database documents that 278 out
of 368 (75%) languages use both partial redupli-
cation and total reduplication as productive mor-
phological operations (Rubino, 2013). An extra 35
(10%) use only total reduplication as a productive
morphological operation. The 55 (15%) remain-
ing languages with no reduplicative processes in-
clude most Indo-European languages.1

Although reduplication has a rich history in
morpho-phonology, it continues to present chal-
lenges for computational and mathematical lin-
guistics (Sproat, 1992; Roark and Sproat, 2007).
Within computational linguistics, most of mor-
phology and phonology have been analyzed with
finite-state calculus as rational languages and
transductions (Kaplan and Kay, 1994; Beesley
and Karttunen, 2003). However, reduplication
cannot be easily modeled with the same finite-
state systems used to model the rest of morpho-
phonology. In the case of total reduplication, this
is because those finite-state systems cannot ex-
press unbounded copying in the first place (Culy,
1985). As for partial reduplication, those finite-
state systems are often discussed as being burden-
some models because of the state explosion that
partial reduplication causes (Roark and Sproat,
2007). This has lead some researchers to de-
velop finite-state approximations of total redu-
plication (Walther, 2000; Beesley and Karttunen,
2000; Cohen-Sygal and Wintner, 2006; Hulden,

1This 15% is debatable because some argue that total
reduplication is still used in those languages in one way or
another (Stolz et al., 2011).

67

2009a; Hulden and Bischoff, 2009). These are ap-
proximations because they cannot model the pro-
ductivity of total reduplication, the most common
reduplicative process. Another alternative is to
use formalisms that are beyond finite-state, e.g.
queue-based CFGs (Savitch, 1989), MCFGs (Al-
bro, 2000, 2005), and HPSG (Crysmann, 2017).

This article shows how a specific understud-
ied type of finite-state technology actually can ac-
count for virtually all forms of bounded and un-
bounded reduplication as they are found in typo-
logical studies (Moravcsik, 1978; Rubino, 2005).
This finite-state technology not only describes
reduplication as a process which applies to in-
finitely many words of unbounded size, but it does
so without the state-space explosion. The type
of transducer which accomplishes this is known
as a 2-way Finite-State Transducer or 2-way FST
(Savitch, 1982; Engelfriet and Hoogeboom, 2001;
Filiot and Reynier, 2016). While these computer
scientists are well aware that 2-way FSTS can
model unbounded copying, this is the first use of
2-way FSTs within computational linguisticst to
our knowledge.2

2-way FSTs are distinguished from the more
well-known (1-way) finite-state transducers or 1-
way FSTs by allowing the machine to move back
and forth on the input tape, but not on the output
tape. It is this increased power of 2-way FSTs
that allows them to adequately model reduplica-
tion without the difficulties of using 1-way FSTs.

In this paper, we focus on deterministic 2-way
FSTs. Like 1-way FSTs, 2-way FSTs can be ei-
ther deterministic or non-deterministic on the in-
put. Deterministic 1-way FSTs are less expres-
sive than non-deterministic 1-way FSTs (Elgot
and Mezei, 1965; Schützenberger, 1975; Choffrut,
1977; Mohri, 1997; Heinz and Lai, 2013). Sim-
ilarly, deterministic 2-way FSTs are less expres-
sive than non-deterministic 2-way FSTs (Culik
and Karhumäki, 1986). For the typology of redu-
plication studied in this article, deterministic 2-
way FSTs are sufficient. This result is in line with
work showing that various phonological and mor-
phological processes can be described with deter-
ministic finite-state technology (Chandlee et al.,
2012; Gainor et al., 2012; Chandlee and Heinz,
2012; Heinz and Lai, 2013; Chandlee, 2014; Luo,
2017; Payne, 2014, 2017).

22-way finite-state automata (2-way FSAs) have been
used to model non-concatenative Semitic morphology
(Narayanan and Hashem, 1993).

This article is organized as follows. 2-way
finite-state transducers (2-way FSTs) are intro-
duced in section §2, where we provide a for-
mal definition (§2.1), discuss their computational
properties (§2.2), and discuss their computational
complexity (§2.3). In §3, we illustrate how 2-way
FSTs can model reduplication, notably total redu-
plication (§3.1) and partial reduplication (§3.2).
In section §4, we contrast 2-way FSTs with 1-
way FSTs and show how the former are empir-
ically adequate, practically convenient or useful,
and linguistically-motivated for modeling redupli-
cation. To illustrate this, we briefly discuss how
we have used 2-way FSTs to develop the RedTyp
database, a database of reduplicative processes
with corresponding 2-way FSTs. Conclusions and
directions for future research are in §5.

2 Two-way finite-state transducers:
definition and properties

2.1 Definition

It is useful to imagine a 2-way FST as a machine
operating on an input tape and writing to an out-
put tape. The symbols on the input tape are drawn
from an alphabet Σ and the symbols written to the
output tape are drawn from an alphabet Γ. For an
input string w = σ1 . . . σn, the initial configura-
tion is that the FST is in some internal state q0,
the read head. The FST begins at the first posi-
tion of the tape reading σ1, and the writing head of
the FST is positioned at the beginning of an empty
output tape. After the FST reads the symbol under
the read head, three things occur:

• The internal state of the FST changes.
• The FST writes some string, possibly empty,

to the output tape.
• The read head may move in one of three

ways: it can either move to the left (-1), move
to the right (+1), or stay (0).

This process repeats until the read head “falls off”
one of the edges of the input tape. If for some input
string w, the FST falls off the right edge of the
input tape when the FST is in an accepting state
after writing u on the output tape, we say the FST
transduces, transforms, or maps, w to u. If for
some input stringw, the FST falls off the left edge,
falls off the right edge while in a non-accepting
state, or never falls off an edge, then the FST is
undefined at w. Note the writing head of the FST

68

can never move back along the output tape. It only
ever advances as strings are written.

Below is a formalization of 2-way FSTs based
on Filiot and Reynier (2016) and Shallit (2008).
We adopt the convention that inputs to a 2-way
FST are flanked with the start (o) and end bound-
aries (n). This larger alphabet is denoted by Σn.

4) Definition: A 2-way, deterministic FST is a
six-tuple (Q,Σn,Γ, q0, F, δ) such that:

Q is a finite set of states,
Σn = Σ∪ {o,n} is the input alphabet,
Γ is the output alphabet,
q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states,
δ : Q × Σ → Q × Γ∗ × D is the
transition function where the direction
D = {−1, 0,+1}.

A configuration of a 2-way FST T is an element
of Σ∗nQΣ∗n × Γ∗. The meaning of the configura-
tion (wqx, u) is that the input to T is wx and the
machine is currently in state q with the read head
on the first symbol of x (or has fallen off the right
edge of the input tape if x = λ) and that u is cur-
rently written on the output tape.

If the current configuration is (wqax, u) and
δ(q, a) = (r, v, 0) then the next configuration is
(wrax, uv), in which case we write (wqax, u)→
(wrax, uv). If the current configuration is
(wqax, u) and δ(q, a) = (r, v,+1) then the next
configuration is (warx, uv). In this case, we write
(wqax, u) → (warx, uv). If the current configu-
ration is (waqx, u) and δ(q, a) = (r, v,−1) then
the next configuration is (wrax, uv). We write
(waqx, u)→ (wrax, uv).

The transitive closure of→ is denoted with→+.
Thus, if c→+ c′ then there exists a finite sequence
of configurations c1, c2 . . . cn with n > 1 such that
c = c1 → c2 → . . .→ cn = c′.

Next we define the function that a 2-way FST
T = (Q,Σn,Γ, q0, F, δ) computes. For each
string w ∈ Σ∗, fT (w) = u ∈ Γ∗ provided
there exists qf ∈ F such that (q0 o wn, λ) →+

(ow n qf , u). Note that since a 2-way FST is de-
terministic, it follows that if fT (w) is defined then
u is unique.

There are situations where a 2-way FST T
crashes on some input w and hence fT (w) is
undefined. If the configuration is (qax, u) and
δ(q, a) = (r,−1, v) then the derivation crashes

and the transduction fT (ax) is undefined. Like-
wise, if the configuration is (wq, u) and q 6∈ F
then the transducer crashes and the transduction
fT is undefined on input w.

There is one more way in which fT may be
undefined for some input. The input may cause
the transducer to go into an infinite loop.3 This
occurs for input wx ∈ Σ∗n whenever there exist
q ∈ Q and u, v ∈ Γ∗ such that (q0wx, λ) →+

(wqx, u)→+ (wqx, uv).

2.2 Computational properties

With respect to acceptors, 1-way and 2-way finite-
state acceptors are equivalent in expressive power.
Both define the regular languages (Hopcroft and
Ullman, 1969; Shallit, 2008). However, with re-
spect to transducers, 1-way FSTs are strictly less
expressive than 2-way FSTs (Savitch, 1982; Aho
et al., 1969). For a 1-way FST, both the input
language and the output language must be regu-
lar languages. A 1-way FST thus cannot have its
output language be the non-regular copy language
Lww = {ww|w ∈ Σ∗}. In contrast, as we will see,
the output language of a 2-way FST can be a non-
regular language such as Lww. The next section
will show that this additional power allows 2-way
FSTs to productively model reduplication.

2-way FSTs are equivalent in expressivity to
MSO-definable string transductions (Engelfriet
and Hoogeboom, 2001) and to streaming string
transducers (1-way FSTs with registers) (Alur,
2010). They are closed under composition
(Chytil and Jákl, 1977) and their non-deterministic
variants are invertible (Courcelle and Engelfriet,
2012). 2-way FSTs are less powerful than Tur-
ing machines because they cannot move back and
forth over the output tape.

Note that given the difference in expressive
power between 1-way and 2-way FSTs, it makes
sense to give the classes of functions that they
compute different names. We follow Filiot and
Reynier (2016) who identify the class of functions
describable with a 1-way deterministic FST as ‘ra-
tional functions’, and they reserve the term ‘regu-
lar functions’ for functions describable with 2-way
deterministic FSTs.

3Infinite loops can be prevented through carefully design-
ing the 2-way FST. The 2-way FSTs which we have made do
not suffer from infinite loops. Infinite loops can likewise be
checked and stopped during run-time.

69

2.3 Computational complexity

Deterministic 1-way FSTs run in time linear to the
length of the input string. Since 2-way FSTs can
reread the input string, is this still the case? One
useful metric for measuring the complexity of de-
terministic 2-way FSTs is in terms of the number
of times the 2-way FST passes through the input
(Baschenis et al., 2016). In the case of the redupli-
cation examples in §3, a deterministic 2-way FST
can be designed with only two passes through the
input per copy. Thus, the run time for a deter-
ministic 2-way FST modeling reduplication which
makes at most n copies of an input string of length
m is 2n ·m. Since n is fixed by the reduplicative
morpheme, the run time is still linear in the size of
the input string.

Also, to our knowledge existing applications
of regular functions have been efficient (Alur and
Černý, 2011; Alur et al., 2014).

3 Illustrative use of two-way transducers
for reduplication

Having established what 2-way FSTs are and how
they behave, this section illustrates how they can
be used model reduplication. We provide two il-
lustrative examples: total reduplication (§3.1) and
partial reduplication (§3.2).

3.1 Total reduplication

Total reduplication is cross-linguistically the most
common reduplicative process (Rubino, 2005),
and it is used in an estimated 85% of the world’s
languages (Rubino, 2013). A canonical example
is total reduplication in Indonesian which marks
plurality (Cohn, 1989). Examples are in Table 1.

input gloss output gloss
buku ‘book’ buku∼buku ‘books’
wanita ‘woman’ wanita∼wanita ‘women’
hak ‘right’ hak∼hak ‘right’
k@ra ‘donkey’ k@ra∼k@ra ‘donkeys’

Table 1: Total reduplication in Indonesian.

Figure 1 shows a 2-way FST that captures this
total reduplication process. Basically, the 2-way
FST in Figure 1 operates by:

1. reading the input tape once from left to right
in order to output the first copy,

2. going back to the start of the input tape by
moving left until the start boundary o is
reached,

3. reading the input tape once more from left to
right in order to output the second copy.

Specifically, this figure is interpreted as follows.
The symbol Σ stands for any segment in the alpha-
bet except for {o,n}. The arrow from q1 to itself
means this 2-way FST reads Σ, writes Σ, and ad-
vances the read head one step to the right on the
input tape. The boundary symbol ∼ is a symbol
in the output alphabet Γ, and is not necessary. We
include it only for illustration.

We show an example derivation in Figure 2
of /buku/→[buku∼buku] using the 2-way FST in
Figure 1. The derivation shows the configurations
of the computation for the input /buku/ and is step
by step. Each tuple consists of four parts: input
string, output string, current state, transition. In
the input string, we underline the input symbol
which FST will read next. The output string is
what the 2-way FST has outputted up to that point.
The symbol λ marks the empty string. The cur-
rent state is what state the FST is currently in. The
transition represents the used transition arc from
input to output. In the first tuple, there is no transi-
tion arc used (N/A). But for other tuples, the form
of the arc is:

input state
input symbol:output string−−−−−−−−−−−−−−→

direction
output state

3.2 Partial reduplication
Partial reduplication processes are also very com-
mon. A canonical example is initial-CV reduplica-
tion found in many Austronesian languages (Ru-
bino, 2005). This section presents a simplified ver-
sion of initial-CV reduplication from Bikol that is
used to mark imperfective aspect (Mattes, 2007).4

Examples are in Table 2.

input gloss output gloss
Nirit ‘to laugh’ Ni∼Nirit ‘laughing’
diretsjo ‘to continue’ di∼diretsjo ‘continuing’
trabaho ‘to work’ ta∼trabaho ‘working’
draIf ‘to drive’ da∼draIf ’driving’

Table 2: Initial-CV reduplication in Bikol.

Initial-CV reduplication in Bikol has two
phonological modifications processes5 apply to
the reduplicant, i.e. the smaller copy:

4Initial-CV reduplication in Bikol targets the root and is
triggered by the addition of certain prefixes. For illustrative
purposes, we set aside these prefixes.

5These modifications effects are often called TETU (or
the emergence of the unmarked) effects in the linguistics lit-
erature (McCarthy and Prince, 1994, 1995).

70

q0start q1 q2 q3 qf
(o,λ,+1)

(Σ,Σ,+1)

(n,λ,-1)

(Σ,λ,-1)

(o,∼,+1)

(Σ,Σ,+1)

(n,λ,+1)

Figure 1: 2-way FST for total reduplication in Indonesian.

Outputting the first copy
1. (obukun, λ, q0 , N/A) 7. (obukun, buku∼, q2, q1

n:∼−−→
-1

q2)

2. (obukun, λ, q1, q0
o:λ−−→
+1

q1) 8. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

3. (obukun, b, q1, q1
Σ:Σ−−→
+1

q1) 9. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

4. (obukun, bu, q1, q1
Σ:Σ−−→
+1

q1) 10. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

5. (obukun, buk, q1, q1
Σ:Σ−−→
+1

q1) 11. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

6. (obukun, buku, q1, q1
Σ:Σ−−→
+1

q1)

Outputting the second copy

12. (obukun, buku∼, q3, q2
o:λ−−→
+1

q3) 15. (obukun, buku∼buk, q3, q3
Σ:Σ−−→
+1

q3)

13. (obukun, buku∼b, q3, q3
Σ:Σ−−→
+1

q3) 16. (obukun, buku∼buku, q3, q3
Σ:Σ−−→
+1

q3)

14. (obukun, buku∼bu, q3, q3
Σ:Σ−−→
+1

q3) 17. (obukun, buku∼buku, qf , q3
n:n−−→
+1

qf)

Figure 2: Derivation of /buku/→[buku∼buku].

q0start q1 q2

q3 q4 q5 qf

(o,λ,+1) (C,C,+1)

(C,λ,+1)

(VM,VM,-1)

(VD,VM,-1)

(VM,VM,-1)

(VD,VM,-1)

(Σ,Σ,-1)

(o,∼,+1)

(Σ,Σ,+1)

(n,λ,+1)

Figure 3: 2-way FST for initial-CV reduplication in Bikol.

71

• complex onsets are reduced to simple onsets,
e.g. /trabaho/→[ta∼trabaho] ’working’
• diphthongs are reduced to monophthongs,

e.g. /draIf/→[da∼draIf] ’driving’

The 2-way FST in Figure 3 captures the par-
tial reduplication pattern and its modifications.
The symbol VM stands for monophthongs, VD for
diphthongs, and C for consonants. An example
derivation of /draIf/→[da∼draIf] using our 2-way
FST is provided in Figure 4.6

4 Contrasting 2-way FSTs with 1-way
FSTs

Having illustrated how 2-way FSTs can model
reduplication, here we contrast 2-way FSTs with
1-way FSTs on three criteria: empirical coverage,
practical utility, and intensional description.

We do not contrast 2-way FSTs with more pow-
erful formalisms like pushdown transducers (Al-
lauzen and Riley, 2012). We do not assume the
former are superior to other such formalisms. Our
goal is to show 2-way FSTs have practical and
scientific utility in computational linguistics; thus,
they merit further study.

4.1 Empirical coverage
In terms of empirical coverage, 2-way FSTs can
model virtually the entire typology of redupli-
cation (Moravcsik, 1978; Hurch, 2005; Inkelas
and Zoll, 2005; Rubino, 2005; Samuels, 2010).
This includes both local reduplication (as in the
two examples from §3), but likewise non-local or
‘wrong-side’ reduplication (Riggle, 2004), inter-
nal reduplication (Broselow and McCarthy, 1983),
multiple reduplication (Urbanczyk, 1999), sub-
constituent reduplication (Downing, 1998), and
cases of interactions between reduplication and
opaque phonological processes (overapplication,
underapplication, backcopying) (McCarthy and
Prince, 1995). This is especially the case for total
reduplication which is the most widespread redu-
plicative process (Rubino, 2013) but which cannot
be modeled with 1-way FSTs. In most cases, this
will be inadequate because total reduplication is
a productive grammatical process (Rubino, 2005,
2013).

We emphasize the term virtually because in our
investigation we have found only two marginal
cases of reduplication in the literature which can-
not be modeled by 2-way FSTs unless certain

6The FST treats the diphthong /aI/ as a single segment.

plausible assumptions are made. These two cases
involve reduplication producing suppletive allo-
morphs of morphemes as in Sye (Inkelas and Zoll,
2005, 52), and reduplication being blocked by ho-
mophony or haplology as in Kanuri (Moravcsik,
1978, 313). These two cases of ‘under-generation’
can be solved if we assume the language contains
a finite number of suppletive allomorphs, and if
we assume that there’s either a finite number of
banned identical sequences or a separate linguis-
tic mechanism that filters out ill-formed homo-
phonies.

Of course there are cases where 2-way FSTs
can ‘over-generate’ and model unattested types
of reduplication, e.g. reduplicate a word n times
for some natural number n or reduplicate a word
by reversing it. This over-generation can be ad-
dressed by either restricting the class of 2-way
FSTs used (Dolatian and Heinz, 2018) or by not
treating 2-way FSTs as having to be exact mod-
els of human cognition (Potts and Pullum, 2002).
For further discussion and solutions on how 2-way
FSTs can over- and under-generate, see Dolatian
and Heinz (In press.).

4.2 Practical utility

To showcase empirical coverage of 2-way FSTs
and their practical utility, we have constructed
the RedTyp database7 which contains entries for
138 reduplicative processes from 91 languages
gleaned from various surveys (Rubino, 2005;
Inkelas and Downing, 2015). 50 of these processes
were from Moravcsik (1978), an early survey
which is representative of the cross-linguistically
most common reduplicative patterns. RedTyp
contains 57 distinct 2-way FSTs that model the
138 processes.8 Each 2-way FST was designed
manually, implemented in Python, and checked
for correctness. On average, these 2-way FSTs had
8.8 states. This shows that 2-way FSTs are con-
cise and convenient computational descriptions
and models for reduplicative morphology. This is
in contrast to 1-way FSTs which suffer from an
explosion of states when modeling partial redupli-

7A copy of RedTyp can be found online at our GitHub
page https://github.com/jhdeov/RedTyp.

8To our knowledge, the only other database on reduplica-
tion is the Graz Database on Reduplication (Hurch, 2005 ff.).
However, RedTyp differs from the Graz Database because the
latter does not include computational representations or im-
plementations of its entries.

https://github.com/jhdeov/RedTyp

72

Outputting reduplicant

1. (odraIfn, λ, q0 , N/A) 4. (odraIfn, d, q3, q2
C:C−−→
+1

q3)

2. (odraIfn, λ , q1, q0
o:λ−−→
+1

q1) 5. (odraIfn, da, q4, q3
VD:VM−−−−→

-1
q4)

3. (odraIfn, d, q2, q1
C:C−−→
+1

q2)

Going back to the start of the tape

6. (odraIfn, da, q4, q4
Σ:λ−−→
-1

q4) 7. (odraIfn, da, q4, q4
Σ:λ−−→
-1

q4)

Outputting the base

8. (odraIfn, da∼, q5, q4
o:∼−−→
+1

q5) 11. (odraIfn, da∼draI, q5, q5
Σ:Σ−−→
+1

q5)

9. (odraIfn, da∼d, q5, q5
Σ:Σ−−→
+1

q5) 12. (odraIfn, da∼draIf, q5, q5
Σ:Σ−−→
+1

q5)

10. (odraIfn, da∼dr, q5, q5
Σ:Σ−−→
+1

q5) 13. (odraIfn, da∼draIf, qf , q5
n:λ−−→
+1

q5)

Figure 4: Derivation of /draIf/→[da∼draIf].

cation.9 On average, a language’s phoneme inven-
tory would include 22 consonants and 5 vowels
(Maddieson, 2013a,b). In order to handle initial-
CV, initial-CVC, or initial-CVCV reduplication
with a 1-way FST, the FST would require at least
an estimated 22, 110, and 2420 states respectively.

4.3 Linguistic motivation and origin
semantics

Finally, using 2-way FSTs for reduplication is lin-
guistically motivated and matches the intensional
descriptions behind the linguistic generalizations
on reduplication. 2-way FSTs do not approximate
reduplication like 1-way FSTs do. They can fully
and productively model reduplicative processes as
they appear in the typology, including both par-
tial and total reduplication. As said, this is be-
cause 1-way FSTs simply remember the possible
shapes for a reduplicant when the number of pos-
sible shapes is (large yet) finite as in partial redu-
plication. When the number of possible shapes to
remember is unbounded as in total reduplication,
a 1-way FST cannot productively model redupli-
cation. In contrast, a 2-way FST does not need
to remember strings of segments in order to copy
them, but actively copies them.

This contrast between copying and remember-
ing can be formalized with the notion of the origin
semantics of a transduction (Bojańczyk, 2014).

9The largest 2-way FST in RedTyp is for verbal reduplica-
tion in Kinande (Downing, 2000) with 29 states. This pattern
depends on the size of the root and the number and type of
suffixes and prefixes around it. In contrast, we estimate a
deterministic 1-way FST would require over 1,000 states for
this pattern of partial reduplication.

a.
q0start q1 q2

a:λ b:ab

b.
q0start q1 q2

a:a b:b

Figure 5: Pair of 1-way FSTs for the function fab.

Given a string-to-string function, the origin se-
mantics of a function is the origin information of
each symbol on in the output string. This is the po-
sition im of the read head on the input tape when
the transducer had outputted on.

To illustrate, consider a string-to-string func-
tion fab which maps ab to itself, and ev-
ery other string to the empty string: f(x) =
{(ab, ab), (a, λ), (b, λ), ...}. This function can be
modeled with at least two different 1-way FSTs as
in Figure 5 which differ in when they output the
output symbols a and b. In Figure 6, we show
the origin information created by the two 1-way
FSTs from Figure 5 for the mapping (ab, ab). The
two FSTs model the same function and are equiva-
lent in their general semantics of what they output;
however, they are not equivalent in their origin se-
mantics because they create differ origin informa-
tion for their output.

This notion of origin semantics can be used to
contrast how 1-way FSTs and 2-way FSTs model
reduplication. Consider the case of Bikol initial-
CV reduplication from section §3.2 and assume a
smaller alphabet Σ = {p,a,t}. This function can

73

a. b.

a b

a b

a b

a b

Figure 6: Origin information created by the 1-way
FSTs (5) for the mapping ab→ab.

be modeled by the same 2-way FST in Figure 3.
Because of the bound on the size of the redupli-
cant, this function can also be modeled with the
1-way FST in Figure 7.

The two transducers in Figures 3,7 are equiv-
alent in their general semantics because they can
output the same string. For example, given the in-
put /pat/, both FSTs will output [pa∼pat]. How-
ever, the two FSTs differ in their origin semantics.
Given the mapping /pat/→[pa∼pat], the two FSTs
will create different origin information. Setting
aside the word boundaries and reduplicant bound-
ary ∼, the 1-way FST associates the second pa
string of the output with the vowel a of the input
as in Figure 8a. This is because the second pa was
outputted when the 1-way FST was reading the a
in the input. In contrast, the 2-way FST associates
each segment in the output with an identical seg-
ment in the input as in Figure 8b.

The origin information created by the 2-way
FST matches theoretical treatments of how the
reduplicant’s segments are individually associated
with identical segments in the input (Marantz,
1982; Inkelas and Zoll, 2005). In contrast, the ori-
gin information created by the 1-way FST does not
match any linguistic intuitions of reduplication be-
cause non-identical segments are associated. This
difference in the origin semantics of the 1-way
FST and 2-way FST formalizes their difference in
behavior: the 1-way FST simply remembers what
strings of segments to output twice, while the 2-
way FST actively copies.

In Base-Reduplicant correspondence theory
(BRCT), what matters for reduplication is not the
relationship or correspondence between input and
output segments in the reduplication, but between
the two copies in the output (McCarthy and Prince,
1995). Origin semantics might be able to for-
malize the intuition behind BRCT with finite-state
technology (output symbols with the same origin

are in correspondence). The only computational
implementation of BRCT to our knowledge (Al-
bro, 2000, 2005) uses MCFGs to do so. Note how-
ever that the empirical validity of BRCT is ques-
tionable (Inkelas and Zoll, 2005; McCarthy et al.,
2012).

5 Conclusion

In summary, finite-state technology has often
been argued to be incapable of adequately and
efficiently capturing productive reduplication as
used in natural language. However, this arti-
cle shows that an understudied type of finite-
state machinery—2-way finite-state transducers—
can exactly model reduplication and its wide ty-
pology.

2-way FSTs can model the virtually entire ty-
pology of reduplication, without needing to ap-
proximate any processes (unlike 1-way FSTs).
They likewise do not suffer from a state explo-
sion for partial reduplication because the size of
the 2-way FST is not dependent on the size of the
alphabet. This allows 2-way FSTs to directly cap-
ture the copying aspect of reduplication instead
of remembering all potential reduplicants. This
makes 2-way FSTs be a practical, convenient, and
concise tool to model reduplication. As a sign
of their empirical coverage and utility, we devel-
oped the RedTyp database of reduplicative pro-
cesses that contains 57 distinct 2-way FSTs which
model common and uncommon reduplicative pro-
cesses covered in the literature (Moravcsik, 1978).

Having showcased their utility, several avenues
of future research remain, of which we highlight
three. First, we have approached reduplication
from the perspective of morphological generation.
Given an input /buku/, a 2-way can generate the
output [buku∼buku] easily. On the other hand, it
is an open question as to how to do morpholog-
ical analysis with 2-way FSTs to get the inverse
relation of [buku∼buku→buku].10

A second, more practical, area of research is
the integration of 2-way FSTs into natural lan-
guage processing. This obviously has many as-
pects. A first step may be the integration of 2-
way FSTs into existing platforms such as xfst
(Beesley and Karttunen, 2003), foma (Hulden,
2009b), open-fst (Allauzen et al., 2007), and
pynini (Gorman, 2016).

10One potential route may be the use of non-deterministic
2-way FSTs (Alur and Deshmukh, 2011).

74

q0start q1 q2

q3

q4 q5
o:o t:t

p:p

a:a∼ta

a:a∼pa

Σ : Σ

n:n

Figure 7: 1-way FST for partial reduplication.

a. Origin information of the 1-way FST

p a t

p a p a t

b. Origin information of the 2-way FST

p a t

p a p a t

Figure 8: Origin information of /pat/→[pa∼pat] cre-
ated by the 1-way FST (Figure 7) vs. the 2-way FST
(Figure 3).

Third, it is theoretically interesting that within
morpho-phonology, only reduplication requires
the bidirectional power of 2-way FSTs. The bulk
of morphology and phonology can be modeled
with non-deterministic 1-way finite-state trans-
ducers (Beesley and Karttunen, 2003; Jardine,
2016) or subclasses of them (Chandlee, 2017).
As a copying process, reduplication requires more
than just 1-way finite-state technology. This may
be a sign that it is of a different nature than the rest
of morpho-phonology (Inkelas and Zoll, 2005; Ur-
banczyk, 2017). It is an open question if 2-way
FSTs can likewise be used to model copying in
other areas of natural language, including syntac-
tic copying (Kobele, 2006).

Fourth, in the same way that Chandlee 2014;
2017 and Chandlee et al. (2014, 2015) have stud-
ied subclasses of 1-way FSTs and shown how they
map to subclasses of morpho-phonology, we are
currently investigating what proper subclasses of
2-way FSTs can be designed in order to make a
tighter fit with reduplicative typology. This would

open doors to not only better understanding the
computational properties of reduplication, but to
likewise develop learning algorithms for redupli-
cation. As of now, we hypothesize that a large
majority of reduplicative fall under a sub-class of
2-way FSTs (that we have discovered) based on a
2-way extension of the Output-Strictly Local sub-
class of 1-way FSTs (Chandlee et al., 2015). For
more discussion of this subclass for reduplication
and its learnability, see Dolatian and Heinz (2018).

In sum, the present study is the initial step
in formalizing the wide typology of reduplicative
processes into mathematically sound, yet expres-
sively adequate, formal-language theoretic terms.
Future work will include incorporating this tech-
nology into existing platforms and NLP systems,
and further bridging the gaps between computa-
tional and theoretical morpho-phonology.

Acknowledgments

This research is supported by NIH grant #R01-
HD087133 to JH. We thank the reviewers and au-
diences at CLS53, NAPhCX, the University of
Delaware, and Stony Brook University.

References
Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-

man. 1969. A general theory of translation. Mathe-
matical Systems Theory, 3(3):193–221.

Daniel M. Albro. 2000. Taking primitive Optimal-
ity Theory beyond the finite state. In Finite-state
phonology: proceedings of the 5th Workshop of SIG-
PHON, pages 57–67.

Daniel M. Albro. 2005. Studies in Computational
Optimality Theory, with Special Reference to the
Phonological System of Malagasy. Ph.D. thesis,
University of California, Los Angeles, Los Angeles.

Cyril Allauzen and Michael Riley. 2012. A pushdown
transducer extension for the OpenFst library. In Im-
plementation and Application of Automata, pages
66–77, Berlin, Heidelberg. Springer.

75

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Implementation and Application of Au-
tomata, pages 11–23, Berlin, Heidelberg. Springer.

Rajeev Alur. 2010. Expressiveness of streaming string
transducers. In Proceedings of the 30th Annual Con-
ference on Foundations of Software Technology and
Theoretical Computer Science,, volume 8, page 112.

Rajeev Alur and Jyotirmoy V. Deshmukh. 2011. Non-
deterministic streaming string transducers. In Au-
tomata, Languages and Programming, pages 1–20,
Berlin, Heidelberg. Springer.

Rajeev Alur, Adam Freilich, and Mukund
Raghothaman. 2014. Regular combinators for
string transformations. In Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14,
pages 9:1–9:10, New York, NY, USA. ACM.

Rajeev Alur and Pavol Černý. 2011. Streaming trans-
ducers for algorithmic verification of single-pass
list-processing programs. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL
’11, pages 599–610, New York, NY, USA. ACM.

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and
Gabriele Puppis. 2016. Minimizing Resources of
Sweeping and Streaming String Transducers. In
43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2016), vol-
ume 55 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 114:1–114:14, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

Kenneth R. Beesley and Lauri Karttunen. 2000. Finite-
state non-concatenative morphotactics. In Proceed-
ings of the 38th Annual Meeting on Association for
Computational Linguistics, ACL ’00, pages 191–
198, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite-
state morphology: Xerox tools and techniques.
CSLI Publications.

Mikołaj Bojańczyk. 2014. Transducers with origin in-
formation. In Automata, Languages, and Program-
ming, pages 26–37, Berlin, Heidelberg. Springer.

Ellen Broselow and John McCarthy. 1983. A theory
of internal reduplication. The Linguistic Review,
3(1):25–88.

Jane Chandlee. 2014. Strictly Local Phonological
Processes. Ph.D. thesis, University of Delaware,
Newark, DE.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 1–43.

Jane Chandlee, Angeliki Athanasopoulou, and Jeffrey
Heinz. 2012. Evidence for classifying metathesis
patterns as subsequential. In The Proceedings of the
29th West Coast Conference on Formal Linguistics,
pages 303–309, Somerville, MA. Cascillida Press.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential func-
tions. Transactions of the Association for Compu-
tational Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. In Proceedings of
the 14th Meeting on the Mathematics of Language
(MoL 2015), pages 112–125, Chicago, USA.

Jane Chandlee and Jeffrey Heinz. 2012. Bounded
copying is subsequential: Implications for metathe-
sis and reduplication. In Proceedings of the 12th
Meeting of the ACL Special Interest Group on Com-
putational Morphology and Phonology, SIGMOR-
PHON ’12, pages 42–51, Montreal, Canada. Asso-
ciation for Computational Linguistics.

Christian Choffrut. 1977. Une caractérisation des
fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. The-
oretical Computer Science, 5(3):325–337.

Michal P. Chytil and Vojtěch Jákl. 1977. Serial com-
position of 2-way finite-state transducers and simple
programs on strings. In Automata, Languages and
Programming, pages 135–147, Berlin, Heidelberg.
Springer.

Yael Cohen-Sygal and Shuly Wintner. 2006. Finite-
state registered automata for non-concatenative mor-
phology. Computational Linguistics, 32(1):49–82.

Abigail C Cohn. 1989. Stress in Indonesian and brack-
eting paradoxes. Natural language & linguistic the-
ory, 7(2):167–216.

Bruno Courcelle and Joost Engelfriet. 2012. Graph
Structure and Monadic Second-Order Logic, a Lan-
guage Theoretic Approach. Cambridge University
Press.

Berthold Crysmann. 2017. Reduplication in a compu-
tational HPSG of Hausa. Morphology, 27(4):527–
561.

Karel Culik and Juhani Karhumäki. 1986. The equiva-
lence of finite valued transducers (on HDT0L lan-
guages) is decidable. Theoretical Computer Sci-
ence, 47:71 – 84.

Christopher Culy. 1985. The complexity of the vo-
cabulary of Bambara. Linguistics and philosophy,
8:345–351.

76

Hossep Dolatian and Jeffrey Heinz. 2018. Learning
reduplication with 2-way finite-state transducers. In
Proceedings of Machine Learning Research: Inter-
national Conference on Grammatical Inference, vol-
ume 93 of Proceedings of Machine Learning Re-
search, pages 67–80, Wroclaw, Poland.

Hossep Dolatian and Jeffrey Heinz. In press. Redupli-
cation with finite-state technology. In Proceedings
of the 53rd Annual Meeting of the Chicago Linguis-
tics Society.

Laura J Downing. 1998. Prosodic misalignment and
reduplication. In Geert Booij and Jaap van Marle,
editors, Yearbook of Morphology 1997, pages 83–
120. Kluwer Academic Publishers, Dordrecht.

Laura J Downing. 2000. Morphological and
prosodic constraints on Kinande verbal reduplica-
tion. Phonology, 17(01):1–38.

C. C. Elgot and J. E. Mezei. 1965. On relations de-
fined by generalized finite automata. IBM Journal
of Research and Development, 9(1):47–68.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001.
MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic,
2(2):216–254.

Emmanuel Filiot and Pierre-Alain Reynier. 2016.
Transducers, logic and algebra for functions of finite
words. ACM SIGLOG News, 3(3):4–19.

Brian Gainor, Regine Lai, and Jeffrey Heinz. 2012.
Computational characterizations of vowel harmony
patterns and pathologies. In The Proceedings of the
29th West Coast Conference on Formal Linguistics,
pages 63–71, Somerville, MA. Cascillida Press.

Kyle Gorman. 2016. Pynini: A python library for
weighted finite-state grammar compilation. In Pro-
ceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata, pages 75–80. Asso-
ciation for Computational Linguistics.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language (MoL 13),
pages 52–63, Sofia, Bulgaria. Association for Com-
putational Linguistics.

John E Hopcroft and Jeffrey D Ullman. 1969. Formal
languages and their relation to automata. Addison-
Wesley Longman Publishing Co., Inc., Boston:MA.

Mans Hulden. 2009a. Finite-state machine construc-
tion methods and algorithms for phonology and
morphology. Ph.D. thesis, The University of Ari-
zona, Tucson, AZ.

Mans Hulden. 2009b. Foma: a finite-state compiler
and library. In Proceedings of the Demonstrations
Session at EACL 2009, pages 29–32. Association for
Computational Linguistics.

Mans Hulden and Shannon T Bischoff. 2009. A simple
formalism for capturing reduplication in finite-state
morphology. In Proceedings of the 2009 conference
on Finite-State Methods and Natural Language Pro-
cessing: Post-proceedings of the 7th International
Workshop FSMNLP 2008, pages 207–214, Amster-
dam. IOS Press.

Bernhard Hurch, editor. 2005. Studies on reduplica-
tion. 28. Walter de Gruyter, Berlin.

Bernhard Hurch. 2005 ff. Graz database on redu-
plication. Last accessed 10-26-2017 from http:
//reduplication.uni-graz.at/redup/.

Sharon Inkelas and Laura J Downing. 2015. What is
reduplication? Typology and analysis part 1/2: The
typology of reduplication. Language and Linguis-
tics Compass, 9(12):502–515.

Sharon Inkelas and Cheryl Zoll. 2005. Reduplication:
Doubling in Morphology. Cambridge University
Press, Cambridge.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33(2):247–283.

Ronald Kaplan and Martin Kay. 1994. Regular models
of phonological rule systems. Computational Lin-
guistics, 20(3):331–378.

Gregory Michael Kobele. 2006. Generating Copies:
An investigation into structural identity in language
and grammar. Ph.D. thesis, University of Califor-
nia, Los Angeles.

Huan Luo. 2017. Long-distance consonant agreement
and subsequentiality. Glossa: a journal of general
linguistics, 2(1):125.

Ian Maddieson. 2013a. Consonant Inventories. Max
Planck Institute for Evolutionary Anthropology,
Leipzig.

Ian Maddieson. 2013b. Vowel Quality Inventories.
Max Planck Institute for Evolutionary Anthropol-
ogy, Leipzig.

Alec Marantz. 1982. Re reduplication. Linguistic in-
quiry, 13(3):435–482.

Veronika Mattes. 2007. Reduplication in Bikol. Ph.D.
thesis, University of Graz, Graz, Austria.

John J McCarthy, Wendell Kimper, and Kevin Mullin.
2012. Reduplication in harmonic serialism. Mor-
phology, 22(2):173–232.

John J McCarthy and Alan Prince. 1995. Faithful-
ness and reduplicative identity. In Jill N. Beckman,
Laura Walsh Dickey, and Suzanne Urbanczyk, ed-
itors, Papers in Optimality Theory. Graduate Lin-
guistic Student Association, University of Mas-
sachusetts, Amherst, MA.

http://reduplication.uni-graz.at/redup/
http://reduplication.uni-graz.at/redup/

77

John J McCarthy and Alan S Prince. 1994. The emer-
gence of the unmarked: Optimality in prosodic mor-
phology. In Proceedings of the North East Linguis-
tic Society 24, page 33379, Amherst, MA. Graduate
Linguistic Student Association, University of Mas-
sachusetts.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269–311.

Edith Moravcsik. 1978. Reduplicative constructions.
In Joseph Greenberg, editor, Universals of Human
Language, volume 1, pages 297–334. Stanford Uni-
versity Press, Stanford, California.

Ajit Narayanan and Lama Hashem. 1993. On ab-
stract finite-state morphology. In Proceedings of the
Sixth Conference on European Chapter of the As-
sociation for Computational Linguistics, EACL ’93,
pages 297–304, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Amanda Payne. 2014. Dissimilation as a subsequential
process. In NELS 44: Proceedings of the 44th Meet-
ing of the North East Linguistic Society, volume 2,
pages 79–90, Amherst, MA. Graduate Linguistic
Student Association, University of Massachusetts.

Amanda Payne. 2017. All dissimilation is compu-
tationally subsequential. Language: Phonological
Analysis, 93(4):e353–e371.

Christopher Potts and Geoffrey K Pullum. 2002.
Model theory and the content of OT constraints.
Phonology, 19(3):361–393.

Jason Riggle. 2004. Nonlocal reduplication. In Pro-
ceedings of the 34th meeting of the North Eastern
Einguistics Society. Graduate Linguistic Student As-
sociation, University of Massachusetts.

Brian Roark and Richard Sproat. 2007. Computa-
tional Approaches to Morphology and Syntax. Ox-
ford University Press, Oxford.

Carl Rubino. 2005. Reduplication: Form, function and
distribution. In Studies on reduplication, pages 11–
29. Mouton de Gruyter, Berlin.

Carl Rubino. 2013. Reduplication. Max Planck Insti-
tute for Evolutionary Anthropology, Leipzig.

Bridget Samuels. 2010. The topology of infixation and
reduplication. The Linguistic Review, 27(2):131–
176.

Walter J Savitch. 1982. Abstract machines and gram-
mars. Little Brown and Company, Boston.

Walter J Savitch. 1989. A formal model for context-
free languages augmented with reduplication. Com-
putational Linguistics, 15(4):250–261.

Marcel-Paul Schützenberger. 1975. Sur certaines
opérations de fermeture dans les langages rationnels.
In Symposia Mathematica, volume 15, pages 245–
253.

Jeffrey Shallit. 2008. A Second Course in Formal Lan-
guages and Automata Theory, 1 edition. Cambridge
University Press, New York, NY, USA.

Richard William Sproat. 1992. Morphology and com-
putation. MIT press, Cambridge:MA.

Thomas Stolz, Cornelia Stroh, and Aina Urdze. 2011.
Total reduplication: The areal linguistics of a poten-
tial universal, volume 8. Walter de Gruyter, Berlin.

Suzanne Urbanczyk. 1999. Double reduplications in
parallel. In René Kager, Harry vn der Hulst, and
Wim Zonneveld, editors, The prosody-morphology
interface, pages 390–428. Cambridge University
Press, Cambridge.

Suzanne Urbanczyk. 2017. Phonological and morpho-
logical aspects of reduplication.

Markus Walther. 2000. Finite-state reduplication in
one-level prosodic morphology. In Proceedings of
the 1st North American chapter of the Association
for Computational Linguistics conference, NAACL
2000, pages 296–302, Stroudsburg, PA. Association
for Computational Linguistics.

Ronnie B Wilbur. 2005. A reanalysis of reduplication
in american sign language. In Studies on reduplica-
tion, pages 595–623. Berlin: Mouton de Gruyter.

