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Abstract

Computational Language Documentation at-
tempts to make the most recent research in
speech and language technologies available
to linguists working on language preservation
and documentation. In this paper, we pursue
two main goals along these lines. The first is
to improve upon a strong baseline for the unsu-
pervised word discovery task on two very low-
resource Bantu languages, taking advantage of
the expertise of linguists on these particular
languages. The second consists in exploring
the Adaptor Grammar framework as a decision
and prediction tool for linguists studying a new
language. We experiment 162 grammar con-
figurations for each language and show that
using Adaptor Grammars for word segmenta-
tion enables us to test hypotheses about a lan-
guage. Specializing a generic grammar with
language specific knowledge leads to great im-
provements for the word discovery task, ulti-
mately achieving a leap of about 30% token
F-score from the results of a strong baseline.

1 Introduction

A large number of the world’s languages are ex-
pected to go extinct during this century — as
much as half of them according to Crystal (2002)
and Janson (2003). Such predictions have subse-
quently fostered a growing interest for a new field,
Computational Language Documentation (CLD),
as it is now clear that traditional field linguistics
alone will not meet the challenge of preserving
and documenting all of these languages.

CLD attempts to make the most recent research
in speech and language technologies available to
linguists working on language preservation and
documentation (e.g. (Anastasopoulos and Chiang,
2017; Adams et al., 2017)). A remarkable effort
in this direction has improved the data collection
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tools to be used on the field (Bird et al., 2014; Bla-
chon et al., 2016), enabling to collect corpora for
several endangered languages (Adda et al., 2016).
In parallel, the language technology community is
investing more efforts to design methodologies tai-
lored for the new challenges posed by the analysis
of such linguistic material: the extreme variability
of the orthographic representation, the scarcity of
annotated data (both written and oral), as well as
the modeling of complex tonal systems.

This effort could greatly benefit from a tighter
collaboration between the two main research com-
munities involved in this endeavor, which often
struggle to cooperate efficiently. Knowledge back-
ground differs between linguists and computer sci-
entists; the definition of why a problem is inter-
esting or not may not be the same for the two
communities, theoretical and experimental plat-
forms do not intersect much, etc. Consequently,
for lack of investing enough energy working on
the same problems with the same tools and to-
wards the same goals, we might not achieve the
efficiency that is needed, as time is running out for
many languages. This view constitutes the under-
lying motivation of the work reported here.

We pursue two main goals in this spirit. The
first one is to improve upon a strong baseline
(Goldwater et al., 2009) for the unsupervised word
discovery task' on two low-resource languages, by
teaming up with linguist experts. A natural idea to
achieve this goal is to engage them in formalizing
their linguistic knowledge regarding the languages
or language families under study, in the hope that
it will compensate for the small amount of avail-
able data. In our case, this expertise corresponds
to morphological and phonotactic constraints for

"We indifferently use the terms word discovery and word
segmentation to denote the task defined in Section 2.2.
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two Bantu languages displaying very similar struc-
tures (see Section 3). For one language, we were
also able to elicit a list of prefixes and some ad-
ditional knowledge regarding the consonantal sys-
tem. Such expert knowledge can readily be inte-
grated in grammar rules using the framework of
Adaptor Grammars (see Section 6). Another in-
teresting property of this framework is its compat-
ibility with two strategies that are usually thought
as being mutually exclusive: rule-based learning,
still in wide use inside the linguistics community,
and statistical learning, prevalent in natural lan-
guage processing circles.

Our second goal is to study ways to help lin-
guists explore language data when little expert
knowledge is available. Our proposal is to com-
plement the grammatical description activity with
task-oriented search procedures, that will speed
up the exploration of competing hypotheses. The
intuition is that better grammars should not only
truthfully match the empirical data, but also im-
prove the quality of automatic analysis processes.
The word discovery task considered below should
thus be viewed as an extrinsic validation proce-
dure, rather than a goal in and of itself. This pro-
cess might also yield new linguistic insights re-
garding the language(s) under focus.

To sum up, the main contribution of this paper
is a methodology for systematically exploring (a
subpart of) the space of possible grammars, refin-
ing grammar rules (from the most generic to the
most language specific) at four levels of descrip-
tion (see Section 4). This results in a compari-
son of 162 alternative accounts of the grammar
for two languages. Our results (analyzed in Sec-
tion 5) show that enriching grammar rules with
language specific knowledge has a consistent pos-
itive impact in performance for the segmentation
task. They validate our hypotheses that (a) im-
proved grammatical descriptions actually correlate
with better automatic analysis; (b) Adaptor Gram-
mars provide a framework around which linguists
and computer scientists can effectively collabo-
rate, with tangible results for both communities.

2 Adaptor Grammars for Word Discovery

2.1 Adaptor Grammars

Formal grammars, and notably Context-Free
Grammars (CFGs), are a cornerstone of linguistic
description and provide a model for the structural
description of linguistic objects. Our grammars

33

capture simple aspects of the syntax and some less
trivial aspects of the morphological and phonolog-
ical structures. As discussed below, both levels of
descriptions are useful for word discovery.

A CFGisa4-tuple G = (N, W, R, S) where N
and W are respectively the non-terminal and ter-
minal symbols, R a finite set of rules of the form
A — B, withA e Nand g € (NUW)*, and
S € N the start symbol. Our grammars will be
used to analyze the structure of complete utter-
ances and the start symbol S will always corre-
spond to the sentence top-level. Assuming that S,
Words, and Word belong to N, the top level rules
will typically look like: S — Words; Words —
Word Words; Words — Word, the last two rules
abbreviated as Words — Word +.

Probabilistic CFGs (PCFGs) (Johnson, 1998)
extend this model by associating each rule with
a scalar value 64,3, such that for each A € N,
Eﬂ 04— = 1. Under some technical condi-
tions (Chi, 1999), PCFGs define probability dis-
tributions over the set of parse trees, where the
probability of a tree is a product of the probabil-
ity of the rules it contains. PCFGs can be learned
in a supervised way from treebanks or in a unsu-
pervised manner using, for instance, the EM algo-
rithm (Lari and Young, 1990).

PCFGs make unrealistic independence assump-
tions between the different subparts of a tree,
an observation that has yielded many subsequent
variations and extensions. Adaptor grammars
(AGs) (Johnson et al., 2007) define a powerful
mechanism to manipulate PCFG distributions to
better match the occurrences of trees and sub-
trees observed in actual corpora. Informally, an
AG is a CFG where non-terminals have the pos-
sibility to be adapted: when non-terminal A is
adapted, all subtrees rooted in A are “reified”,
meaning that they are no-longer viewed only as
decomposable objects, but can also be manipu-
lated and stored as a whole. In our grammars
below, adapted non-terminals are underlined, and
optional non-terminals appear between brackets.
Following (Johnson et al., 2007), we only adapt
non-recursive non-terminals.’

AGs define a framework to implement Bayesian
nonparametric learning of grammars, and are usu-
ally trained in an unsupervised manner using
sampling techniques (Monte-Carlo Markov Chain,

2 A non-terminal A is recursive if R contains a rule where
A appears both in the left and right-hand sides.



MCMO). A typical run will produce, for each sen-
tence, a distribution of possible parses under the
grammar, from which we can then retain the most
frequent one as the “best” possible analysis.’

2.2 Word Segmentation using AGs

In this work, we are interested in the word segmen-
tation task: from an unsegmented stream of sym-
bols, the system must output delimited sequences
corresponding to actual words in the language. For
this, we assume a linguistic grammar (, which
parses sequences of letters (or phones) as being or-
ganized into Words, which themselves recursively
decompose into smaller units such as Morphs,
Syllables, etc. To induce word segmentation from
parse trees, we will consider that each span cov-
ered by the non-terminal symbol Word defines a
linguistic word, even though in a fully unsuper-
vised setting, this non-terminal might actually cor-
respond to larger or smaller linguistic units. Fig-
ure 2 illustrates this on two example parses.
Likewise, when examining the output of the
training process, we are in a position to collect sets
of word types (or morph types, syllable types, etc.)
and will do so based only on the identity of the
root symbol, i.e. without any certainty regarding
the linguistic status of the collected sequences.

3 Linguistic material

3.1 Mboshi and Myene

We experiment with two Northwestern Bantu Lan-
guages: Mboshi (Bantu C25), a language spoken
in Congo-Brazzaville, and Myene (B10, Gabon),
a cluster of six mutually intelligible varieties
(Adyumba, Enenga, Galwa, Mpongwe, Nkomi
and Orungu) spoken at the coastal areas and
around the town of Lambarene in Gabon.* Unlike
southern Bantu relatives such as Swabhili, Sotho
or Zulu, Mboshi and Myene are scarcely stud-
ied, protected, and resourced. We briefly describe
the main aspects related to phonetics, phonology,
morphology, and tonology of these languages.
Phonetics and phonology. Mboshi and Myene
both have a seven vowel system (i, e, €, a, 0,
0, u). Mboshi has an opposition between long
and short vowels, which does not exist in Myene.
Mboshi consonantal system includes the follow-
ing phonemes: p, t, k, b, d, B, 1, r, m, n, p, mb,

3In practice, we will retain the most frequent segmenta-
tion rather than the most frequent parse (see Section 2.2).
*Our Myene data correspond to the Orungu variant.
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nd, ndz, ng, mbv, f, s, y, pf, bv, ts, dz, w, j. It
has a set of prenasalized consonants (mb, nd, ndz,
ng, mbv) which is common in Bantu languages
(Embanga Aborobongui, 2013; Kouarata, 2014).
Myene includes the following phonemes: p, t, k, b,
d, B, Lr,m,n,f,s, gy v,1,w, z— many of them
with variants of realization. Prenasalized conso-
nants exist also in Myene (Ambouroue, 2007).

While both languages can be considered as
rarely written, linguists have nonetheless defined
a non-standard graphemic form for them, consid-
ered to be close to the language phonology. Af-
fricates and prenasalized plosives are coded using
multiple symbols (e.g. two symbols for dz, three
for mbv). For Mboshi, long and short vowels are
coded respectively as V and as VV. In Myene, the
transcription of the corpus involves not only the
phoneme set, but also the main variants (p, tf, dz)
and some marginal sounds found in loanwords.

Both languages display a complex set of phono-
logical rules. The deletion of a vowel before
another vowel in particular, common in Bantu
languages, occurs at 40% of word junctions in
Mboshi (Rialland et al., 2015). This tends to ob-
scure word segmentation and introduces an addi-
tional challenge for automatic processing.

Morphology. Words are composed of roots and
affixes, and almost always include at least one pre-
fix, while the presence of several prefixes and one
suffix is also very common. The suffix structure
mostly consists of a single vowel V (e.g. -a or -i)
whereas the prefix structure may be both CV or V
(or CVV in Mboshi). The most common syllable
structures are V and CV in both languages. CVC
also occurs in Myene, and CVV in Mboshi.’

The noun class prefix system is another fea-
ture typical of Bantu languages. For both lan-
guages, the structure of the verbs, also common
in Bantu languages, is as follows: Subject Marker
— Tense/Mood Marker — Root-derivative Exten-
sions — Final Vowel. A verb can be very short or
quite long, depending on the markers involved.

Tonology. Prosodic systems for both Mboshi
and Myene involve tones, but the transcribed data
used for this work do not encode tone markers.
Experiments to assess the usability of tonal infor-
mation for word segmentation were conducted in
(Godard et al., 2018b).

5CCV may also arise due to the presence of affricates and
prenasalized plosives mentioned in this section.



language  #sent #tokens #types avg. token length
Mboshi 5130 30,556 5,312 4.19
Myene 4,579 18,047 4,190 4.72

Table 1: Corpora Statistics

3.2 Corpora for Mboshi and Myene

Corpora for Mboshi and Myene were collected
following a real language documentation sce-
nario, using a mobile app dedicated to fieldwork
language documentation (Blachon et al., 2016).
These corpora contain manual transcriptions in the
form of a non-standard graphemic form close to
the languages’ phonology. The correct word seg-
mentations for these transcripts were also anno-
tated by linguists. Basic statistics are in Table 1.
The Mboshi corpus is more comprehensively de-
scribed in (Godard et al., 2018a).°

4 Grammars

4.1 Structuring Grammar Sets

Our starting point is the set of grammars used
in (Johnson and Goldwater, 2009) and (Eskan-
der et al., 2016) which we progressively specialize
through an iterative refinement process involving
both field linguists and computer scientists. As we
wish to evaluate specific linguistic hypotheses, the
initial space of interesting grammars has been gen-
eralized in a modular, systematic, and hierarchical
way as follows. We distinguish four sections in
each grammar: sentence, word, syllable, charac-
ter. For each section, we test multiple hypothe-
ses, gradually incorporating more linguistic struc-
ture. Every hypothesis inside a given section can
be combined with every hypothesis of any other
section,’” thereby allowing us to explore a large
quantity of grammars and to analyze the contri-
bution of each particular hypothesis.

4.2 The Full Grammar Landscape

All the grammar sections (sentence, word, sylla-
ble, character) experimented in this paper are de-
tailed in Figure 1. We describe below the way each
section was designed.

This dataset has already been used in several
studies targeting endangered languages and is avail-
able at http://www.islrn.org/resources/
747-055-093-447-8/.

"Note that if a non-terminal is absent from a hypothesis
(e.g. Syllable in a word level hypothesis), the corresponding
non-terminal in the subsequent hypotheses (e.g. at the sylla-
ble level) will be ignored.
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e sentence level: we model 3 different hier-
archies of words. We introduce first the
flat variety with two rules generating right-
branching parse trees. colloc adds a sin-
gle level of word collocation, aimed to cap-
ture recurrent local word associations (such
as frequent bigrams); colloc3 displays a
deeper hierarchical structure with three lev-
els of collocations. Exploring more realistic
syntactic structures is left for future work.

word level: here we propose 6 competing
hypotheses. flat is similar to previous
sentence variety but at the word level in-
stead of the sentence level. generic cor-
responds to a more structured version of
flat, as the specification of a sequence of
5 adapted morphemes allows, in principle,
the Adaptor Grammar to learn some mor-
photactics. bantu defines a generic mor-
phology for Bantu languages. basaa im-
plements the morphology of a well-studied
Bantu language, Basaa (A43 (Hamlaoui
and Makasso, 2015)). mboshi/myene
corresponds to a somewhat crude mor-
phology of Mboshi, also applicable to
Myene. Last mboshi/myene_NV refines
mboshi/myene with a specification of the
morphology of nouns and verbs. Addi-
tionally, for basaa, mboshi/myene and
mboshi/myene_NV which introduce a no-
tion of prefix, we also test a variant (called re-
spectively basaa+, mboshi/myene+ and
mboshi/myene_NV+) containing an ex-
plicit list of prefixes in Mboshi.

syllable level: we contrast 3 hypotheses :
flat is similar to previous sentence and
word varieties but at the syllable level, defin-
ing the syllable as a mere sequence of char-
acters. generic/basaa is a generic set
of rules modeling phonotactics applicable
to a wide scope of languages (including
Basaa mentioned in the preceding level).
bantu/mboshi/myene displays a set of
rules more specific to Mboshi and Myene.?

character level: rules in the chars set sim-
ply rewrite the characters (terminals) ob-

81n theory, we should not include a coda in this last hy-
pothesis, but loanwords and proper names in our data made
the Adaptor Grammar fail to parse without a coda. To de-
crease the impact of this rule, we chose not to adapt the cor-
responding non-terminal, in contrast to generic/basaa.


http://www.islrn.org/resources/747-055-093-447-8/
http://www.islrn.org/resources/747-055-093-447-8/

Words — Word+
flat (A1)

Word — Morphs
Morphs — Morph+
Morph — Chars

flat (B1)

Word — (Prefix) Stem (Suffix
Prefix — Syllable

Suffix — Syllable

Stem — Syllable

Stem — Syllable Syllable

basaa (B4)

Syllable — Chars
Chars — Char+

flat (C1)

Sentence level (A)

Collocs — Colloc+
Colloc — Words
Words — Word+

colloc (A2)

Word level (B)

Word — M1 (M2 (M3 (M4 (M5))))
MI — Chars
M2 — Chars
M3 — Chars
M4 — Chars
M5 — Chars

generic (B2)

Word — (Prefix1 (Prefix2)) Stem (Suffix)
Prefix] — Syllable

Prefix2 — Syllable

Suffix — Syllable

Stem — Syllable (Syllable)

mboshi/myene (B5)

Syllable level (C)

Syllable — (Onset) Rhyme
Rhyme — Nucleus (Coda
Onset — Consonants
Nucleus — Vowels

Coda — Consonants
Consonants — Consonant+
Vowels — Vowel+

Chars — Char+

generic/basaa (C2)

Colloc3s — Colloc3+
Colloc3 — Colloc2s
Colloc2s — Colloc2+
Colloc2 — Collocs
Collocs — Colloc+
Colloc — Words
Words — Word+

colloc3 (A3)

Word — (Prefixes) Stem (Suffixes)
Prefixes — Chars

Stem — Chars

Suffixes — Chars

bantu (B3)

Word — Noun

Word — Verb

Word — Chars

Noun — (PrefixNoun) Stem (Suffix)
Verb — (Prefix1 (Prefix2)) Stem
PrefixNoun — Syllable

Prefix] — Syllable

Prefix2 — Syllable

Suffix — Syllable

Stem — Syllable (Syllable (Syllable)

mboshi/myene NV (B6)

Syllable — (Onset) Rhyme
Rhyme — Nucleus (Coda)
Onset — Consonants
Nucleus — Vowel (Vowel)
Coda — Consonants
Consonants — Consonant+
Chars — Char+

bantu/mboshi/myene (C3)

Character level (D)
Char — Vowel % —o0
Char — Consonant refix — 1
Prefix — e
Vowel — u N
Prefix — a
Vowel — o Prefi 1
Vowel — i Consonant — m b ﬁ - | e
Vowel — a Consonant — n d Preﬁx - | a
Vowel — e Consonant — nd z Prefix — 111
{basaa,mboshi/myene, mboshi/myene NV}+
chars (D1) chars+ (D1+) (B{4,5,6}+)
Figure 1: Grammar rules for all the hypotheses presented in Section 4.
‘Words
Words
Word ‘Word Word
Word Word Word Word
Mo‘rph Mo‘rph Mo‘rph Mo‘tph sim Premm Pref{\StEm
\ \ \ \ PN | ‘ \ \
Chars Chars Chars Chars Syllable Syllable a Syllable o Syllable
P
0 g ! T & o % T 5%
o r o a m i ! o b e m i i

A3BICIDI, “moro ami i obe” A3B5C2D1+, “moro amii obe” (correct word segmentation)

Figure 2: Examples of parses — some non-terminals have been omitted for readability — obtained with two
grammars, and the corresponding word segmentation for Mboshi sentence “Moro a-mii o-be”. (CL1.man
3SG-swallow.PST CL14-bad; since Moro is an irregular noun, the prefix and the stem are difficult to
separate, which is signaled by a dot, following the Leipzig glossing rules.)
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served in our data. chars+ adds rules to
capture the digraphs or trigraphs occurring in
Mboshi (see details in Section 3).

S Experiments and Discussion

We now experiment along the methodology pre-
sented in Section 4. We report word segmenta-
tion performance using precision, recall, and F-
measure on tokens (WP, WR, WF), and types (LP,
LR, LF). We also report the exact-match (X) met-
ric which calculates the proportion of correctly
segmented utterances.’

In all the figures, and in this section, we use
the following compact names for grammatical hy-
potheses at each level:

e Al (flat), A2 (colloc), A3 (colloc3l),

e Bl (flat), B2 (generic), B3 (bantu),
B4 (basaa), B5 (mboshi/myene), B6
(mboshi/myene_NV), with additional “+”
variants for B4, B5, and B6 when a list
of prefixes is provided, for instance B6+
(mboshi/myene_NV+),

e Cl (flat), C2 (generic/basaa), C3
(bantu/mboshi/myene),

e DI (chars), DI+ (chars+).

For each language, we evaluate our 162 gram-
mar configurations using Mark Johnson’s code,'?
collecting parses after 2,000 sampling steps.!! We
adapt all non-recursive non-terminals and use a
Dirichlet prior to estimate the rule probabilities.
We place a uniform Beta prior on the discount pa-
rameter of the Pitman-Yor process, and a vague
Gamma prior on the concentration parameter.

Figure 3 presents token metrics (WP, WR, WF)
and type metrics (LP, LR, LF), as well as sentence
exact-match (X) for both corpora on all grammars.

5.1

Impact of sentence level variants We can see
in Figure 3 that A2 and A3 hypotheses globally
yield better results than A1 in both languages. For

Word Segmentation Results

The exact-match metric includes single-word utterances.

Ohttp://web.science.mg.edu.au/
~mjohnson/Software.htm

"'The large number of experiments we are dealing with did
not allow us to average over several runs. Stable results were
obtained on a subset of grammars. Two particular configura-
tions in Mboshi (A3-B6-C3-D1+ and A1-B6-C1-D1) did not
reach 2,000 iterations within the maximum wall clock time
allowed by the cluster used for these experiments (2 weeks),
and are left out of the discussion.
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Mboshi, the benefit of A3 vs. A2 appears espe-
cially on token metrics (WP, WR, WF), but this
contrast is less clear on Myene. For both lan-
guages, however, our results confirm that model-
ing collocation-like word groups at the sentence
level is important. These word dependencies seem
indeed related to a universal linguistic property.

Impact of word level variants If we now focus
solely on the A3 hypothesis for Myene in Figure 3,
we observe a general trend upwards for all metrics.
The benefit of gradually using more language-
specific grammars, from B1 to B6+, is clear.
While this trend is also observed for Mboshi, the
less specific B3 hypothesis yields the strongest re-
sults on token metrics (WP, WR, WF). Precision
on types (LP) with B3 is also the strongest, but
B6+ achieves better performance on type recall
and F-measure (LR and LF). The contrast between
B1 and B2 for all metrics on both languages (keep-
ing a focus on A3, but this can also be seen for Al
and A2) highlights the benefit of modeling some
morphotactics inside the word-level hypotheses,
which seems to correspond to another universal
linguistic property (the dependency between mor-
phemes inside a word).

Impact of syllable level variants It is difficult
to see a clear trend for the impact of syllable-level
variants in Figure 3. Importantly, the syllable level
will only be effective when combined with word
level variants B4, B5 and B6 (and their “+” ver-
sions) which model the concept of syllable: when
combined with B1, B2 or B3, each C level hy-
pothesis will default to its “Chars — Char+”
rule. Figure 4 illustrates the impact of C1, C2,
and C3 by averaging type and token F-measures
(LF and WF) over all grammar sections with a
syllable non-terminal (B4, B4+, B5, B5+, B6,
and B6+). The benefit of C2/C3 vs. C1 appears
more clearly, especially on type F-measures and
on Myene.'? Nevertheless, the impact of the syl-
lable level, and the capacity to incorporate phono-
tactics in our models, seems of less significance
for word segmentation than choices made at the
word and sentence levels.

Impact of character level variants In Figure 3,
it is also hard to see if there is any benefit in us-
ing D1+ over D1, i.e. adding digraphs or trigraphs

2The differences between C3 and C2, two very similar
hypotheses, are hardly significant.
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Figure 3: Word segmentation performance evaluated with token metrics (WP, WR, WF), type metrics
(LP, LR, LF), and sentence exact-match (X) for Mboshi (top) and Myene (bottom). All grammars are
broken down by A, B, C, and D levels (D1 shown %esfore D1+).
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Figure 4: Impact of C variants on Mboshi and
Myene. Token F-measure (WF) and type F-
measure (LF) are averaged over hypotheses B4,
B4+, B5, B5+, B6, and B6+.

to the consonant inventory. Averaging over all hy-
potheses at the A, B, and C levels do not exhibit
any clearer impact. It is likely that refined models
at the syllable level (C) compensate for a less accu-
rate consonant inventory through the adaptation of
their non-terminals, and do learn some phonotac-
tics. This would explain the weak contribution of
D1+. To test this hypothesis, we set the sentence
level to A3 (the best compromise for Mboshi and
Myene) and the word level to B1, B2, or B3 (lev-
els without a Syllable non-terminal, which can-
cels the effect of the syllable level C). The token
and type F-measures averaged over the considered
hypotheses are shown Figure 5. We do observe
a benefit in using the D1+ character variant in
Mboshi, but not in Myene. This is not surprising,
as the digraph and trigraph rules added by the D1+
variant are specific to Mboshi and do not cover the
inventory for Myene.

Stronger results in Myene Segmentation per-
formance is globally superior in Myene. This can
probably be explained by corpus statistics (see Ta-
ble 1), as the average number of words per sen-
tence is 3.94 in Myene, and 5.96 in Mboshi. Since
sentence boundaries are also word boundaries, the
proportion of already known word boundaries is
higher in Myene, which makes word segmentation
a harder task in Mboshi. Figure 3 also reveals an
interesting contrast: token results are higher than
type results in Myene, while the converse is true
in Mboshi. The token/type ratio (5.75 tokens for
one type in Mboshi, and 4.30 in Myene) indicates
a higher lexical diversity in Myene, which might
explain weaker results on types. Strong results on
types for Mboshi, on the other hand, show the ca-
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Figure 5: Impact of D variants on Mboshi and
Myene. Token F-measure (WF) and type F-
measure (LF) are averaged over hypotheses with
A level set to A3 and B level set to B1, B2, or B3.
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pacity of AGs to generalize well on low-frequency
events, a property of particular interest in the low-
resource scenario.

Comparison to an existing baseline Overall,
our best performing grammars are A3-B3-C3-
D1+ for Mboshi (64.78% token F-measure) and
A3-B6+-C2-D1 for Myene (72.62% token F-
measure). This result is about 30 points higher
than a strong Bayesian baseline, the Dirichlet
process-based bigram word segmentation system
of Goldwater et al. (2006, 2009), '* which yields
34.34% token F-score on Mboshi and 44.48% on
Myene.

5.2 How Can This Help a Linguist?

Our second goal is to understand more precisely
how such experiments can be useful for linguists,
beyond the benefit of having access to better auto-
matic word segmentation tools for their data.

Phonological status of complex consonants In
the analysis of the results (Section 5.1 above) we
showed the benefit of integrating digraphs or tri-
graphs in the consonants inventory for Mboshi.
This result is of special interest for linguists, since
it is in line with the most recent phonological anal-
yses of Mboshi (Embanga Aborobongui, 2013;
Kouarata, 2014; Amboulou, 1998) which agree
in recognizing complex consonants (represented
by digraphs or trigraphs) in the phonological in-
ventory of this language. The analysis of com-
plex consonants, in particular prenasalized conso-
nants, generated many debates in Bantu linguistics

Bhttps://homepages.inf.ed.ac.uk/
sgwater/resources.html.
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(Odden, 2015; Herbert, 1986; Downing, 2005).
The present experiments provide more substance
to support the integration of complex consonants
in the phonological inventory of Mboshi.

Learning prefixes without supervision Since
parses are produced to segment sentences into
words, it is possible to extract the most frequent
prefixes or suffixes (for B variants introducing
such a concept). The precision on the 20 most
frequently found prefixes for grammars without
prefix-supervision (B3, B4, BS and B6)'* reaches
58.21% in Mboshi, and 61.21% in Myene. The
capacity of AGs to learn true prefixes without su-
pervision could thus help linguists in the process
of documenting a new language. On the super-
vised variants (B4+, B5+, and B6+), the preci-
sion achieved in Mboshi is 61.11%, and 63.07%
in Myene: the benefit of the supervision is lim-
ited; token measures for Mboshi with these vari-
ants (Figure 3) nevertheless indicate a benefit for
word segmentation.

6 Related Work

AGs have been used to infer the structure of un-
segmented sequences of symbols, offering a plau-
sible modeling of language acquisition (Johnson,
2008b; Johnson and Goldwater, 2009); they have
also been used for the unsupervised discovery of
word structure, applied to the Sesotho language by
Johnson (2008a). One notable outcome of this lat-
ter study was to demonstrate the effectiveness of
having an explicit hierarchical model of word in-
ternal structure ; an observation that was one of
our primary motivations for using AGs in our lan-
guage documentation work. In this series of stud-
ies, AGs are shown to generalize models of unsu-
pervised word segmentations such as the Bayesian
nonparametric model of Goldwater (2006), deliv-
ering hierarchical (rather than flat) decompositions
for words or sentences.

While AGs are essentially viewed as an unsu-
pervised grammatical inference tool, several au-
thors have also tried to better inform grammar in-
ference with external knowledge sources. This is
the case of Sirts and Goldwater (2013), who study
a semi-supervised learning scheme combining an-
notated data (parse trees) with raw sentences. The
linguistic knowledge considered in (Johnson et al.,
2014) aims to better model function words in a

“We include B3 variant, interpreting its non-terminal
Prefixes as a prefix.

40

language acquisition setting: explicitly represent-
ing the occurrence of these short (typically mono-
syllabic) tokens in front of content-bearing words
was shown to improve the resulting word segmen-
tations. The work of Eskander et al. (2016) consid-
ers the use of additional dictionaries, storing par-
tial lists of prefixes or suffixes collected either on
the Internet, or discovered during a first round of
training. We study similar complementary infor-
mation, which are collected in close collaboration
with linguistic experts.

Various other extensions or applications of AGs
are worth mentioning, such as O’Donnell et al.
(2009), which generalizes AGs so as to adapt frag-
ments of subtrees (rather than entire subtrees).
Botha and Blunsom (2013) consider the adapta-
tion of grammars from a more general class than
context-free grammars (mildly context-sensitive
grammars), in order to model discontinuous frag-
ments in non-concatenative morphology. Finally,
Borschinger and Johnson (2014) propose to model
the role of stress cues in language learning.

7 Conclusion

This paper had two main goals: (1) improve upon
a strong baseline for the unsupervised discovery of
words in two very low-resource Bantu languages;
(2) explore the Adaptor Grammar framework as an
analysis and prediction tool for linguists studying
a new language.

Systematic experiments with 162 grammar con-
figurations for each language have shown that us-
ing AGs for word segmentation is a way to test lin-
guistic hypotheses during a language documenta-
tion process. Conversely, we have also shown that
specializing a generic grammar with language spe-
cific knowledge greatly improves word segmenta-
tion performance. In addition, our paper reports
word segmentation results that are way higher than
a Bayesian baseline. These results invite us to fur-
ther this collaboration, and to analyze more thor-
oughly the usability of output parses in speeding
up the documentation process.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. We also thank Ramy Eskan-
der for his help in the early stages of this research.
This work was partly funded by French ANR and
German DFG under grant ANR-14-CE35-0002
(BULB project).



References

Oliver Adams, Trevor Cohn, Graham Neubig, and
Alexis Michaud. 2017. Phonemic transcription of
low-resource tonal languages. In Proceedings of
the Australasian Language Technology Association
Workshop 2017, pages 53-60.

Gilles Adda, Sebastian Stiiker, Martine Adda-Decker,
Odette Ambouroue, Laurent Besacier, David Bla-
chon, Héleéne Bonneau-Maynard, Pierre Godard, Fa-
tima Hamlaoui, Dmitri Idiatov, Guy-Noél Kouarata,
Lori Lamel, Emmanuel-Moselly Makasso, Annie
Rialland, Mark Van de Velde, Frangois Yvon, and
Sabine Zerbian. 2016. Breaking the unwritten lan-
guage barrier: The Bulb project. In Proceedings of
SLTU (Spoken Language Technologies for Under-
Resourced Languages), Yogyakarta, Indonesia.

Célestin Amboulou. 1998.  Le Mbochi: Langue
Bantu Du Congo-Brazzaville (Zone C, Groupe C20).
Ph.D. thesis, INALCO, Paris.

Odette Ambouroue. 2007. Eléments de description de
Uorungu, langue bantu du Gabon (BI11b). Ph.D.
thesis, Université Libre de Bruxelles.

Antonios Anastasopoulos and David Chiang. 2017. A
case study on using speech-to-translation alignments
for language documentation. In Proceedings of the
2nd Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages, pages
170-178, Honolulu. Association for Computational
Linguistics.

Steven Bird, Florian R. Hanke, Oliver Adams, and Hae-
joong Lee. 2014. Aikuma: A mobile app for collab-
orative language documentation. ACL 2014.

David Blachon, Elodie Gauthier, Laurent Besacier,
Guy-Noél Kouarata, Martine Adda-Decker, and An-
nie Rialland. 2016. Parallel speech collection for
under-resourced language studies using the LIG-
Aikuma mobile device app. Procedia Computer Sci-
ence, 81:61-66.

Benjamin Borschinger and Mark Johnson. 2014. Ex-
ploring the Role of Stress in Bayesian Word Seg-
mentation using Adaptor Grammars. Transactions
of the Association of Computational Linguistics,
2:93-104.

Jan A. Botha and Phil Blunsom. 2013. Adaptor Gram-
mars for Learning Non-Concatenative Morphology.
In EMNLP, pages 345-356.

Zhiyi Chi. 1999.  Statistical properties of proba-
bilistic context-free grammars. Comput. Linguist.,
25(1):131-160.

David Crystal. 2002. Language Death. Cambridge
University Press. Cambridge Books Online.

Laura J. Downing. 2005. On the ambiguous segmen-
tal status of nasals in homorganic NC sequences.
In The Internal Organization of Phonological Seg-
ments, pages 183-216.

41

Georges Martial Embanga Aborobongui. 2013. Pro-
cessus segmentaux et tonals en Mbondzi — (variété
de la langue embosi C25). Ph.D. thesis, Université
Paris 3 Sorbonne Nouvelle.

Ramy Eskander, Owen Rambow, and Tianchun Yang.
2016. Extending the Use of Adaptor Grammars for
Unsupervised Morphological Segmentation of Un-
seen Languages. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 900-910, Os-
aka, Japan. The COLING 2016 Organizing Commit-
tee.

Pierre Godard, Gilles Adda, Martine Adda-Decker,
Juan Benjumea, Laurent Besacier, Jamison Cooper-
Leavitt, Guy-Noél Kouarata, Lori Lamel, Hélene
Maynard, Markus Miiller, Annie Rialland, Sebas-
tian Stiiker, Francois Yvon, and Marcely Zanon
Boito. 2018a. A Very Low Resource Language
Speech Corpus for Computational Language Doc-
umentation Experiments. In Proceedings of LREC,
Miyazaki, Japan.

Pierre Godard, Kevin Loser, Alexandre Allauzen, Lau-
rent Besacier, and Francois Yvon. 2018b. Unsu-
pervised learning of word segmentation: Does tone
matter ? In Proceedings of the 19th International
Conference on Computational Linguistics and Intel-
ligent Text Processing (CICLING), Hanoi, Vietnam.

Sharon Goldwater. 2006. Nonparametric Bayesian
Models of Lexical Acquisition. Ph.D. thesis, Brown
University.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2006. Contextual Dependencies in Un-
supervised Word Segmentation. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 673—
680, Sydney, Australia. Association for Computa-
tional Linguistics.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word
segmentation: Exploring the effects of context.
Cognition, 112(1):21-54.

Fatima Hamlaoui and Emmanuel-Moselly Makasso.
2015. Focus marking and the unavailability of in-
version structures in the Bantu language Basaa. Lin-
gua, 154:35-64.

Robert K. Herbert. 1986.  Language Universals,
Markedness Theory, and Natural Phonetic Pro-
cesses. De Gruyter Mouton, Berlin, Boston.

Tore Janson. 2003. Speak: A Short History of Lan-
guages. Oxford University Press.

Mark Johnson. 1998. PCFG models of linguistic tree
representations. Comput. Linguist., 24(4):613-632.



Mark Johnson. 2008a. Unsupervised Word Segmen-
tation for Sesotho Using Adaptor Grammars. In
Proceedings of the Tenth Meeting of ACL Special
Interest Group on Computational Morphology and
Phonology, pages 20-27, Columbus, Ohio. Associ-
ation for Computational Linguistics.

Mark Johnson. 2008b. Using Adaptor Grammars to
Identify Synergies in the Unsupervised Acquisition
of Linguistic Structure. In Proceedings of ACL-08:
HLT, pages 398-406, Columbus, Ohio. Association
for Computational Linguistics.

Mark Johnson, Anne Christophe, Emmanuel Dupoux,
and Katherine Demuth. 2014. Modelling function
words improves unsupervised word segmentation.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 282-292, Baltimore, Mary-
land. Association for Computational Linguistics.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric Bayesian inference: Experiments on
unsupervised word segmentation with adaptor gram-
mars. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 317-325, Boulder, Col-
orado. Association for Computational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Adaptor Grammars: A Framework for
Specifying Compositional Nonparametric Bayesian
Models. In Advances in Neural Information Pro-
cessing Systems 19, pages 641-648, Cambridge,
MA. MIT Press.

Guy-Noél Kouarata. 2014. Variations de formes dans
la langue mbochi (Bantu C25). Ph.D. thesis, Uni-
versité Lumiere Lyon 2.

Kamran Lari and Steve J. Young. 1990. The esti-
mation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech and
Language, 4:35-56.

David Odden. 2015. Bantu Phonology. Oxford Hand-
books Online.

Timothy J. O’Donnell, Joshua B. Tenenbaum, and
Noah D. Goodman. 2009. Fragment grammars: Ex-
ploring computation and reuse in language. Techni-
cal report, Massachusetts Institute of Technology.

Annie Rialland, Georges Martial Em-
banga Aborobongui, Martine Adda-Decker,
and Lori Lamel. 2015. Dropping of the class-prefix
consonant, vowel elision and automatic phono-
logical mining in Embosi. In Proceedings of the
44th ACAL meeting, pages 221-230, Somerville.
Cascadilla.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adap-
tor grammars. Transactions of the Association for
Computational Linguistics, 1:255-266.

42



