
SIGMORPHON 2018

The 15th SIGMORPHON Workshop
on Computational Research in Phonetics,

Phonology, and Morphology

Proceedings of the Workshop

October 31, 2018
Brussels, Belgium

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-76-6

ii

Preface

Welcome to the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, to be held on October 31, 2018 in Brussels, Belgium. The workshop aims to
bring together researchers interested in applying computational techniques to problems in morphology,
phonology, and phonetics. Our program this year highlights the ongoing and important interaction
between work in computational linguistics and work in theoretical linguistics. This year, however, a new
focus on low resource approaches to morphology is emerging as a consequence of the SIGMORPHON
2016 and CoNLL shared tasks on morphological reinflection across a wide range of languages.

We received 36 submissions, and after a competitive reviewing process, we accepted 19. Due to time
limitations, 6 papers were chosen for oral presentations, the remaining papers are presented as posters.
The workshop also includes a joint poster session with CoNLL, on the CoNLL–SIGMORPHON 2018
Shared Task: Universal Morphological Reinflection.

We are grateful to the program committee for their careful and thoughtful reviews of the papers submitted
this year. We are looking forward to a workshop covering a wide range of topics, and we hope for lively
discussions.

Sandra Kübler
Garrett Nicolai

iii

Organizers:

Sandra Kübler, University of Indiana
Garrett Nicolai, Johns Hopkins University

Program Committee:

Noor Abo Mokh, Indiana University
Adam Albright, MIT
Jane Chandlee, Haverford College
Çağrı Çöltekin, University of Tübingen
Ryan Cotterell, Johns Hopkins University
Daniel Dakota, Indiana University
Thierry Declerck, DFKI
Ewan Dunbar, Laboratoire de Sciences Cognitives et Psycholinguistique, Paris
Jason Eisner, Johns Hopkins University
Micha Elsner, The Ohio State University
Sharon Goldwater, University of Edinburgh
Kyle Gorman, Google
Nizar Habash, NYU Abu Dhabi
Mike Hammond, University of Arizona
Mans Hulden, University of Colorado
Adam Jardine, Rutgers University
Gaja Jarosz, University of Massachusetts Amherst
Christo Kirov, Johns Hopkins University
Greg Kobele, University of Chicago
Grzegorz Kondrak, University of Alberta
Kimmo Koskenniemi, University of Helsinki
Andrew Lamont, University of Massachusetts Amherst
Karen Livescu, TTI Chicago
Arya McCarthy, Johns Hopkins University
Kevin McMullin, University of Ottawa
Kemal Oflazer, CMU Qatar
Jeff Parker, Brigham Young University
Gerald Penn, University of Toronto
Jelena Prokic, Ludwig-Maximilians-University Munich
Mohamad Salameh, CMU-Qatar
Miikka Silfverberg, University of Colorado
Andrea Sims, The Ohio State University
Kairit Sirts, Macquarie University
Richard Sproat, Google
Kenneth Steimel, Indiana University
Reut Tsarfaty, The Open University of Israel
Francis Tyers, Higher School of Economics
Richard Wicentowski, Swarthmore University
Anssi Yli-Jyrä, University of Helsinki
Kristine Yu, University of Massachusetts Amherst

v

Table of Contents

Efficient Computation of Implicational Universals in Constraint-Based Phonology Through the Hyper-
plane Separation Theorem

Giorgio Magri . 1

Lexical Networks in !Xung
Syed-Amad Hussain, Micha Elsner and Amanda Miller . 11

Acoustic Word Disambiguation with Phonogical Features in Danish ASR
Andreas Søeborg Kirkedal . 21

Adaptor Grammars for the Linguist: Word Segmentation Experiments for Very Low-Resource Languages
Pierre Godard, Laurent Besacier, François Yvon, Martine Adda-Decker, Gilles Adda, Hélène May-

nard and Annie Rialland . 32

String Transduction with Target Language Models and Insertion Handling
Garrett Nicolai, Saeed Najafi and Grzegorz Kondrak . 43

Complementary Strategies for Low Resourced Morphological Modeling
Alexander Erdmann and Nizar Habash . 54

Modeling Reduplication with 2-way Finite-State Transducers
Hossep Dolatian and Jeffrey Heinz . 66

Automatically Tailoring Unsupervised Morphological Segmentation to the Language
Ramy Eskander, Owen Rambow and Smaranda Muresan . 78

A Comparison of Entity Matching Methods between English and Japanese Katakana
Michiharu Yamashita, Hideki Awashima and Hidekazu Oiwa. .84

Seq2Seq Models with Dropout can Learn Generalizable Reduplication
Brandon Prickett, Aaron Traylor and Joe Pater . 93

A Characterwise Windowed Approach to Hebrew Morphological Segmentation
Amir Zeldes . 101

Phonetic Vector Representations for Sound Sequence Alignment
Pavel Sofroniev and Çağrı Çöltekin . 111

Sounds Wilde. Phonetically Extended Embeddings for Author-Stylized Poetry Generation
Aleksey Tikhonov and Ivan Yamshchikov . 117

On Hapax Legomena and Morphological Productivity
Janet Pierrehumbert and Ramon Granell . 125

A Morphological Analyzer for Shipibo-Konibo
Ronald Cardenas and Daniel Zeman . 131

An Arabic Morphological Analyzer and Generator with Copious Features
Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani and Nizar Habash 140

Sanskrit n-Retroflexion is Input-Output Tier-Based Strictly Local
Thomas Graf and Connor Mayer . 151

vii

Phonological Features for Morphological Inflection
Adam Wiemerslage, Miikka Silfverberg and Mans Hulden . 161

Extracting Morphophonology from Small Corpora
Marina Ermolaeva . 167

viii

Conference Program

Wednesday, October 31

08:50–09:00 Session Opening: Opening Session

09:00–10:30 Session 1: Phonology

09:00–09:30 Efficient Computation of Implicational Universals in Constraint-Based Phonology
Through the Hyperplane Separation Theorem
Giorgio Magri

09:30–10:00 Lexical Networks in !Xung
Syed-Amad Hussain, Micha Elsner and Amanda Miller

10:00–10:30 Acoustic Word Disambiguation with Phonogical Features in Danish ASR
Andreas Søeborg Kirkedal

10:30–11:00 Tea Break 1

11:00–12:30 Session ST: CoNLL – SIGMORPHON 2018 Shared Task: Universal Morpho-
logical Reinflection

12:30–14:00 Lunch

ix

Wednesday, October 31

14:00–15:30 Session 2: Low-Resource Morphology

14:00–14:30 Adaptor Grammars for the Linguist: Word Segmentation Experiments for Very Low-
Resource Languages
Pierre Godard, Laurent Besacier, François Yvon, Martine Adda-Decker, Gilles
Adda, Hélène Maynard and Annie Rialland

14:30–15:00 String Transduction with Target Language Models and Insertion Handling
Garrett Nicolai, Saeed Najafi and Grzegorz Kondrak

15:00–15:30 Complementary Strategies for Low Resourced Morphological Modeling
Alexander Erdmann and Nizar Habash

15:30–16:00 Tea Break 2

16:00–17:30 Session P: Poster Session

Modeling Reduplication with 2-way Finite-State Transducers
Hossep Dolatian and Jeffrey Heinz

Automatically Tailoring Unsupervised Morphological Segmentation to the Lan-
guage
Ramy Eskander, Owen Rambow and Smaranda Muresan

A Comparison of Entity Matching Methods between English and Japanese
Katakana
Michiharu Yamashita, Hideki Awashima and Hidekazu Oiwa

Seq2Seq Models with Dropout can Learn Generalizable Reduplication
Brandon Prickett, Aaron Traylor and Joe Pater

A Characterwise Windowed Approach to Hebrew Morphological Segmentation
Amir Zeldes

Phonetic Vector Representations for Sound Sequence Alignment
Pavel Sofroniev and Çağrı Çöltekin

x

Wednesday, October 31 (continued)

Sounds Wilde. Phonetically Extended Embeddings for Author-Stylized Poetry Gen-
eration
Aleksey Tikhonov and Ivan Yamshchikov

On Hapax Legomena and Morphological Productivity
Janet Pierrehumbert and Ramon Granell

A Morphological Analyzer for Shipibo-Konibo
Ronald Cardenas and Daniel Zeman

An Arabic Morphological Analyzer and Generator with Copious Features
Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani and Nizar Habash

Sanskrit n-Retroflexion is Input-Output Tier-Based Strictly Local
Thomas Graf and Connor Mayer

Phonological Features for Morphological Inflection
Adam Wiemerslage, Miikka Silfverberg and Mans Hulden

Extracting Morphophonology from Small Corpora
Marina Ermolaeva

17:30–17:40 Session Closing: Closing Session

xi

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 1–10
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Efficient Computation of Implicational Universals in Constraint-Based
Phonology Through the Hyperplane Separation Theorem

Giorgio Magri
CNRS, SFL, UPL

magrigrg@gmail.com

Abstract

This paper focuses on the most basic im-
plicational universals in phonological the-
ory, called T-orders after Anttila and Andrus
(2006). It develops necessary and sufficient
constraint characterizations of T-orders within
Harmonic Grammar and Optimality Theory.
These conditions rest on the rich convex ge-
ometry underlying these frameworks. They
are phonologically intuitive and have signifi-
cant algorithmic implications.

1 Introduction

A typology T is a collection of grammars
G1, G2, . . . For instance, T could be the set of
syntactic grammars corresponding to all possi-
ble combinations of values of a set of parame-
ters (Chomsky, 1981). Or the set of phonological
grammars corresponding to all possible orderings
of an underlying set of phonological rules (Chom-
sky and Halle 1968). Or the set of grammars cor-
responding to all rankings of an underlying con-
straint set (Prince and Smolensky, 2004).

The structure induced by a typology T can be
investigated though its implicational universals of
the form (1). This implication holds provided ev-
ery grammar in the typology T that satisfies the
antecedent property P also satisfies the conse-
quent property P̂ (Greenberg 1963).

P
T−→ P̂ (1)

To illustrate, suppose that T is the typology of syn-
tactic grammars. Consider the antecedent property
P of having VSO as the basic word order. And
the consequent property P̂ of having prepositions
(as opposed to postpositions). In this case, (1) is
Greenberg’s implicational universal #3.

In this paper, we are interested in typologies
of phonological grammars. We assume a rep-

resentational framework which distinguishes be-
tween two representational levels: underlying rep-
resentations (URs), denoted as x, x̂, . . . ; and sur-
face representations (SRs), denoted as y, ŷ, . . . or
z, ẑ, A phonological grammar G is a func-
tion which takes a UR x and returns a SR y. For
instance, the phonology of German maps the UR
x = /bE:d/ to the SR y = [bE:t] (‘bath’). A phono-
logical typology T is a collection of phonological
grammars G1, G2, . . . that we assume are all de-
fined over the same set of URs (Richness of the
Base assumption; Prince and Smolensky 2004).

Since phonological grammars are functions
from URs to SRs, the most basic or atomic an-
tecedent property P of an implicational universal
(1) is the property of mapping a certain UR x to
a certain SR y. Analogously, the most basic con-
sequent property P̂ is the property of mapping a
certain UR x̂ to a certain SR ŷ. We thus focus
on implicational universals of the form (2). This
implication holds provided every grammar in the
typology T that succeeds on the antecedent map-
ping (i.e., it maps the antecedent UR x to the an-
tecedent SR y), also succeeds on the consequent
mapping (i.e., it also maps the consequent UR x̂ to
the consequent SR ŷ). This definition makes sense
because every grammar in the typology T is de-
fined on every UR, so that every grammar can be
applied to the two URs x and x̂.

(x, y)
T−→ (x̂, ŷ) (2)

The relation T→ thus defined over mappings turns
out to be a partial order (under mild additional as-
sumptions). It is called the T-order induced by the
typology T (Anttila and Andrus, 2006).

A familiar example concerns coda cluster sim-
plification in English. Suppose that a coda t/d
deletes before vowels in a certain dialect, so that
the UR /cost us/ is realized as the SR [cos’ us].

1

https://doi.org/10.18653/v1/P17

Then the coda also deletes before consonants in
that same dialect, so that the UR /cost me/ is re-
alized as the SR [cos’ me] (Guy, 1991; Kiparsky,
1993; Coetzee, 2004). In other words, the impli-
cation (/tV/, [V])

T→ (/tC/, [C]) holds relative to the
typology T of English dialects.

Two important phonological frameworks ex-
plored in the literature are Harmonic Grammar
(HG; Legendre et al., 1990; Smolensky and Leg-
endre, 2006; Potts et al., 2010) and Optimality
Theory (OT; Prince and Smolensky, 2004). The
crucial idea shared by HG and OT is that the rel-
evant properties of phonological mappings are ex-
tracted by a set of n phonological constraints that
effectively represent discrete phonological map-
pings as points of Rn. The goal of this paper is to
express an implication (x, y) → (x̂, ŷ) in HG and
OT in terms of the constraint violations of the two
mappings (x, y) and (x̂, ŷ) and their competitors.

Section 2 presents the constraint condition for
HG T-orders. It rests on the rich geometry un-
derlying HG, as it follows from a classical re-
sult of convex geometry (the Hyperplane Separa-
tion Theorem), as detailed in section 3. Section 4
presents the constraint condition for OT T-orders.
It rests on an equivalence between OT and HG T-
orders established in section 5.

These constraint conditions admit a straightfor-
ward interpretation and thus help us better under-
stand the phonological import of T-orders. Fur-
thermore, they allow us to compute T-orders effi-
ciently, circumventing the laborious computation
of the entire HG or OT typology (as it is currently
done in the literature; see for instance the OT T-
order Generator by Anttila and Andrus, 2006).

2 Constraint Conditions for HG T-orders

HG assumes a relation Gen which pairs each
UR x with a set Gen(x) of candidate SRs. It
also assumes a set of n phonological constraints
C1, . . . , Cn. Each constraint Ck takes a phono-
logical mapping (x, y) of a UR x and a candidate
SR y in Gen(x) and returns the corresponding
number of violations Ck(x, y) ∈ N, a nonnega-
tive integer which quantifies the “badness” of that
mapping (x, y) from the phonological perspective
encoded by that constraint Ck. A weight vector
w = (w1, . . . , wn) ∈ Rn

+ assigns a nonnegative
weight wk ≥ 0 to each constraint Ck.

The w-harmony of a mapping (x, y) is the
weighted sum of the constraint violations multi-

plied by −1, namely −∑n
k=1wkCk(x, y). Be-

cause of the minus sign, mappings with a large
harmony have few constraint violations. The HG
grammar corresponding to a weight vector w
maps a UR x to the candidate SR y in Gen(x)
such that the mapping (x, y) has a larger w-
harmony than the mapping (x, z) corresponding to
any other candidate z in Gen(x) (Legendre et al.,
1990; Smolensky and Legendre, 2006; Potts et al.,
2010). The HG typology (relative to a candidate
relation and a constraint set) consists of the HG
grammars corresponding to all weight vectors.

We denote by (x, y)
HG−→ (x̂, ŷ) the implication

between an antecedent mapping (x, y) and a con-
sequent mapping (x̂, ŷ) relative to the HG typol-
ogy. We assume that the antecedent UR x comes
with only a finite number m of antecedent loser
candidates z1, . . . , zm besides the antecedent win-
ner candidate y. Analogously, we assume that the
consequent UR x̂ comes with only a finite num-
ber m̂ of consequent loser candidates ẑ1, . . . , ẑm̂
besides the consequent winner candidate ŷ. This
assumption is nonrestrictive. In fact, a UR ad-
mits only a finite number of HG optimal candi-
dates (Magri, 2018). Candidate sets can thus be
assumed to be finite without loss of generality.

For each antecedent loser zi, we define the an-
tecedent difference vector C(x, y, zi) as in (3). It
has a component for each constraint Ck defined
as the violation difference Ck(x, y, zi) between the
number Ck(x, zi) of violations assigned by Ck

to the loser mapping (x, zi) minus the number
Ck(x, y) of violations assigned to the antecedent
winner mapping (x, y).

C(x, y, zi) =




C1(x, zi)− C1(x, y)
...

Ck(x, zi)− Ck(x, y)
...

Cn(x, zi)− Cn(x, y)




(3)

The consequent difference vector C(x̂, ŷ, ẑj) is de-
fined analogously, as pitting the consequent win-
ner mapping (x̂, ŷ) against one of its losers (x̂, ẑj).

The definition of the HG implication (x, y)
HG→

(x̂, ŷ) requires every HG grammar which succeeds
on the antecedent mapping to also succeed on the
consequent mapping. This condition is trivially
satisfied if no HG grammar succeeds on the an-
tecedent mapping, namely the mapping (x, y) is
HG unfeasible. Thus, let’s suppose that is not the
case. The following proposition then provides a

2

•
• •

•

a.

•
• •

•

◦b.
Figure 1: Geometric representation of condition (4).

complete (both necessary and sufficient) charac-
terization of the HG implication (x, y)

HG→ (x̂, ŷ) in
terms of condition (4) stated entirely in terms of
antecedent and consequent difference vectors.

Proposition 1 If the antecedent mapping (x, y) is
HG feasible, the HG implication (x, y)

HG→ (x̂, ŷ)
holds if and only if for every consequent loser can-
didate ẑj with j = 1, . . . , m̂, there exist m non-
negative coefficients λ1, . . . , λm ≥ 0 (one for each
antecedent loser candidate z1, . . . , zm) such that

C(x̂, ŷ, ẑj) ≥
m∑

i=1

λiC(x, y, zi) (4)

and furthermore at least one of these coefficients
λ1, . . . , λm is different from zero. 2

Proposition 1 admits the following phonologi-
cal interpretation. Condition (4) says that each
consequent loser ẑj violates the constraints at least
as much as (some conic combination of) the an-
tecedent losers z1, . . . , zm. In other words, the
consequent losers are “worse” than the antecedent
losers. The consequent winner ŷ thus has an “eas-
ier” time beating its losers than the antecedent
winner y, as required by the definition of T-order.

Proposition 1 has important algorithmic impli-
cations. In fact, checking the definition of T-
order (in general, of any implicational universal)
directly is costly, because it requires computing
the entire typology, which can be large. But propo-
sition 1 says that, in the case of HG, T-orders can
be determined locally, by only looking at the an-
tecedent and consequent mappings together with
their losers. Indeed, this proposition effectively
reduces the problem of computing HG T-orders to
the problem of finding coefficients λi which sat-
isfy the inequality (4). The latter is a polyhedral
feasibility problem that can be solved efficiently
with standard linear programming technology. A
Python package to compute HG T-orders using
condition (4) will be released shortly.

ONSET

NOCODA

MAX
DEPV

DEPC

/CC/ [null] 0 0 2 0 0
[CV.CV] 0 0 0 2 0
[CVC] 0 1 0 1 0

/CCC/ [null] 0 0 3 0 0
[CV.CV.CV] 0 0 0 3 0
[CV.CVC] 0 1 0 2 0
[CVC] 0 1 1 1 0

Table 1: Violation profiles for the mappings of the URs /CC/
and /CCC/ to their non-harmonically bounded candidates.

Proposition 1 admits the following geometric
interpretation. Suppose there are only n = 2 con-
straints and m = 4 antecedent difference vectors
C(x, y, zi), represented as the black dots in fig-
ure 1a. The region {∑m

i=1 λiC(x, y, zi) |λi ≥ 0}
is the convex cone generated by these antecedent
difference vectors, depicted in dark gray in figure
1a. The region in light gray singles out the points
which are at least as large (component by compo-
nent) as some point in this cone. Condition (4)
thus says that each consequent difference vector
C(x̂, ŷ, ẑj) must belong to this light gray region.

Indeed, suppose that some consequent differ-
ence vector does not belong to this light gray re-
gion, as represented by the white dot in figure 1b.
The dashed line leaves the antecedent difference
vectors (black dots) and the consequent difference
vector (white dot) on two different sides. This
means that the HG grammar corresponding to a
nonnegative weight vector orthogonal to this line
succeeds on the antecedent mapping (x, y) but it
fails on the consequent mapping (x̂, ŷ), defying the
implication (x, y)

HG→ (x̂, ŷ).
The existence of (a weight vector corresponding

to) a dashed line such as the one depicted in figure
1b is geometrically obvious in the case with only
n = 2 constraints. For an arbitrary number n of
constraints, a fundamental result of convex geom-
etry, the Hyperplane Separation Theorem (HST;
Rockafellar, 1970, §11; Boyd and Vandenberghe,
2004, §2.5), indeed guarantees the existence of a
weight vector which separates the cone generated
by the antecedent difference vectors from the out-
lier consequent difference vector. This is the core
of the proof of proposition 1 provided in section 3.

Let’s finally look at a couple of examples (based
on Bane and Riggle 2009). We assume n = 5 con-

3

ONSET

NOCODA

MAX

DEPV

DEPC




0
0
3
−3
0



≥1.5




0
0
2
−2
0




+0




0
1
0
−1
0



,




0
1
0
−1
0



≥0




0
0
2
−2
0




+1




0
1
0
−1
0



,




0
1
1
−2
0



≥0.5




0
0
2
−2
0




+1




0
1
0
−1
0




Table 2: Verifying that condition (4) holds for the HG implication (CC, CV.CV) → (CCC, CV.CV.CV).

straints: ONSET, which penalizes surface syllables
starting with a vowel (V); NOCODA, which pe-
nalizes surface syllables ending with a consonant
(C); MAX, which penalizes deletion of underlying
segments; and DEPV and DEPC, which penalize
epenthetic vowels and consonants, respectively.
We focus on the two URs /CC/ and /CCC/. We only
consider their non-harmonically bounded candi-
dates, listed in table 1 with their constraint vio-
lations (the candidate [CVC.CV] is omitted because
indistinguishable by the constraints from [CV.CVC]).

We focus on the implication (CC,CV.CV) →
(CCC,CV.CV.CV). The antecedent UR x = /CC/
comes with the winner candidate y = [CV.CV]
and the m = 2 loser candidates z1 = [null] and
z2 = [CVC]. There are therefore two antecedent
difference vectors C(x, y, zi), repeated on the right
hand side of each of the three inequalities in table
2. The consequent UR x̂ = /CCC/ comes with the
winner candidate ŷ = [CV.CV.CV] and the m̂ = 3
loser candidates ẑ1 = [null], ẑ2 = [CV.CVC], and
ẑ3 = [CVC]. There are therefore three consequent
difference vectors C(x̂, ŷ, ẑj), which appear on the
left hand side of the three inequalities in table 2.
Condition (4) holds: each consequent difference
vector is at least as large as a conic combination
of the antecedent difference vectors, as shown in
table 2. Proposition 1 thus establishes the HG im-
plication (CC,CV.CV)

HG→ (CCC,CV.CV.CV).
Proposition 1 can also be used to show that an

implication fails in HG. To illustrate, we focus
on the implication (CC,CVC) → (CCC,CV.CVC).
We consider the consequent difference vector
C(/CCC/, [CV.CVC], [null]), which appears on the
left hand side of (5). There are two an-
tecedent difference vectors C(/CC/, [CVC], [null])
and C(/CC/, [CVC], [CV.CV]), which appear on the
right hand side of (5).

ONSET

NOCODA

MAX

DEPV

DEPC




0
−1
3
−2
0



6≥ λ1




0
−1
2
−1
0




+ λ2




0
−1
0
1
0




(5)

Condition (4) fails: the consequent difference vec-
tor is not larger than any conic combination of
the two antecedent difference vectors, no mat-
ter the choice of the coefficients λ1, λ2 ≥ 0.
In fact, the inequality (5) for DEPV requires
λ1 ≥ 2, whereby the inequality fails for MAX.
Proposition 1 thus establishes that the implication
(CC,CVC) 6HG→ (CCC,CV.CVC) fails in HG.

3 Proof of Proposition 1

The HST has a number of algebraic consequences
known as theorems of the alternatives.1 One of
these theorems is the Motzkin Transposition The-
orem (MTT; Bertsekas, 2009, proposition 5.6.2),
which is particularly suited to our needs. It states
that conditions (C1) and (C2) below are mutually
exclusive (one and only one of them holds) for any
two matrices A ∈ Rp×n and B ∈ Rq×n.

(C1) There exists a vector w ∈ Rn such that
Aw < 0 and Bw ≤ 0.

(C2) There exist two nonnegative vectors ξ ∈
Rq
+ and µ ∈ Rp

+ with µ 6= 0 such that
ATµ + BTξ = 0.

It is useful to specialize the MTT as follows.
Consider some vectors a1, . . . ,am,b ∈ Rn.
Let A be the matrix whose p = m rows are
−aT1 , . . . ,−aTm. Let B be the matrix whose q =
n+1 rows are−eT1 , . . . ,−eTn ,bT (where ei ∈ Rn

has all components equal to 0 but for the ith com-
ponent which is equal to 1). The two conditions
(C1) and (C2) thus become (C1′) and (C2′).

(C1′) There exists a nonnegative vector w ∈ Rn
+

such that aT1w > 0, . . . ,aTmw > 0 but
bTw ≤ 0.

(C2′) There exist some nonnegative coefficients
µ1, . . . , µm, ξ ≥ 0 with at least one of
the coefficients µ1, . . . , µm different from 0
such that ξb ≥∑m

i=1 µiai.
1 Throughout this section, all vectors are column vectors;

T stands for matrix transposition. Vector inequalities must
hold component-wise.

4

With these preliminaries in place, we now con-
sider the HG implication (x, y)

HG→ (x̂, ŷ). Suppose
that the HG grammar corresponding to some non-
negative weight vector w ∈ Rn

+ succeeds on the
antecedent mapping (x, y). This means that the w-
harmony of this mapping (x, y) is larger than that
of every antecedent loser mapping (x, zi). This
condition can be stated in terms of the antecedent
difference vectors as in (6), taking advantage of
the linearity of the HG harmony.

C(x, y, zi)
Tw > 0, i = 1, . . . ,m (6)

The implication(x, y)
HG→ (x̂, ŷ) then requires the

HG grammar corresponding to that weight vec-
tor w to also succeed on the consequent mapping
(x̂, ŷ). This means that the w-harmony of this
mapping (x̂, ŷ) is larger than that of every conse-
quent loser mapping (x̂, ẑj). This condition can be
stated in terms of the consequent difference vec-
tors as in (7).

C(x̂, ŷ, ẑj)
Tw > 0, j = 1, . . . , m̂ (7)

In other words, the HG implication (x, y)
HG→

(x̂, ŷ) holds if and only if every nonnegative
weight vector w which satisfies (6) also satisfies
(7). Equivalently, the HG T-order holds if and only
if for every j = 1, . . . , m̂, it is false that there ex-
ists a nonnegative weight vector w ∈ Rn

+ such
that C(x, y, zi)

Tw > 0 for every i = 1, . . . ,m
but C(x̂, ŷ, ẑj)

Tw ≤ 0. In other words, for
every j = 1, . . . , m̂, condition (C1′) is false,
with the positions ai = C(x, y, zi) and b =
C(x̂, ŷ, ẑj). By the MTT, condition (C2′) must
therefore be true for every j = 1, . . . , m̂. This
means that there exist some non-negative coeffi-
cients µ1, . . . , µm, ξ ≥ 0 such that at least one of
the coefficients µ1, . . . , µm is strictly positive and
furthermore the inequality (8) holds.

ξC(x̂, ŷ, ẑj) ≥
m∑

i=1

µiC(x, y, zi) (8)

The coefficient ξ in (8) must be strictly positive. In
fact, suppose by contradiction that ξ = 0, whereby
inequality (8) becomes (9).

0 ≥
m∑

i=1

µiC(x, y, zi) (9)

Consider a weight vector w whose correspond-
ing HG grammar maps the antecedent UR x to

the antecedent winner y, which exists by hypoth-
esis. This weight vector w thus satisfies condi-
tion (6). Since w is non-negative, the scalar prod-
uct of both sides of (9) with w preserves the in-
equality, yielding (10). But the latter inequality
requires µ1 = · · · = µm = 0, contradicting the
assumption that at least one of the nonnegative co-
efficients µ1, . . . , µm ≥ 0 is strictly positive.

0 ≥
m∑

i=1

µiC(x, y, zi)
Tw︸ ︷︷ ︸

>0

(10)

Since the coefficient ξ is strictly positive, both
sides of (8) can be divided by ξ, yielding the in-
equality (4) with the position λi = µi/ξ.

4 Constraint Conditions for OT T-orders

This section extends the convex geometric analy-
sis of T-orders developed in the preceding sections
from HG to OT. We start by recalling that in OT a
constraint Ck is said to prefer a mapping (x, y) to
another mapping (x, z) provided Ck assigns less
violations to the former than to the latter, namely
Ck(x, y) < Ck(x, z). A constraint ranking is an
arbitrary linear order � over the constraint set.
A constraint ranking � prefers a mapping (x, y)
to another mapping (x, z) provided the highest�-
ranked constraint which distinguishes between the
two mappings (x, y) and (x, z) prefers (x, y). The
fact that the highest�-ranked relevant constraint
defines the preference of the entire ranking, irre-
spectively of the preferences of lower �-ranked
constraints, is captured by saying that the former
constraint strictly dominates the latter constraints.
The OT grammar corresponding to a ranking �
maps a UR x to that SR y such that� prefers the
mapping (x, y) to the mapping (x, z) correspond-
ing to any other candidate z inGen(x) (Prince and
Smolensky, 2004). The OT typology (for a given
candidate relation and constraint set) consists of
the OT grammars corresponding to all rankings.

We denote by (x, y)
OT→ (x̂, ŷ) the implication

between an antecedent mapping (x, y) and a con-
sequent mapping (x̂, ŷ) relative to the OT typol-
ogy. By definition, this implication holds pro-
vided every constraint ranking that succeeds on the
antecedent mapping also succeeds on the conse-
quent mapping. Thus, a natural strategy to check
the OT implication (x, y)

OT→ (x̂, ŷ) would be to
use Recursive Constraint Demotion (RCD; Tesar
and Smolensky, 1998) to check that for every j =

5

1, . . . , m̂, no ranking is consistent simultaneously
with the two mappings (x, y) and (x̂, ẑj). In this
section, we develop instead an alternative strategy
which uses the HG-to-OT-portability result of Ma-
gri (2013) to extend to OT the convex geometric
characterization of HG T-orders developed in sec-
tions 2-3.

To start, we recall that an OT grammar can be
construed as an HG grammar (as long as the con-
straint violations are bounded, which is the case
when the set of URs and the candidate sets are
finite). In fact, OT’s strict domination can be
mimicked through HG weights which decrease ex-
ponentially. Indeed, if a weight is much larger
than every smaller weight, the preferences of the
constraint with the larger weight cannot be over-
come by the preferences of the constraints with
smaller weights (Prince and Smolensky, 2004;
Keller, 2006). Since the OT typology is a sub-
set of the HG typology, whenever an implica-
tion (x, y)

HG→ (x̂, ŷ) holds in HG, the implication
(x, y)

OT→ (x̂, ŷ) holds in OT.
Lemma 1 slightly strengthens this conclusion.

In fact, OT only cares about constraints’ prefer-
ences. Equivalently, about the sign of the violation
differences. Thus, the HG implication (x, y)

HG→
(x̂, ŷ) entails not only the corresponding OT im-
plication (x, y)

OT→ (x̂, ŷ) but also any other OT
implication (x∗, y∗) OT→ (x̂∗, ŷ∗) whose antecedent
and consequent mappings (x∗, y∗) and (x̂∗, ŷ∗)
yield violation differences with the same sign as
the original antecedent and consequent mappings
(x, y) and (x̂, ŷ). The proof of this lemma simply
uses the observation that exponentially decaying
HG weights mimic OT strict domination and it is
therefore omitted.

Lemma 1 Given an antecedent mapping (x, y)
with itsm antecedent loser candidates z1, . . . , zm,
consider another mapping (x∗, y∗) with the same
numberm of loser candidates z∗1, . . . , z

∗
m such that

the m corresponding violation differences have
the same sign, in the sense that condition (11)
holds for k = 1, . . . , n and i = 1, . . . ,m.

Ck(x, y, zi) T 0 ⇐⇒ Ck(x∗, y∗, z∗i) T 0 (11)

Analogously, given the consequent mapping
(x̂, ŷ) with its m̂ consequent loser candidates
ẑ1, . . . , ẑm̂, consider another mapping (x̂∗, ŷ∗)
with the same number m̂ of loser candidates
ẑ∗1, . . . , ẑ

∗
m̂ such that the m̂ corresponding viola-

tion differences have the same sign, in the sense

that condition (12) holds for k = 1, . . . , n and
j = 1, . . . , m̂.

Ck(x̂, ŷ, ẑj) T 0 ⇐⇒ Ck(x̂∗, ŷ∗, ẑ∗j) T 0 (12)

The HG implication (x, y)
HG−→ (x̂, ŷ) then entails

the OT implication (x∗, y∗) OT−→ (x̂∗, ŷ∗).

The preceding lemma establishes an entailment
from HG to OT implications. We now want to in-
vestigate the reverse entailment from OT to HG
implications. Thus, we suppose that an implica-
tion (x, y)

OT→ (x̂, ŷ) holds in OT. Of course, that
does not entail that the implication (x, y)

HG→ (x̂, ŷ)
between the same two mappings also holds in
HG. That is because the HG typology is usually a
proper superset of the OT typology. And a larger
typology yields sparser T-orders. Thus, it makes
no sense to try to establish that the OT implica-
tion (x, y)

OT→ (x̂, ŷ) entails the HG implication
(x, y)

HG→ (x̂, ŷ) between the same two mappings.
We will try to establish something weaker in-

stead: the OT implication (x, y)
OT→ (x̂, ŷ) entails

an HG implication (xdif, ydif)
HG→ (x̂easy, ŷeasy) be-

tween an antecedent mapping (xdif, ydif) different
from (x, y) and a consequent mapping (x̂easy, ŷeasy)
different from (x̂, ŷ). And we will choose this new
antecedent mapping (xdif, ydif) and this new conse-
quent mapping (x̂easy, ŷeasy) in such a way that the
new HG implication (xdif, ydif)

HG→ (x̂easy, ŷeasy) is
“more likely to hold” than the original implication
(x, y)

HG→ (x̂, ŷ) and thus validates the entailment
from OT to HG implications.

What does it mean that an implication is “more
likely to hold”? Intuitively, an implication from
an antecedent to a consequent mapping is “likely
to hold” when the antecedent mapping is “diffi-
cult” to obtain, namely it is consistent with very
few grammars. In the limit, the implication holds
trivially when the antecedent mapping is consis-
tent with no grammars at all. Thus, we want to
define the new antecedent mapping (xdif, ydif) in
such a way that it is “more difficult” to obtain in
HG than the original antecedent mapping (x, y),
whereby the superscript “diff”. Analogously, an
implication from an antecedent to a consequent
mapping is intuitively “likely to hold” when the
consequent mapping is “easy” to obtain, namely
it is consistent with very many grammars. In the
limit, the implication holds trivially when the con-
sequent mapping is consistent with every gram-
mar. Thus, we want to define the new consequent

6

mapping (x̂easy, ŷeasy) in such a way that it is “eas-
ier” to obtain in HG than the original consequent
mapping (x̂, ŷ), whereby the superscript “easy”.

Let us now turn to the details. As discussed
above around (6), it suffices to define the differ-
ence vectors corresponding to the new difficult
mapping antecedent (xdif, ydif). Given the original
antecedent mapping (x, y) with its m loser can-
didates z1, . . . , zm, we assume that the new an-
tecedent mapping (xdif, ydif) comes with the same
number m of loser candidates zdif

1 , . . . , z
dif
m whose

violation differences are defined as in (13). Here,
Ωi is the total number of constraints Ck such that
Ck prefers the original antecedent winner map-
ping (x, y) to the original antecedent loser map-
ping (x, zi), in the sense that Ck(x, y, zi) > 0.

Ck(xdif, ydif, zdif
i) =

=





1 if Ck(x, y, zi) > 0

0 if Ck(x, y, zi) = 0

−Ωi − 1 if Ck(x, y, zi) < 0

(13)

The intuition behind this definition (13) is as
follows. OT only cares about the sign of the vi-
olation differences. Thus, the new violation dif-
ference Ck(xdif, ydif, zdif

i) is defined in such a way
that it has the same sign as the original violation
difference Ck(x, y, zi): one is positive or nega-
tive if and only if the other is as well. HG also
cares about the size of the violation differences,
not only about their sign. In order for the map-
ping (xdif, ydif) to be “difficult” in HG, we want
its positive violation differences to be as small as
possible. For this reason, the positive violation dif-
ferences in (13) have been set equal to 1, which is
the smallest positive integer. Analogously, in or-
der for the mapping (xdif, ydif) to be “difficult” in
HG, we want its negative violation differences to
be large (in absolute value) relative to the strength
of the positive violation differences they have to
“fight off”. Since the positive entries are all equal
to 1 in (13), the “strength” of the positive entries
only depends on their number Ωi. For this rea-
son, the absolute value of the negative violation
differences in (13) has been set equal to Ωi + 1.
In conclusion, this definition (13) ensures that the
mapping (xdif, ydif) is “difficult” in HG, because
the positive violation differences are small and the
negative ones are large (in absolute value).

We now turn to the consequents. Given the orig-
inal consequent mapping (x̂, ŷ) with its m̂ loser
candidates ẑ1, . . . , ẑm̂, we assume that the new

consequent mapping (x̂easy, ŷeasy) comes with the
same number m̂ of loser candidates ẑeasy

1 , . . . , ẑeasy
m̂

whose violation differences are defined as in (14).
Here Λ̂j is the total number of constraints Ck

such that Ck prefers the original consequent loser
mapping (x̂, ẑj) to the original consequent winner
mapping (x̂, ŷ), in the sense that Ck(x̂, ŷ, ẑj) < 0.

Ck(x̂easy, ŷeasy, ẑeasy
j) =

=





Λ̂j + 1 if Ck(x̂, ŷ, ẑj) > 0

0 if Ck(x̂, ŷ, ẑj) = 0

−1 if Ck(x̂, ŷ, ẑj) < 0

(14)

The intuition behind this definition (14) is as
follows. Whenever the original violation differ-
ence Ck(x̂, ŷ, ẑj) is positive or negative, the new
violation difference Ck(x̂easy, ŷeasy, ẑeasy

j) is posi-
tive or negative as well, so that the original and
the new violation differences have the same sign.
The size of the new violation differences has been
chosen as follows. In order for the mapping
(x̂easy, ŷeasy) to be “easy” in HG, we want its nega-
tive violation differences to be as small as possible
(in absolute value). For this reason, the negative
violation differences in (14) have been set equal to
−1, which is the negative integer smallest in ab-
solute value. Analogously, in order for the map-
ping (x̂easy, ŷeasy) to be “easy” in HG, we want its
positive violation differences to be large relative to
the strength of the negative violation differences
they have to “fight off”. Since the negative entries
are all equal to −1 in (14), the “strength” of the
negative entries only depends on their number Λ̂j .
For this reason, the positive violation differences
in (14) have been set equal to Λ̂j + 1. In conclu-
sion, this definition (14) ensures that the mapping
(x̂easy, ŷeasy) is “easy” in HG, because the positive
violation differences are large and the negative vi-
olation differences are small (in absolute value).

We are now ready to put the pieces together. As
anticipated, the OT implication (x, y)

OT→ (x̂, ŷ)

might not entail the HG implication (x, y)
HG→

(x̂, ŷ) with the same antecedent and consequent
mappings. Nonetheless, the following lemma 2
ensures that the OT implication (x, y)

OT→ (x̂, ŷ)

does entail the HG implication (xdif, ydif)
HG→

(x̂easy, ŷeasy). The intuition is that the lat-
ter is less demanding than the HG implication
(x, y)

HG→ (x̂, ŷ), because its antecedent is “diffi-
cult” (namely, consistent with few HG grammars)
and its consequent is “easy” (namely, consistent

7

with many HG grammars). The proof of this
lemma is provided in section 5, mimicking a rea-
soning in Magri (2013).

Lemma 2 The OT implication (x, y)
OT→ (x̂, ŷ) en-

tails the HG implication (xdif, ydif)
HG→ (x̂easy, ŷeasy)

between the antecedent mapping (xdif, ydif) and the
consequent mapping (x̂easy, ŷeasy) whose violation
differences are defined in (13) and (14). 2

As remarked explicitly above, (13) ensures
that the original antecedent violation differences
Ck(x, y, zi) and the new antecedent violation dif-
ferences Ck(xdif, ydif, zdif

i) have the same sign. In
other words, condition (11) holds with the posi-
tions x∗ = xdif, y∗ = ydif, and z∗i = zdif

i . Anal-
ogously, (14) ensures that the original consequent
violation differences Ck(x̂, ŷ, ẑj) and the new con-
sequent violation differences Ck(x̂easy, ŷeasy, ẑeasy

i)
have the same sign. In other words, condition (12)
holds with the positions x̂∗ = x̂easy, ŷ∗ = ŷeasy, and
ẑ∗i = ẑeasy

i . The two lemmas 1 and 2 can therefore
be combined into the following conclusion: the
OT implication (x, y)

OT→ (x̂, ŷ) holds if and only
the HG implication (xdif, ydif)

HG→ (x̂easy, ŷeasy)
holds. We can thus extend to OT the characteri-
zation of HG T-orders provided by the HG propo-
sition 1 above, obtaining the following:

Proposition 2 If the antecedent mapping (x, y) is
OT feasible, the OT implication (x, y)

OT→ (x̂, ŷ)
holds iff for every j=1, . . . , m̂, there exist m non-
negative coefficients λ1, . . . , λm ≥ 0 such that

C(x̂easy, ŷeasy, ẑeasy
j) ≥

m∑

i=1

λiC(xdif, ydif, zdif
i)

(15)
and furthermore at least one of these coefficients
λ1, . . . , λm is different from zero. 2

To illustrate, we have seen at the end of sec-
tion 2 that the HG implication (CC, CVC)

HG→
(CCC, CV.CVC) fails in HG because condition (4)
fails, as shown in (5). But this entailment
(CC, CVC)

OT→ (CCC, CV.CVC) does hold in OT. In
fact, the three “easy” consequent difference vec-
tors C(x̂easy, ŷeasy, ẑeasy

j) in this case are listed on
the left hand side of the three inequalities in ta-
ble 3. The two “difficult” antecedent difference
vectors C(xdif, ydif, zdif

i) are repeated on the right
hand side of the three inequalities. The table thus
shows that condition (15) holds.

5 Proof of Lemma 2

We assume that the OT implication (x, y)
OT→

(x̂, ŷ) holds. We consider an arbitrary nonnegative
weight vector w = (w1, . . . , wn) which succeeds
on the “difficult” antecedent mapping (xdif, ydif)
and we prove that it is also succeeds on the “easy”
consequent mapping (x̂easy, ŷeasy), thus securing
the HG implication (xdif, ydif)

HG−→ (x̂easy, ŷeasy).
The assumption that the weight vec-

tor w succeeds on the “difficult” an-
tecedent mapping (xdif, ydif) means that∑n

k=1wkCk(xdif, ydif, zdif
i) > 0 for every

i = 1, . . . ,m. The latter inequality can be
unpacked as in (16). In step (16a), we have
used the definition (13). Here W (x, y, zi) and
L(x, y, zi) are the sets of winner-preferring and
loser-preferring constraints relative to the winner
(x, y) and the loser (x, zi). In step (16b), we have
upper bounded the sum

∑
h∈W (x,y,zi)

wh with its
largest term maxh∈W (x,y,zi)wh times the number
Ωi of its addenda. In step (16c), we have lower
bounded the sum

∑
k∈L(x,y,zi)wk with one of its

terms, as the addenda are all non-negative.
n∑

k=1

wkCk(xdif, ydif, zdif
i) > 0

(a)⇐⇒
∑

h∈W (x,y,zi)

wh > (Ωi + 1)
∑

k∈L(x,y,zi)
wk

(b)
=⇒ Ωi max

h∈W (x,y,zi)
wh > (Ωi + 1)

∑

k∈L(x,y,zi)
wk

(c)
=⇒ Ωi max

h∈W (x,y,zi)
wh > (Ωi + 1)wk

for every k ∈ L(x, y, zi)

=⇒ max
h∈W (x,y,zi)

wh > wk

(16)
We now show that the conclusion reached in the

last line of (16) entails that the strict inequality
(17) holds for every j = 1, . . . , m̂.

max
h∈W (x̂,ŷ,̂zj)

wh > max
k∈L(x̂,ŷ,̂zj)

wk (17)

In fact, suppose by contradiction that (17) fails
for some j = 1, . . . , m̂. Consider a ranking �
which respects the relative size of the weights, in
the sense that conditions [A] and [B] hold for any
two constraints Cs, Ct with weights ws, wt.

[A] If ws > wt, then Cs is�-ranked above Ck.

[B] If ws = wt and Cs ∈ L(x̂, ŷ, ẑj) and Ct ∈
W (x̂, ŷ, ẑj), then Cs is�-ranked above Ck.

8

ONSET

NOCODA

MAX

DEPV

DEPC




0
−1
3
−1
0



≥0.5




0
−2
1
−2
0




+0




0
−2
0
1
0







0
−1
0
2
0



≥0




0
−2
1
−2
0




+0.5




0
−2
0
1
0







0
0
2
−1
0



≥0.5




0
−2
1
−2
0




+0




0
−2
0
1
0




Table 3: Verifying that condition (15) holds for the OT implication (CC, CVC) → (CCC, CV.CVC).

The ranking � succeeds on the antecedent
mapping (x, y). In fact, the condition obtained
in the last line of (16) says that there exists a
constraint which prefers the winner (x, y) to the
loser (x, zi) whose weight is strictly larger than the
weight of every constraint which instead prefers
the loser (x, zi) to the winner (x, y). By [A],
this means that a constraint which prefers the
winner (x, y) is �-ranked above every constraint
that instead prefers the loser (x, zi). The rank-
ing � therefore prefers the winner (x, y) to the
loser (x, zi). Since this conclusion holds for ev-
ery i = 1, . . . ,m, the ranking� succeeds on the
antecedent mapping (x, y).

On the other hand, the ranking � fails on
the consequent mapping (x̂, ŷ). In fact, the con-
tradictory assumption that (17) fails means that
maxh∈W (x̂,ŷ,̂zj)wh ≤ maxk∈L(x̂,ŷ,̂zj)wk. In other
words, there exists a constraint which prefers the
loser (x̂, ẑj) to the winner (x̂, ŷ) whose weight is
strictly larger than or equal to the weights of the
constraints which instead prefer the winner (x̂, ŷ)
to the loser (x̂, ẑj). By [A] and [B], the ranking�
cannot prefer (x̂, ŷ) to (x̂, ẑj).

The conclusion that � succeeds on the an-
tecedent (x, y) but fails on the consequent (x̂, ŷ)
contradicts the assumption that the implication
(x, y)

OT→ (x̂, ŷ) holds in OT, thus establishing
the inequality (17). This inequality can in turn
be unpacked as in (18). In step (18a), we have
lower bounded Λ̂j maxk∈L(x̂,ŷ,̂zj)wk with the sum∑

k∈L(x̂,ŷ,̂zj)wk, because Λ̂j is the number of ad-
denda in the sum. In step (18b), we have upper
bounded the maximum maxh∈W (x̂,ŷ,̂zj)wh with
the sum

∑
h∈W (x̂,ŷ,̂zj)

wh, because the weights be-
ing summed over are all non-negative. In step
(18c), we have used the definition (14) of the con-

straint differences Ck(x̂easy, ŷeasy, ẑeasy
j).

max
h∈W (x̂,ŷ,̂zj)

wh > max
k∈L(x̂,ŷ,̂zj)

wk =⇒

=⇒ (Λ̂j + 1) max
h∈W (x̂,ŷ,̂zj)

wh > Λ̂j max
k∈L(x̂,ŷ,̂zj)

wk

(a)
=⇒ (Λ̂j + 1) max

h∈W (x̂,ŷ,̂zj)
wh >

∑

k∈L(x̂,ŷ,̂zj)
wk

(b)
=⇒ (Λ̂j + 1)

∑

h∈W (x̂,ŷ,̂zj)

wh >
∑

k∈L(x̂,ŷ,̂zj)
wk

(c)
=⇒

n∑

k=1

wkCk(x̂easy, ŷeasy, ẑeasy
j) > 0

(18)
The inequality in the last line of (18) holds for ev-
ery j = 1, . . . , m̂, ensuring that the weights w
succeed on the consequent mapping (x̂easy, ŷeasy).

6 Conclusions

A central task of linguistic theory is to character-
ize the typological structure predicted by a gram-
matical formalism in order to match it to linguistic
data. A classical strategy to characterize typologi-
cal structure is to chart the implicational universals
predicted by the formalism. In this paper, we have
focused on the two constraint-based phonological
formalisms of HG and OT. And we have consid-
ered the simplest type of implicational universals,
namely T-orders. The main result of this paper
has been a complete constraint characterization of
T-orders in HG and OT. These constraint condi-
tions rely on an elegant underlying convex geom-
etry. These conditions are phonologically intuitive
and have important algorithmic implications.

Acknowledgments

The research reported in this paper has been
funded by the Agence National de la Recherche
(project title: ‘The mathematics of segmental
phonotactics’). This paper is part of a larger
project on T-orders, developed in collaboration
with Arto Anttila. His comments on this paper are
gratefully acknowledged.

9

References
Arto Anttila and Curtis Andrus. 2006. T-orders.

Manuscript and software (Stanford).

Maximilian Bane and Jason Riggle. 2009. Evaluating
Strict Domination: The typological consequences of
weighted constraints. In Proceedings of the 45th
annual meeting of the Chicago Linguistics Society,
pages 13–27.

Dimitri P. Bertsekas. 2009. Convex Optimization The-
ory. Athena Scientific, Belmont, MA, USA.

Stephen Boyd and Lieven Vandenberghe. 2004. Con-
vex Optimization. Cambridge University Press.

Noam Chomsky. 1981. Lectures on Government and
Binding. Mouton de Gruyter.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper and Row, New York.

Andries W. Coetzee. 2004. What it Means to be a
Loser: Non-Optimal Candidates in Optimality The-
ory. Ph.D. thesis, University of Massachusetts,
Amherst.

Joseph H. Greenberg. 1963. Some universals of gram-
mar with particular reference to the order of mean-
ingful elements. In Joseph H. Greenberg, editor,
Universals of Language, pages 73–113. MIT Press,
Cambridge, MA.

G. Guy. 1991. Explanation in variable phonology.
Language Variation and Change, 3:1–22.

Frank Keller. 2006. Linear Optimality Theory as
a model of gradience in grammar. In Gisbert
Fanselow, Caroline Féry, Ralph Vogel, and Matthias
Schlesewsky, editors, Gradience in Grammar: Gen-
erative Perspectives, pages 270–287. Oxford Uni-
versity Press, Oxford.

Paul Kiparsky. 1993. An OT perspective on phonolog-
ical variation. Handout (Stanford).

Géraldine Legendre, Yoshiro Miyata, and Paul
Smolensky. 1990. Harmonic Grammar: A for-
mal multi-level connectionist theory of linguistic
well-formedness: Theoretical foundations. In An-
nual conference of the Cognitive Science Society 12,
pages 388–395, Mahwah, NJ. Lawrence Erlbaum.

Giorgio Magri. 2013. HG has no computational ad-
vantages over OT: towards a new toolkit for compu-
tational OT. Linguistic Inquiry, 44.4:569–609.

Giorgio Magri. 2018. Finiteness of optima in
constraint-based phonology. Manuscript, CNRS.

Christopher Potts, Joe Pater, Karen Jesney, Rajesh
Bhatt, and Michael Becker. 2010. Harmonic Gram-
mar with Linear Programming: From linear systems
to linguistic typology. Phonology, 27(1):1–41.

Alan Prince and Paul Smolensky. 2004. Optimality
Theory: Constraint Interaction in generative gram-
mar. Blackwell, Oxford. Original version, Techni-
cal Report CU-CS-696-93, Department of Computer
Science, University of Colorado at Boulder, and
Technical Report TR-2, Rutgers Center for Cogni-
tive Science, Rutgers University, April 1993. Avail-
able from the Rutgers Optimality Archive as ROA
537.

R. Tyrrell Rockafellar. 1970. Convex Analysis. Prince-
ton Landmarks in Mathematics; Princeton Univer-
sity Press.

Paul Smolensky and Géraldine Legendre. 2006. The
Harmonic Mind. MIT Press, Cambridge, MA.

Bruce Tesar and Paul Smolensky. 1998. Learnability in
Optimality Theory. Linguistic Inquiry, 29:229–268.

10

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 11–20
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Lexical Networks in !Xung

Syed-Amad Hussain
Department of Computer Science

The Ohio State University
amadh881@gmail.com

Micha Elsner
Department of Linguistics
The Ohio State University
melsner0@gmail.com

Amanda Miller
[24]7.ai

San Jose, California
amanda.miller@247.ai

Abstract

We investigate the lexical network proper-
ties of the large phoneme inventory South-
ern African language Mangetti Dune !Xung as
it compares to English and other commonly-
studied languages. Lexical networks are
graphs in which nodes (words) are linked to
their minimal pairs; global properties of these
networks are believed to mediate lexical ac-
cess in the minds of speakers. We show that
the network properties of !Xung are within the
range found in previously-studied languages.
By simulating data (”pseudolexicons”) with
varying levels of phonotactic structure, we
find that the lexical network properties of
!Xung diverge from previously-studied lan-
guages when fewer phonotactic constraints are
retained. We conclude that lexical network
properties are representative of an underlying
cognitive structure which is necessary for ef-
ficient word retrieval and that the phonotac-
tics of !Xung may be shaped by a selective
pressure which preserves network properties
within this cognitively useful range.

1 Introduction

We investigate the lexical network proper-
ties (LNPs) of the Southern African language
Mangetti Dune !Xung (hereafter !Xung) as they
compare to previously-studied languages. !Xung
has 87 consonant phonemes, substantially larger
than most of the world’s languages (Miller, 2016;
Miller-Ockhuizen, 2003; Dickens, 1994; Mad-
dieson, 2013). Many of these sounds are clicks,
typologically rare sounds found mostly in South-
ern Africa. In !Xung, close to 90% of con-
tent words begin with an initial click. While
these properties place !Xung distinctly apart from
most commonly-studied languages at the phone-
mic level, we analyze its lexical network (LN)
to determine whether its mental lexicon is struc-
turally different from those of languages with

smaller inventories.
In a LN, as shown in Figure 1, nodes represent

words and edges between nodes represent mini-
mal pairs (Vitevitch, 2008). Vitevitch (2008) ar-
gues that the high connectivity and tendency to-
ward clustering found in the English language lex-
icon are important aids to word learning and re-
trieval; later work finds similar properties in other
lexicons (Arbesman et al., 2010; Shoemark et al.,
2016). Some claims about the linguistic relevance
of LNPs have been qualified by experiments show-
ing that certain property values are inherent to
the construction process of the network and can
be replicated even when words are sampled from
simple generative processes (Stella and Brede,
2015; Gruenenfelder and Pisoni, 2009; Turnbull
and Peperkamp, 2016; Brown et al., 2018), though
all these studies except Brown et al. point out that
the LNs of natural languages maintain some dis-
tinctive properties.

Because !Xung has a very large phoneme in-
ventory, it might in principle have very different
network properties from previously studied lan-
guages. Any given word might have far more min-
imally different neighbors; alternately, the words
might be spread out more thinly across a wider
phonemic space. Our main questions in this study
are (1) whether the network properties of !Xung
differ from those of previously-studied languages,
and, (2) if not, what phonological properties of the
language lead to this network structure despite the
large phoneme inventory?

Our initial analysis shows that most of the LNPs
of !Xung lie within the range of values found
for other languages in previous work. We next
look at how these properties might vary over a
range of lexicon sizes. Because large lexicons for
!Xung are not available, we conduct these anal-
yses on simulated data (“pseudolexicons”) sam-
pled from trigram models, following Gruenen-

11

https://doi.org/10.18653/v1/P17

Figure 1: Example lexical network centered around the
word “plan”: (Turnbull and Peperkamp, 2016, Fig. 1).

felder and Pisoni (2009). Though this analysis
must be considered preliminary due to the weak-
ness of the trigram model, a comparison against
the reported values from Shoemark et al. (2016)
again finds no substantial difference. Having an-
swered our first question, we turn to the second:
we construct pseudolexicons with varying degrees
of phonological structure, following Turnbull and
Peperkamp (2016), and compare them to one an-
other. We show that !Xung is more susceptible to
the loss of phonotactic structure than English; sim-
plistic sampling procedures create extremely un-
natural lexicons due to the inventory size. To de-
termine what phonotactic properties give the ac-
tual lexicon its shape, we create additional pseu-
dolexicons that focus on specific phonological
properties of !Xung. We find that pseudolexicons
based on syllabic structure, including the syllable
type inventory and co-occurrence restrictions on
onset and rhyme within the syllable, move closer
to the properties of the actual language, although
a disparity still remains present. Overall, we find
that !Xung has similar LNPs to previously studied
languages. However, experiments with sampled
lexicons show that when its syllable structure is
disrupted, disparities between !Xung and English
arise, hinting at a greater reliance on phonotactics
to maintain the shape of the network.

2 Background

We conduct our analysis on LNs to derive cogni-
tive and phonotactic conclusions. Vitevitch (2008)
first presents this network model which assigns
words as nodes and minimal pairs between these
words as edges. He finds that lexical retrieval and
language acquisition is aided by higher network
density – largely defined by the network proper-
ties of assortative mixing and average clustering
coefficient. Vitevitch (2008) and subsequent work

on networks (Shoemark et al., 2016; Turnbull and
Peperkamp, 2016) describe network structure in
terms of four properties: Fraction in Largest Is-
land is defined as the percent of the lexicon that
is connected to the largest component, or island,
in the network and characterizes the global con-
nectivity of the network. The remaining three
properties are calculated within this largest island:
Degree Assortativity Coefficient shows the ten-
dency of nodes to be connected to other nodes with
similar degrees, where with higher values the cen-
tral “hubs” of the network are connected to one
another (Newman and Girvan, 2003); Average
Shortest Path Length (ASPL) averages the min-
imum number of hops it takes to get between any
two nodes in the largest island, similar to the game
“Six Degrees to Kevin Bacon”; average Cluster-
ing Coefficient (CC) is defined as the number of
edges that exist between neighbors divided by the
number of possible edges between neighbors and
can be thought of as “are my neighbors also neigh-
bors with each other” or “do all my friends know
each other?”.

Later work on this model points out that
network statistics are affected by lexicon size,
phoneme inventory size, word length distribution,
and the inclusion of morphological variants (Shoe-
mark et al., 2016). Since these cannot all be con-
trolled in cross-linguistic comparisons, indirect
comparisons are often made. The phonological
properties of the language can be used to generate
pseudolexicons sampled from character language
models, which are examined over several lexicon
sizes. The trends for each language are then com-
pared qualitatively against each other language.

Further work expands the use of pseudolexicons
to determine the source of the network property
statistics (Turnbull and Peperkamp, 2016). Instead
of attempting to replicate the real phonotactic reg-
ularities of the language, pseudolexicons can vary
in how many, and which, phonotactic properties
of the original language they retain. By com-
paring several such pseudolexicons, Turnbull and
Peperkamp (2016) conclude that the typical range
of values of average CC are intrinsic to all LNs,
typical values of largest island size and ASPL are
determined by phonological rules, and degree as-
sortativity may reflect some higher-level organiza-
tion principle within the lexicon.

While this kind of previous research has estab-
lished that some lexical network properties depend

12

on phonology, their experiments tell us relatively
little about what specific phonological constraints
have the greatest effect. In order to do so, we must
move beyond comparing real languages to sam-
ples from generic statistical processes like ngram
models and create distributions which enforce in-
dividual phonotactic constraints.

We employ a series of pseudolexicons which
preserve various aspects of !Xung phonology to
determine which phonological rules within these
languages are responsible for preserving the typ-
ical values of largest island size and ASPL. We
find that constraints on click placement and sylla-
ble structure can explain most, but not all the dif-
ference between randomly generated pseudolexi-
cons and the real data.

3 Phonological Properties of !Xung

Mangetti Dune !Xung belongs to the Kxa lan-
guage family (formerly known as the North-
ern Khoisan branch of the Khoisan family), and
is a member of the Northern branch of the
Juu subgroup, according to the classification of
Sands (2003). The complete sound inventory
of Mangetti Dune !Xung is provided in Miller
(2016). Mangetti Dune !Xung contains 87 con-
sonants, 45 of which are click consonants; its
vowel inventory is also extremely large. There are
only five contrastive vowel qualities, but there are
many contrastive vocalic phonation types (modal,
breathy, epiglottalized and glottalized), and the
language also contrasts oral vs. nasal vowels.
Nasality can combine with all the different phona-
tion types, though there are some restrictions on
which vowel qualities can combine with epiglot-
talization and nasalization. In addition, !Xung is a
tone language; each mora may bear one of 4 dis-
tinct tone levels with some restrictions on their co-
occurrence (Miller-Ockhuizen, 2003), leading to
7 possible contrastive tone patterns that occur on
content words. (In our analysis, for purposes of
determining minimal pairs, the tones are consid-
ered as contrastive features of the vowels.) Over
90% of content words in !Xung commence with a
click consonant, while function words largely be-
gin with a pulmonic (non-click) consonant.

Miller-Ockhuizen (2003) describes the phonol-
ogy of a related Juu lect, Ju’hoansi. All na-
tive roots within Ju’hoansi (and !Xung) are ei-
ther monosyllabic or bisyllabic with loan words
constituting any trisyllabic roots. A syllable con-

sists of an onset consonant followed by a 1 or 2-
vowel nucleus with 2-vowel nuclei only occurring
within the first syllable. The only coda consonants
are nasals which end some monosyllabic roots.
Within a word, 89 consonant types can occur in the
initial position while only 4 types occur in medial
position. Initial consonants are 91% pulmonic and
velaric plosives, which includes all click types,
with fricatives and nasal or liquid sonorants con-
stituting the rest of the occurrences. Medial con-
sonants are effectively limited to the sonorants B
and R (98% of medial consonants) and the nasals
m and n. Guttural consonants and vowels only
occur within the initial syllable and both never
co-occur within the same syllable. The extensive
co-occurrence restrictions in !Xung continue be-
tween tone and guttural vowels and consonants
where, for instance, roots with partially epiglotal-
lized vowels are always bitonal while roots with
fully epiglottalized vowels are level toned. There
are also several co-occurrence restrictions based
on place of articulation with cross-height cross-
place dipthongs only occurring in roots with back
clicks and dipthongs with epiglottalized vowels
and pharyngeal consonants causing the dipthon-
gization of following front vowels. See Miller
(2016) and Heikkinen (1986) for differences be-
tween Ju’hoansi and !Xung.

4 Basic properties

We begin by establishing the actual LNPs of the
!Xung lexicon and comparing them to previous
work.

4.1 Methodology

Our !Xung corpus contains 974 words, collected
and transcribed into IPA as part of field work
(Miller et al., 2008). For comparison, we use
an English lexicon containing the 974 highest
frequency words from the Fisher corpus (Cieri
et al., 2004), converted to IPA using the CMU
dictionary— though we do not believe that the
!Xung lexicon contains strictly the most frequent
words of the language, we do believe that the field
workers chose to record words which they encoun-
tered frequently in storytelling and conversation.

We build each LN by assigning words as nodes
and minimal pairs as edges. We build and analyze
our networks using the python NetworkX pack-
age. From these networks, we derive the Fraction
in Largest Island, Degree Assortativity, ASPL, and

13

Figure 2: Two panels of Figure 4 from Shoemark et al.,
with superimposed dots for !Xung; colored lines show
real language, dotted lines show pseudolexicons.

Average Clustering Coefficient. We then qualita-
tively compare these results to the values for the 8
reported languages1 in Shoemark et al. (2016).

4.2 Results

The LN degree statistics are summarized in Table
2. Despite the potential for very large or small
numbers of minimal pairs per word, we find that
the actual maximum degree (number of pairs) is
14, the minimum is 1, and most words have about
4 neighbors. Lexical network properties are shown
in Table 1. (Comparison values for the LNPs are
derived from Shoemark’s Figure 4 by reading the
graph at the smallest lexicon size available; two
panels of this graph are reproduced as Figure 2.)
!Xung’s value for Fraction in Largest Island falls
within the observed range of variation; for Aver-
age Shortest Path and Degree Assortativity, !Xung
represents an extreme of the observed values, but
falls quite close to the measurements for German.
Only for Clustering Coefficient is the !Xung value
an outlier; !Xung is more tightly clustered than the
other languages in the sample.

5 Analysis 1

The analysis above did not show definitive differ-
ences between !Xung and previously studied lan-
guages, but, as argued by Shoemark et al. (2016),
LN measurements are best viewed as trends over
several lexicon sizes rather than point measure-
ments. With the limited data available for !Xung,

1Seven Indo-European languages of Europe: English,
Dutch, German, Polish, French, Spanish and Portuguese—
and one language isolate: Basque.

Property !Xung Closest value
% Lgst. Island 36.5 32 (Dutch)
ASPL 8.74 8 (German)
Deg. Assrt. 52.8 52 (German)
CC 52.4 35 (Polish)

Table 1: Lexical network properties of !Xung, along
with closest comparison values from Shoemark et al.
(2016).

Median degree 4
Mean degree 4.357
Min degree 1
Max degree 14
Degree std. dev. 2.749

Table 2: Degree (minimal pair) statistics of !Xung.

we cannot obtain more than 974 actual words; in-
stead, we follow previous work in using sampled
data as a proxy. Though sampled data cannot
be considered fully reliable, it can help us to un-
derstand whether !Xung phonology would proba-
bly create extreme LNP values if more data were
available, or whether the outcomes would likely
remain in the typical range.

5.1 Methodology

To create pseudolexicons that most accurately cap-
ture the phonotactics of each language, we use
a trigram model with Ney’s absolute discount-
ing(Ney et al., 1994)2. Using these probabili-
ties, we can extend the lexicon size by simulating
“words” similar to those in the actual language.

We train the trigram models using the SRI Lan-
guage Modeling (SRILM) Toolkit (Stolcke, 2002;
Stolcke et al., 2011). We generate pseudolexicons
of size 210, 211, 212, and 213 for each language
(we did not generate a 213 length pseudolexicon
for English) and average relevant network statis-
tics over 50 trials.

5.2 Results

The trendlines appear in Figure 3. In an initial
overview, we see that !Xung trend lines are sim-
ilar to those for trigram-sampled English for most
of the properties; Fraction in Largest Island trends
upward (the network grows more connected), as
does Degree Assortativity (“hubs” in the network

2Previous work used Kneser-Ney smoothing (Chen and
Goodman, 1999); this is not as suitable for character-level
modeling, since it uses a type-based backoff strategy de-
signed for the sparsity of word rather than character statistics.

14

Figure 3: Trigram pseudolexicon network property val-
ues for trigram pseudolexicons of English and !Xung,
and natural English data.

grow closer together), while clustering coefficient
remains flat. The trend for ASPL differs (!Xung
remains flat while English, like most languages
in Shoemark’s sample, increases). However, there
are long flat intervals in Shoemark’s trendlines for
ASPL in German, Dutch and Portuguese.

For most of the LNPs, the slope of the nat-
ural English trendline is similar to that for tri-
gram English, indicating that the language model
is a reasonable proxy for additional data. How-
ever, for Fraction in Largest Island, the slope is
reversed; real English grows less rather than more
connected. This is probably due to the different
lexical strata within English (less common words
are often borrowings with different phonological
patterns) (Shoemark et al., 2016). Without addi-
tional !Xung data, we cannot know how well the
trigram LM corresponds to the real trendlines for
!Xung, nor whether the real slope for Fraction in
Largest Island would increase or decrease. How-
ever, increasing slopes are linguistically plausible;
Spanish and Portuguese have increasing Largest
Island sizes.

Overall, then, the trendlines for !Xung are plau-
sibly within the range of variation shown by pre-
viously studied languages. The analysis below
shows that trigrams are a poorer proxy for the
!Xung lexicon than for English, generating a re-
alistic size for the largest island but erroneous val-
ues for shortest path and assortativity, so these re-
sults must be taken with a substantial grain of salt.
However, like the LNP statistics above, they repre-
sent converging evidence that !Xung’s lexical net-
work is not a linguistic outlier in the same way as
its phonemic inventory.

6 Analysis 2

Analysis 1, like the preliminary examination,
showed that the LNPs of !Xung broadly resem-
ble those of previously studied languages. This
raises the question: what phonological properties
allow !Xung to have similar LNPs to these lan-
guages despite having a much larger phoneme in-
ventory? In this analysis, we employ the methods
used by Gruenenfelder and Pisoni (2009); Stella
and Brede (2015); Turnbull and Peperkamp (2016)
to create pseudolexicons with varying levels of
phonological structure. A comparison of these
pseudolexicons highlights the phonotactic dispar-
ities between !Xung and English.

6.1 Methodology

For each of our corpora, we generate the fol-
lowing pseudolexicons also used in Turnbull and
Peperkamp (2016): Uniform – randomly se-
lects from the phoneme inventory; Zipfian – ran-
domly selects from the phoneme inventory given
a Zipfian distribution; Scrambled – scrambles the
phonemes of a word in place; Bigram – like the
previously mentioned trigram LM; Trigram. We
also create a Unigram pseudolexicon which ran-
domly selects from the actual phoneme distribu-
tion. Pseudolexicons which sample single letters
are given the same word length distribution as the
original lexicon. Examples of words from these
pseudolexicons are shown in Table 4 within the
appendix. We compare the network properties
of these pseudolexicons (averaged over 50 trials)
within each language.

Since the pseudolexicons represent artificial
distributions, which are known a priori to differ
from the true distribution of words in the language,
null hypothesis significance testing is inappropri-
ate to assess the degree of difference— an arbi-
trarily small p-value could always be obtained by
sampling more data. Instead, we use Cohen’s d as
a measure of the effect size; d measures the differ-
ence between means scaled by the standard devia-
tion.

6.2 Results

Table 3 shows the results, also plotted in Fig-
ure 4. The lower right panel shows that only
the bigram and trigram lexicons generate realis-
tic sizes for the largest island. Other pseudolex-
icons are highly disconnected. This is especially
the case for !Xung relative to English; for instance,

15

Unif Zipf Scram Unig Bigr Trigr Natural
% Lgst. (mean) 0.7 24.9 6.1 9.0 41.7 37.7 36.6
% Lgst. (d) -246.9 -6.0 -15.1 -15.3 2.6 0.6
% Lgst. (mean) 8.6 32.1 12.5 18.3 33.3 36.6 38.4
% Lgst. (d) -30.3 -4.6 -13.4 -9.8 -3.5 -1.1
ASPL (mean) 2.0 4.4 5.8 5.9 3.9 3.7 8.7
ASPL (d) -17.9 -13.6 -1.9 -3.1 -24.0 -23.7
ASPL (mean) 5.1 4.2 6.0 5.9 4.6 5.2 6.1
ASPL (d) -1.4 -12.1 -0.1 -0.4 -7.5 -3.1
DA (mean) -27.0 35.1 26.9 31.5 80.1 80.5 52.8
DA (d) -3.7 -2.6 -2.1 -2.0 11.2 14.4
DA (mean) 39.1 32.6 46.8 45.8 71.1 72.3 43.6
DA (d) -0.5 -3.6 0.5 0.5 7.8 8.0
CC (mean) 35.6 58.7 50.1 48.9 58.6 60.8 52.4
CC (d) -0.7 2.1 -0.4 -0.7 3.5 4.2
CC (mean) 37.3 44.1 39.0 36.3 42.9 42.5 36.5
CC (d) 0.2 4.1 0.7 -0.1 3.5 2.9

Table 3: Pseudolexicon LNPs (!Xung in white, English in gray); mean and Cohen’s d versus the natural language.

Figure 4: Network property values for pseudolexicon
models of English and !Xung, ordered by phonotactic
similarity to the natural language, with right-most be-
ing the natural language itself.

the English uniform pseudolexicon (far left) has
nearly 10% of the nodes in the largest island, while
!Xung has essentially none on average, with ex-
tremely high variance. This disparity between lan-
guages is caused by the large phonemic inven-
tory, which creates fewer minimal pair matches
when randomly sorted, as in the uniform, Zipfian,
scrambled, and unigram pseudolexicons. !Xung
thus serves as a counterexample to recent claims
that simplistic random lexicons created with un-
igram sampling can mimic the properties of real
LNs (Brown et al., 2018). The disparity begins
to shrink as the pseudolexicons become more nat-
ural, suggesting that disparities due to the large

phonemic inventory are reduced by phonological
structure and that phonotactic constraints on word
forms in !Xung lead the lexicon to include more
minimal pairs.

For the lexicons with reasonable island sizes,
the values of clustering coefficient are relatively
stable across all pseudolexicons, as in Turnbull
and Peperkamp (2016), though again highly vari-
able for the Uniform lexicon. The shortest path
and associativity measures show that Bigram and
Trigram lexicons are more compact and central-
ized than the actual lexicon for both !Xung and
English (paths are shorter and associativity is
higher). However, these differences are larger for
!Xung than for English as measured by Cohen’s d.
The Unigram and Scrambled lexicons, meanwhile,
are more realistically dispersed, but also discon-
nected (< 10% of nodes in the largest island).

Overall, the results show that the network struc-
ture of !Xung reflects properties which go beyond
the frequencies of individual segments, including
some characteristics which are poorly captured
even by trigram models. The differences between
simple pseudolexicons and the real properties of
the language are generally greater (in terms of d)
for !Xung than for English. Thus, we conclude
that the !Xung network is less resilient to phono-
tactic disruption than the English network.

16

English !Xung
Uniform NsT, iEhh, iZgmU ‚u}h‚e
Zipfian oUp@, O@EN@, NOæOs óm̀n|̊n|h, g{Ǹ̀!, g|ho
Scrambled ETlih, @wrdn@IN,

krlj@Ea@n
@̀{N, e̊N!he, ‚aàh!

Semi-
Scrambled

(N/A) {N@̀, N̊!hee, !àh‚a

CV Enf@zamEs, vIlOk-
itdr, nna@ln

n@̋!’ùN|, g{áXúB,
ŚinòZ

KCV (N/A) N!dóm, }’zùs’,
g{lÚs

Free O+R (N/A) !‚on‚a, dZ‚a, g{‚oĳn

Pos. O+R (N/A) g}@́, N!òĳvà, wì
Syllable (N/A) N̊|h ú́in, {àòn,

g!‚@mHè
Unigram wjork, sEgit, njNe úŃ{úlùb, téùXàĳà,

íl{!̀iò
Bigram rnOsm, Oj@, tekjks !Pḿ, máĳ̀ìi, |’ùB‚an

Trigram plæN, lIN, hæv N̊|h ù̀i, N̊|h‚ulà, t‚ah

Natural
Lexicon

hElTi, w@nd@rIN,
kEr@lajn@

{@̀N, N̊!hee, !‚aàh

Table 4: Three random words from pseudolexicons.

7 Analysis 3

We continue our investigation by attempting to
determine which phonotactic properties of !Xung
might be most important in maintaining its struc-
ture. Several properties of !Xung phonology might
be important in constraining its network structure.
These include its relatively simple syllabic struc-
ture, the positional constraints on initial medial
consonants, and the co-occurrence restrictions on
consonants and vowels within the syllable. To
highlight these properties, we compare our Scram-
bled pseudolexicon to pseudolexicons designed to
respect some of these properties.

7.1 Methodology

In the CV lexicon, we extract a distribution over
word templates by transforming each consonant
into C and each vowel into V, then generate each
word by sampling a template from this distribution
and filling it with random consonants and vow-
els sampled from the unigram distribution. The
CV pseudolexicon forces the generated words to
contain reasonable proportions of vowels and con-
sonants, but it does not enforce any positional
constraints; words may contain unnatural features
like illegal codas, sequences of vowels which do
not form diphthongs, and medial clicks. We next
test the effect of the constraint that !Xung content
words tend to begin with a click, by generating
a Semi-scrambled lexicon (scrambling each real
word in place, but any present click stays at the
initial position) and KCV (like CV, except that the

Figure 5: LNPs in Analysis 3.

initial syllable will begin with a click and subse-
quent ones will only contain vowels and pulmonic
consonants). Examples of words from these pseu-
dolexicons can be found in Table 4.

We next syllabify the !Xung corpus (treating
each sequence of vowels as a syllable nucleus and
maximizing onsets). We use this database of sylla-
bles to create a sequence of pseudolexicons which
sample larger prosodic units rather than single seg-
ments. These pseudolexicons are length-matched
to the original corpus in number of syllables (not
segments). Free Onset+Rhyme forms syllables by
sampling attested onsets and rhymes, but draws
them from anywhere in the corpus, ignoring po-
sitional constraints. Positional Onset+Rhyme en-
forces placement constraints on consonants by
sampling word-initial, medial and final onsets and
rhymes from separate distributions. Finally, Syl-
lable samples whole syllables from the correct po-
sitional distributions, enforcing the co-occurrence
constraints between onsets and rhymes as well as
the placement constraints.

7.2 Results

The results (averaged over 50 trials) are shown in
Table 5. The CV lexicon, which forces words to
contain realistic proportions of vowels and conso-
nants, roughly triples the largest island size versus
the Scrambled lexicon, but does not create a real-
istic LN. Forcing clicks to occur only at word be-
ginnings does relatively little; neither the Semis-
crambled nor KCV lexicons look very different
from the CV lexicon. Lexicons formed using ac-

17

Scram Semi CV KCV Free
Ons+Rhy

Posit.
Ons+Rhy

Syll Trigr Natural

% Lgst. (mean) 6.1 13.6 18.6 20.3 57.4 55.7 40.6 37.7 36.6
% Lgst. (d) -15.1 -17.2 -9.2 -8.4 3.5 2.6 1.2 0.6
ASPL (mean) 5.8 5.7 5.2 5.4 3.3 3.8 5.9 3.7 8.7
ASPL (d) -1.9 -5.0 -5.5 -7.6 -5.1 -3.6 -4.1 -23.7
DA (mean) 26.9 38.8 43.8 43.0 47.0 43.6 59.6 80.5 52.8
DA (d) -2.1 -3.7 -1.1 -1.3 -1.1 -1.1 2.5 14.4
CC (mean) 50.1 55.2 47.4 46.1 63.1 62.9 51.2 60.8 52.4
CC (d) 0.0 0.0 -0.1 -0.1 0.1 0.1 -0.1 0.1

Table 5: Statistics of phonotactically targeted pseudolexicons (mean and Cohen’s d versus natural language).

tual onsets and rhymes attested from the corpus
have much larger island sizes— in fact, larger
than the real graph (56% vs 36%). The Positional
Onset+Rhyme model is quite similar to the On-
set+Rhyme model across all the LNPs. Finally, the
Syllable lexicon has a realistic island size (41%),
and is wider than the Onset+Rhyme or Trigram
networks, with an average path length of 5.9 (vs
3.3-3.8, compared with the actual 8.7)3.

Comparing the Onset+Rhyme models to the
CV lexicon, we find that the syllabic structure of
!Xung helps to ensure that the network is con-
nected. Surprisingly, positional constraints on
consonant placement (clicks at the beginning, re-
stricted set of medials) have a limited impact
on the shape of the network; KCV is similar
to CV, and Positional Onset+Rhyme to Free On-
set+Rhyme. However, the co-occurrence restric-
tions on onset and rhyme within the syllable, for
instance, constraints on gutturals, are important
in limiting connectedness and creating the long
shortest-path distances of the real lexicon, since
both these properties appear only in the pseudolex-
icon which samples whole syllables as units. Co-
occurrence restrictions within the syllable widen
the LN by preventing the formation of a mini-
mal pair which would be phonologically unnatu-
ral, since its onset and rhyme would not match.

8 Conclusion

Overall, we find that the network properties of
!Xung do not substantially differ from previously
studied languages despite fundamental phonolog-
ical disparities. This supports the argument of

3Cohen’s d estimates a slightly larger effect separating
the ASPL for Syllable from the natural language than On-
set+Rhyme; this is because Syllable has a substantially lower
variance.

Vitevitch (2008) that the LNPs indicate an under-
lying cognitive structure. Vitevich proposed that
the global shape of the network enables efficient
word learning and retrieval from memory; it is also
plausible that the network structure is necessary to
avoid confusing large numbers of minimal pairs in
auditory perception. In any case, the preservation
of this global structure suggests a selective pres-
sure shaping the phonotactics of these languages
(and others with large inventories) — phonotac-
tic rules may arise and change over time in ways
that preserve the network properties within a cog-
nitively useful range. For instance, the differences
between randomly scrambled and syllabic pseu-
dowords indicate that the restricted syllable inven-
tories of !Xung and Ju may force words to cluster
more tightly in the LN, compensating for the large
number of contrastive phonemes. In other words,
the underlying universal structure may be, not lin-
guistic, but cognitive. This universal architecture
may require certain patterns of connectivity within
the lexicon, and these, in turn, may entail particu-
lar phonotactic patterns.

Looking forward, we plan to expand our cur-
rent LN analysis to include data from relatives of
!Xung such as Ju|’hoansi,4 as well as languages
with small phoneme inventories, such as certain
Polynesian languages5. Through this, we hope
to uncover how our hypothesis operates across a
range of inventory sizes and types.

Additionally, we plan to investigate the func-

4We conducted a preliminary analysis of a 3733-word lex-
icon of Ju|’hoansi collected by Biesele et al. (2006) and found
similar results to those we obtained from !Xung. However,
the IPA transcription of this data is not consistent, so we have
chosen not to present it here.

5Hawai’ian was previously studied by Arbesman et al.
(2010) who found a comparatively larger giant component
and shorter average path lengths than several other languages;
however, they did not control for lexicon size.

18

tional load and potential confusability of !Xung
phonemic contrasts. A LN assumes real world
speakers can distinguish perfectly between mini-
mal pairs. However, with the large phoneme in-
ventory of !Xung, these clicks may be confus-
able in real speech, cf. (Fulop et al., 2004). We
hope to determine how the network properties
change when potential confusions between sounds
are taken into account.

Acknowledgements

We thank Rory Turnbull, Philippa Shoemark, Eric
Fosler-Lussier, the attendees of OSU’s Workshop
on the Emergence of Linguistic Universals and
Phonies discussion group, and six anonymous re-
viewers for their many helpful comments and sug-
gestions. This work was funded by NSF 1422987
to the second author.

References

Samuel Arbesman, Steven H Strogatz, and Michael S
Vitevitch. 2010. The structure of phonological
networks across multiple languages. International
Journal of Bifurcation and Chaos, 20(03):679–685.

M. Biesele, B. C. Boo, H. K. Gcao, G=/kao M.
/K, Kaqece K N!., A. Miller, /A. F /Kunta, and
C. N! Tsamkxao F. /U. /Ui. 2006. Ju|’hoansi Dic-
tionary, Revised version of Dickens, P. Ju|’hoan-
English – English-Ju|’hoan Dictionary. unpub-
lished manuscript, The Kalahari People’s Founda-
tion and The Ju—hoan Transcription Group.

Kevin S. Brown, Paul D. Allopenna, William R. Hunt,
Rachael Steiner, Elliot Saltzman, Ken McRae, and
James S. Magnuson. 2018. Universal features in
phonological neighbor networks. Computing Re-
search Repository, arXiv:1804.05766. Version 1.

Stanley F Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language,
13(4):359–394.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The Fisher corpus: a resource for the next
generations of speech-to-text. In Proceedings of
LREC, volume 4, pages 69–71.

P. Dickens. 1994. Ju|’hoan-English English-Ju|’hoan
Dictionary. Koppe.

Sean A Fulop, Peter Ladefoged, Fang Liu, and Rainer
Vossen. 2004. Yeyi clicks: Acoustic description and
analysis. Phonetica, 60(4):231–260.

Thomas M Gruenenfelder and David B Pisoni. 2009.
The lexical restructuring hypothesis and graph the-
oretic analyses of networks based on random lexi-
cons. Journal of Speech, Language, and Hearing
Research, 52(3):596–609.

Terttu Heikkinen. 1986. Outline of the phonology of
the !Xũ dialect spoken in Ovamboland and west-
ern Kavango. South African journal of African lan-
guages, 6:18–28.

Ian Maddieson. 2013. Vowel quality inventories. In
Matthew S. Dryer and Martin Haspelmath, editors,
The World Atlas of Language Structures Online.
Max Planck Institute for Evolutionary Anthropol-
ogy.

A. Miller, L. Namaseb, S. Sands, S. Shah, M. Aromo,
C. Augumes, R. Fransisko, T. Kaleyi, D. Prata, and
S. Riem. 2008. Mangetti Dune !Xung Dictionary.
unpublished manuscript, The Ju|’hoan Transcription
Group, The Kalahari People’s Foundation, The Uni-
versity of Namibia and Northern Arizona University.

Amanda L Miller. 2016. Posterior lingual gestures and
tongue shape in Mangetti Dune !Xung clicks. Jour-
nal of Phonetics, 55:119–148.

Amanda Miller-Ockhuizen. 2003. The Phonetics
and Phonology of Gutturals: A Case Study from
Ju|’hoansi. Outstanding Dissertations in Linguistics
Series. Routledge.

Mark EJ Newman and Michelle Girvan. 2003. Mix-
ing patterns and community structure in networks.
In Statistical mechanics of complex networks, pages
66–87. Springer.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech & Lan-
guage, 8(1):1–38.

Bonny Sands. 2003. Juu subgroups based on phono-
logical patterns. In Khoisan languages and linguis-
tics: Proceedings of the 1st International Sympo-
sium, pages 85–114.

Philippa Shoemark, Sharon Goldwater, James Kirby,
and Rik Sarkar. 2016. Towards robust cross-
linguistic comparisons of phonological networks. In
Proceedings of the 14th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology, pages 110–120.

Massimo Stella and Markus Brede. 2015. Pat-
terns in the english language: phonological net-
works, percolation and assembly models. Journal
of Statistical Mechanics: Theory and Experiment,
2015(5):P05006.

Andreas Stolcke. 2002. SRILM-an extensible lan-
guage modeling toolkit. In Seventh international
conference on spoken language processing.

19

Andreas Stolcke, Jing Zheng, Wen Wang, and Vic-
tor Abrash. 2011. SRILM at sixteen: Update and
outlook. In Proceedings of IEEE automatic speech
recognition and understanding workshop, volume 5.

Rory Turnbull and Sharon Peperkamp. 2016. What
governs a language’s lexicon? Determining the or-
ganizing principles of phonological neighbourhood
networks. In International Workshop on Com-
plex Networks and their Applications, pages 83–94.
Springer.

Michael S Vitevitch. 2008. What can graph theory tell
us about word learning and lexical retrieval? Jour-
nal of Speech, Language, and Hearing Research,
51(2):408–422.

20

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 21–31
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Acoustic word disambiguation with phonological features in Danish ASR

Andreas Søeborg Kirkedal
Interactions, LLC

Murray Hill, NJ, USA
akirkedal@interactions.com

Abstract

Phonological features can indicate word class
and we can use word class information to
disambiguate both homophones and homo-
graphs in automatic speech recognition (ASR).
We show Danish stød can be predicted from
speech and used to improve ASR. We discover
which acoustic features contain the signal of
stød, how to use these features to predict stød
and how we can make use of stød and stød-
predictive acoustic features to improve over-
all ASR accuracy and decoding speed. In the
process, we discover acoustic features that are
novel to the phonetic characterisation of stød.

1 Introduction

Stød ([?] in IPA notation) is usually described
as (a kind of) creaky voice or as laryngealisa-
tion (Hansen, 2015; Grønnum et al., 2013). Stød
can distinguish homophones and homographs and
can identify word class by its presence. Danish
vi?ser is a noun that translates to clock dial, but
pronounced without stød - viser - it can also be a
verb that means to show. The presence of stød can
change the meaning of an utterance, e.g. de kendte
folk can mean the famous people if kendte is pro-
nounced as [kEn?d@] and can also mean they knew
people if kendte is pronounced as [kEnd@]. Stød
is robust against some types of reduction and is an
acoustic cue that can help distinguish one vs. none
in colloquial Danish: [e?n] and [eN].

Phonological features can often be determined
from grammar and morphology (Grønnum, 2005)
but stød may not occur in read-aloud or spon-
taneous speech when predicted by morphology
and grammar, and stød can be difficult to per-
ceive in both visualisations of spectrograms and
in speech (Hansen, 2015).

Stød is not highly frequent in either read-
aloud or spontaneous speech, but stød and similar

phonological features like e.g. tones are interest-
ing for two main reasons:

1. Relatively small languages like Nordic lan-
guages do not have large speech corpora
available like English, Chinese etc. We
should exploit all signals in the data to im-
prove ASR performance for these languages.

2. The semantic disambiguation at both sen-
tence and lexical level is appealing because
ASR errors that disturb the meaning of an
utterance are less acceptable for human con-
sumers of ASR output (Mishra et al., 2011).

Our contributions are to:

• Show that stød annotation is reliable when
annotated by trained phoneticians and can be
the basis of statistical analyses.

• Discover novel audio features that are predic-
tive of stød in speech.

• Demonstrate we can predict stød in speech as
phone variant discrimination.

• Integrate stød in ASR and improve WER on
read-aloud and spontaneous speech.

2 Related work

Henrichsen and Christiansen (2012) found a cor-
relation between fundamental frequency (F0) and
spectral tilt, and discrimination between content
words and function words. We also investigate
these features for their ability to predict stød.

Stød, stress and schwa-assimilation were stud-
ied in Kirkedal (2013) in an ASR context. The
study found that WER improved when stød, stress,
schwa and duration annotation were removed from
the lexicon. However, the ASR system was trained
on a single speaker corpus with read-aloud speech

21

https://doi.org/10.18653/v1/P17

Dataset Speech genre Location Speakers Duration Types Tokens
Språkbanken-train Read Office 560 316h 65667 2366183
Språkbanken-test Read Office 56 77h 72978 185049
JHP Spontaneous High-school 2 1 min 178† 995†

PAROLE48 Read Speech lab 1 48 min 181 4705
DanPASS Spontaneous Speech lab 18 2h 51 min 1075 21170

Table 1: Summary table for the corpora used. † indicate that type/token counts are based on counts of phones
instead of words.

and evaluated on a test set from the same corpus
and we demonstrate that the findings do not gen-
eralise to a multi-speaker setting.

No single feature extracted from audio of spo-
ken Danish can predict the presence of stød like F0
estimation can predict pitch (Fischer-Jørgensen,
1989). Because stød is related to irregular vibra-
tion of the vocal folds, previous research has fo-
cused on harmonics-to-noise (HNR) ratio, the dif-
ference between the first two harmonics in a spec-
trum (H1:H2) and diplophony (H1:H11

2
1) as well

as F0 and intensity (Hansen, 2015), but this is the
first large scale quantitative study of stød.

Stød can be audibly heard yet not be vis-
ible in a spectrogram to an experienced re-
searcher (Hansen, 2015). Consequently, the an-
notation of stød is subject to annotator perception.
Annotators need a considerable amount of training
to be able to annotate stød and the high cost of an-
notation in terms of training and annotation time
coupled with potential bias from annotator train-
ing or the specific annotator has been a barrier to
quantitative studies of stød. We show that expert
stød is reliable in Section 4.

Like stød in Danish, Tone 1 and Tone 2
in Norwegian and Swedish are the only differ-
ence between some homographs and homophones.
Swedish and Norwegian are pitch accent lan-
guages that use tones to distinguish lexical items
that would otherwise be homophones and homo-
graphs, e.g. tanken1 vs. tanken2 (the tank vs.
the thought - subscript indicates Tone 1 and Tone
2) (Lahiri et al., 2005). Some theories suggest
that stød originated from tones and the distribu-
tion of stød and Tone 1 & 2 also show similari-
ties (Grønnum et al., 2013). Riad (2000) describe
stød as a tonal pattern but this is refuted in a reply
in Grønnum et al. (2013).

In tonal languages like Mandarin Chinese,

1The ratio between the first harmonic H1 and the har-
monic signal at F0 ∗ 1.5. F0 is the frequency of H1.

tones or tonal contours disambiguate monosyl-
labic words as in the famous example of ma
which has five different meanings depending on
the tonal contour. ASR for tonal languages add
suprasegmental information to ASR models ei-
ther by extending the acoustic feature input (em-
bedded) or rescoring word lattices (explicit) (wen
Li et al., 2011). Embedded modelling requires
that tones are modelled in the lexicon either as
tonal variations of the same phoneme (Metze
et al., 2013; Yoon et al., 2006) or as separate
phonemes (Adams et al., 2018). Stød is related
to irregular vibration of the vocal folds which oc-
curs frequently in Danish with no connection to
stød and we do not explore explicit modelling.

The duration of the stød-bearing (semi-)vowel
or syllable has been considered important in pre-
vious literature. We do not consider duration in
this paper for 2 reasons: 1) HMM-based ASR is
the target application and implicitly model dura-
tion with self-loops in the HMM and 2) the investi-
gations of duration where conducted in lab condi-
tions with elicited speech in the Standard Copen-
hagen dialect. We use several corpora that cover
most Danish dialects, also dialects that typically
do not use stød.

The rest of the paper is structured as follows:
Section 3 presents the data used and Section 4
presents the study of stød annotation. In Section
5 we discover novel acoustic features that are pre-
dictive of stød. We test and evaluate how well
acoustic features predict stød in Section 6 and
perform phone variant discrimination where we
jointly predict phone and stød. In Section 7, we
adapt an ASR recipe for Danish and train several
ASR systems to determine the best way to use stød
to improve ASR.

3 Data

Table 1 shows the corpus statistics for all corpora
used in the rest of this paper.

22

We use an interview with a high school student
in real-world conditions, denoted as JHP2 to study
the reliability of stød annotation. We use this short
sample of speech because it is the only sample that
is annotated by four Danish-speaking expert pho-
neticians trained in stød annotation. Another ex-
pert phonetician aligned and time-coded the four
transcriptions.

We also use the monologues from Dan-
PASS (Grønnum, 2006) and speech from
PAROLE-DK3 (Henrichsen, 2007). To compen-
sate for the unequal corpus sizes, we sample only
48 minutes and refer to this subset as PAROLE48.
We separate a random subset that contains speech
from both DanPASS and PAROLE48 as a test set.

Nasjonalbiblioteket4 hosts a language repos-
itory called Språkbanken. In the repository
is a multilingual speech corpus also known as
Språkbanken. The Danish 16 kHz part of
Språkbanken contains recordings of phonetically-
balanced utterances and covers 7 regions of Den-
mark and ages ranging from 18-70. The Swedish
part was used in Vanhainen and Salvi (2014) to
create an ASR recipe.

Språkbanken-test is 15 times larger than stan-
dard test sets from the Linguistic Data Consor-
tium (LDC) such as HUB5 which is 5 hours long.5

We decided to split Språkbanken-test into a de-
velopment set SPDEV (ca. 9 hours) and test set
SPTEST (ca. 17 hours). The remaining 51 hours
are included in the training data (ca. 367 hours)
while making sure that neither speakers nor utter-
ances in SPDEV and SPTEST appear in the train-
ing set.

We create pronunciation lexicons with eS-
peak (Duddington, 2010) from the training tran-
scripts because the pronunciation lexicon dis-
tributed with Språkbanken has low coverage and
eSpeak was found to produce transcriptions that
are good enough for ASR (Kirkedal, 2014).

4 Stød annotation study

The data we use for training and testing needs to be
reliable, i.e. if stød is annotated, we need to be sure
that stød occurs. To test how reliable our data is,
we calculate inter-annotator agreement measured

2The JHP sample was made available by Jan Heegård Pe-
tersen, Copenhagen University.

3This corpus was used in Kirkedal (2013).
4The Norwegian National Library service.
5See https://catalog.ldc.upenn.edu/

LDC2002S13.

IPA1 IPA2 IPA3 IPA4
Phone avg. 0.82 0.80 0.81 0.85
Stød avg. 0.72 0.74 0.76 0.76

Table 2: Average κ inter-annotator agreement on stød-
bearing items.

by Cohen’s κ and an annotator competence score
(ACS) with MACE (Hovy et al., 2013). ACS is
based on an item-response model that assumes an
annotator will produce the correct phone sequence
if he tries to which is valid in this scenario. An
item is a unit in the phone sequence and in this
study each unit is labelled by 4 annotators. We use
both κ and ACS because κ is a measure of the an-
notation whereas ACS is an estimate of annotator
proficiency. For both κ and ACS, higher scores are
better. 7.8% of the items in JHP are annotated with
phones with stød (stød-bearing) and the phones
without stød (stød-less) will dominate κ because
the distribution of phones in JHP is Zipfian and all
stød-bearing phones are in the long tail. To focus
specifically on stød, we report κ computed over
stød-bearing items in two conditions:

1. Items that are labelled with stød by at least
one annotator e.g. [D?], [A?], [n?] etc.

2. The same items as in 1. but binarised such
that e.g. [D?], [A?], [n?]→ 1 and [D], [A], [n]
→ 0.

We compute ACS over all phones and over the
binarised stød annotation in 2.

We discovered 10 errors in the data, e.g. one
label was [?n], but should have been [n] and stød
should have been annotated on the previous phone
as [D?]. There were 7 alignment errors that was
caused by the interpretation of a syllable nucleus
as either two short vowels or a long vowel. This
has an impact on the alignment because stød is an-
notated on a syllable rather than a phone and the
data is aligned at the phone level.

We corrected the errors before calculating the
κ scores based on phones and binary stød in Ta-
ble 2. Average κ is a an average over all pairwise
κ scores where the specific annotator is involved.
The annotators are referred to as IPA1, IPA2, IPA3
and IPA4.

The κ scores in Table 2 and the ACS scores in
Table 3 both indicate that stød annotation is reli-
able and we can base statistical models on stød

23

Annotator # labels Phone # stød Stød
IPA1 107 0.760 53 0.770
IPA2 99 0.813 58 0.840
IPA3 94 0.823 62 0.894
IPA4 107 0.833 59 0.856

Table 3: Annotator competence scores for all items and
stød-bearing items.

annotation. The high κ scores show that the an-
notation in JHP is high quality and the ACS scores
show that the annotators are able to annotate stød
consistently and accurately.

5 Acoustic correlates of stød

Because we can rely on expert stød annotation,
we can discover acoustic features that signal stød
with statistical models. We use DanPASS and PA-
ROLE48 as training and test data because they
are also manually annotated and there is annotator
overlap with JHP. We use the toolkits Kaldi (Povey
et al., 2011), Covarep (Degottex et al., 2014) and
Praat (Boersma, 2002) to extract features that may
contain information that signals the occurrence of
stød. The number of features extracted by the dif-
ferent toolkits can be seen in Table 4.

We sample the audio every 10 milliseconds and
extract features over a context window the size
which depends on the feature. Mel-feature cep-
stral coefficients (MFCC) and perceptual linear
prediction (PLP) features use a 25 ms window
while pitch estimation uses a 1.5 second window
to extract robust features. Each 10 ms, we ex-
tract MFCC features, PLP features, Phase Distor-
tion Mean (PDM) features, Phase Distortion De-
viation (PDD) features, the Maxima Dispersion
Quotient (MDQ), Peak slope (PS), Quasi-Open
Quotient (QOQ), Normalised Amplitude Quotient
(NAQ), Parabolic Spectral Parameter (PSP), the
difference between first and second harmonic (H1-
H2), Fant’s basic shape parameter (Rd

6), HNR
and Intensity7. The first coefficient (C0) is re-
placed by an energy feature in both MFCC and
PLP extraction and we choose to discard the en-
ergy feature from MFCC extraction and keep the
log-energy feature with derivatives from PLP ex-
traction. When referring to 1st and 2nd deriva-
tives, we will suffix the feature name with -d and

6See (Fant, 1995) for a description.
7We use amplitude and intensity interchangeably, but we

are aware that amplitude is the acoustic correlate of intensity.

Toolkit Dimension Feature
Kaldi 39 PLP*

3 PoV*
3 log-pitch*
3 ∆-pitch*

Covarep 24 MFCC/MCEP
25 PDM
13 PDD
1 MDQ
1 PS
1 QOQ
1 NAQ
1 PSP
1 H1-H2
1 Rd

Praat 1 HNR
1 Intensity
1 Pitch

Table 4: Acoustic features. Features marked with *
also include 1st order and 2nd order derivatives.

-dd, respectively. ∆-pitch is a derivative on the
raw unnormalised pitch estimate in log space com-
puted over 5 frames and log-pitch is mean sub-
tracted by an average pitch value over a 151 frame
context window that is weighted by a probability
of voicing feature (PoV). We also estimate pitch
with Praat because Praat and Kaldi behave differ-
ently in unvoiced speech: Kaldi interpolates the
pitch estimate across unvoiced regions and Praat
sets it to 0.

We align each 120-dimensional feature vector
to a single phone by first segmenting syllable and
word level annotation to phone level and relying
on the existing time-coding.

5.1 Ranking acoustic features

We want to rank the 120 features by how well
they predict stød with Extremely-Randomised
Trees (Geurts et al., 2006) which trains an ensem-
ble of decision trees. Decision trees can use fea-
tures without standardisation and the input is not
assumed to be normally distributed, which is not
the case for e.g. HNR which becomes undefined
if the harmonic component of the speech signal
becomes too noisy. The estimation of relative fea-
ture importance will also be less affected by dif-
ferences between the toolkits.

The algorithm creates fully grown trees top-
down by splitting nodes. To split a node, a random

24

Figure 1: Feature salience for stød prediction (task 1).
PLP are called plp pitch and energy refers to C0 ex-
tracted with PLP features.

Figure 2: Feature salience for stød-bearing and stød-
less phone variant discrimination (task 2).

subset K =
√
N of all features N in the current

node is selected as candidates for splitting crite-
rion. For each kj in K, a random cut-point aj is
chosen. The feature kj with cut-point aj which
most improves entropy after a split is used to split
the data in the node. Each decision tree is esti-
mated on a random subset of the training data and
we use sub-sampling with replacement to mitigate
the under-representation of samples labelled with
stød-bearing phones.

Relative feature importance can be ranked by
the depth at which a feature is used to split a
node because features used as splitting criterion
closer to the root node contribute to the predic-
tion of a larger fraction of samples. Final predic-
tion is achieved by majority voting across all trees
(1024). The samples are not weighted and classes
are represented by an equal number of samples.
This balancing is necessary to prevent the tree
growing algorithm to favour features that predict
a majority class.

5.1.1 Rankings
We rank features according to salience measured
as mean reduction in entropy across the ensem-
ble in two tasks: 1) binary stød prediction and 2)
multi-class discrimination between stød-less and
stød-bearing phone variants (e.g. [a?] vs. [a], [m?]
vs. [m]) at sample level. Figures 1 and 2 show the
40 most salient features for each task.

A common set of features that are salient for
phone discrimination and stød prediction emerges
from studying Figures 1 and 2. The top 17 features
are PLP 1-4, MFCC 1-4, PDD 10-13, PDM 13-14,
PS, POV and log-pitch. In the following sections,
SELECT will refer to this feature set and ALL will
denote a set with all 120 features.

PDM and PDD are novel features in stød char-
acterisation. That phase information is salient for
stød prediction is to our knowledge a novel in-
sight and interesting because PDM and PDD rank
higher than many ASR-related features such as
PLP-d, PLP-dd and some MFCC features. If this
finding can be corroborated in the analysis of other
corpora, phase features might be useful informa-
tion to add to acoustic models in ASR.

6 Predicting stød from acoustic input

With acoustic features that are predictive of stød
and reliable annotation, we can train classifiers
that predict stød directly from acoustics with su-
pervised training. The features in SELECT were
also chosen for their ability to discriminate be-
tween stød-bearing and stød-less phone variants
and in an ASR context, discriminating these phone
variants will be sufficient to identify word class.
Yoon et al. (2006) conducted a similar experiment
for American English with creak to improve WER
and they achieve an overall phone classification
accuracy of 69.23% on 25 minimal phone pairs.

Following the same methodology, we train an
SVM classifier with an RBF kernel and do not per-
form any optimisation of parameter values. We
compare classifiers trained on ALL and SELECT to
a baseline trained on PLP features in a balanced8

1v1 evaluation where the phone variants are only
distinguished by the presence or absence of stød.
We evaluate on JHP and do 5-fold cross validation
on the training set because we cannot meaning-
fully separate a test set when we reduce the train-
ing data to 1/10th the original size.

We can see from Table 5 that the classification
accuracy is much better than chance. The variance
increases for all feature sets on JHP because it is
much harder data, but all feature sets contain in-
formation that can help discriminate between stød-
bearing and stød-less variants of the same phone,
including standard PLP features.

8Balanced in terms of training data.

25

Train ± JHP ±
PLP 0.769 0.144 0.713 0.266
ALL 0.781 0.168 0.685 0.220
SELECT 0.803 0.176 0.600 0.104

Table 5: 5-fold cross validation on the training data
across 40 phone variant pairs and mean classification
accuracy on JHP across 5 pairs.

ID Standard features +stød +pitch
1 PLP × ×
2 PLP X ×
3 PLP X X
4 MFCC × ×
5 MFCC X ×
6 MFCC X X

Table 6: The 6 conditions we test in this set of experi-
ments.

7 Stød in ASR

We have discovered that acoustic features nor-
mally used in ASR contain information that sig-
nal the occurrence of stød and can then annotate
stød in the pronunciation lexicon used in lexicon-
based ASR systems to create a baseline with stan-
dard ASR feature input. We can then add stød-
related features to ASR features to improve stød
modelling and performance further. We split this
set of experiments because adding more features
to the training data could also have an adverse ef-
fect: we could be improving stød prediction at the
expense of other speech sounds and because stød
is relatively infrequent this could increase WER.

We trained several ASR systems with features
where we augment MFCCs with features from SE-
LECT and also tried to train AMs with SELECT

and ALL as input. Training on ALL worsened
performance and was a very expensive experi-
ment, SELECT did not consistently perform better
or worse and we have chosen to report on exper-
iments where we observed performance improve-
ments over more than one training run. The fea-
tures log-pitch and POV from SELECT are good
predictors of stød and are standard features to in-
clude in ASR for tonal languages together with ∆-
pitch. These pitch features and modelling stød in
the lexicon will be investigated in Section 7.1. Re-
sults with other features from SELECT that are not
standard ASR features will be reported in Section
7.2.

We will no longer train on manually annotated
data because we need more data than is available
in DanPASS, PAROLE48 and JHP. We will train
AMs and an LM on data from Språkbanken which
is much larger and designed for ASR tasks.

7.1 Modelling stød in the lexicon

To train AMs, we use a pronunciation lexicon
to convert text sequences to phone sequences.
Phones are further subdivided to triphones and to
state-tied HMM states or senones. The lexicon is
central to state-of-the-art ASR and to test if stød
can actually improve WER, we will use both a lex-
icon with stød annotation and without stød anno-
tation. eSpeak generates phonetic transcriptions
with stød by default and we simply remove the an-
notation in the first case.

We want to see if adding pitch features improve
WER in ASR systems where stød is in the lexicon,
so we test the six conditions in Table 6.

We base our recipe on the Wall Street Journal
and Librispeech recipes in the Kaldi repository
which trains a series of GMM models and a DNN
model from scratch. We use IRSTLM (Federico
et al., 2008) to train a language model (LM) on
the training transcripts. We also tried to train a
LM on ngram frequency lists calculated over 290
million words from Danish newspapers, but the
performance degraded when we used the newspa-
per LM both on it’s own and interpolated with the
transcript LM and we conclude that the text genre
is too different from our data sets. We use Matched
Pairs Sentence-Segment Word Error (MAPSSWE)
from the SCTK toolkit (Fiscus, 2007) to calculate
statistical significance.

We train a GMM-based ASR system where we
stack features in an±5 frame context and use LDA
to project to 40 dimensions followed by a GMM
with speaker-adaptive training using feature space
MLLR (fMLLR) on top of LDA. The DNN is
a 4-layer feed-forward network with 1024 nodes
per layer and tanh-nonlinearities that we train on
the same LDA+fMLLR transformed features. The
learning rate starts at 0.01 and is decayed linearly
to 0.001 over 15 epochs and trains for an addi-
tional 5 epochs at 0.001.

In Table 7, we see the impact on WER when we
add stød annotation in the lexicon and add pitch
features to the feature input (denoted +pitch) and
evaluate on SPTEST. Adding stød consistently im-
proves WER, but is not always statistically sig-

26

PLP MFCC
AM Baseline +stød +pitch Baseline +stød +pitch
GMM+LDA 17.61 17.55 17.07‡ 17.72 17.54 16.88‡

GMM+LDA+SAT 16.85 16.64* 16.49 17.14 16.81† 16.17‡

DNN 13.50 13.33 13.17 13.28 13.08† 13.38

Table 7: %WER performance on SPTEST. The best performance for each AM is in bold. Statistical significance
over the condition in the column to the left is denoted by * if p < 0.05, † if p < 0.01 and ‡ if p < 0.001.

Figure 3: Beam parameters sweep on SPTEST. The optimal beam size is 12.

nificant. We found that adding stød annotation
resolves many homophonic entries in the lexicon
e.g. hver, værd, vejr and vær are transcribed as
[vE5] but stød resolves the ambiguity such that
værd, hver and vejr transcribes as [vE?5] and vær
as [vE5?]. Table 8 shows the impact of stød anno-
tation on homophony in the pronunciation lexicon.
The proportion of affected tokens in SPTEST, PA-
ROLE48 and DanPASS are 27%, 26.7% and 7%,
respectively and suggest that modelling stød can
have a significant impact even though it appears
infrequently.

Polygraphy -stød +stød difference
4x 5 0 -5
3x 54 27 -27
2x 930 662 -268

Table 8: 2x denote the number of phonetic transcrip-
tions that can be mapped to two words, 3x denotes the
number of phonetic transcriptions that can be mapped
to three words, etc.

Only when we evaluate the DNN AM trained
in condition 6 do we not observe improved WER
when we add pitch features. We also see that
in general MFCC-based models outperform PLP-

based models and that adding stød and pitch fea-
tures gives a larger performance improvement in
MFCC-based GMM AMs. The best performance
is achieved with the DNN trained in condition 5.

We observe an interesting interaction between
stød and pitch features in decoding speed. When
we add stød and use the same decoder parameters,
the real-time factor (RTF) becomes larger which
means the ASR system takes more time to recog-
nise a sentence. If we add pitch features to the
acoustic input, decoding speed increases.

We encode stød-bearing phones as variants of
stød-less phones when we estimate phonetic de-
cision trees (PDT) and stød-bearing phones could
become just an alias of the stød-less phone during
state-tying because we do not increase the num-
ber of estimated probability density functions or
leaves of the PDTs. We observe that state-tying
tends to cluster together word position-dependent
phones more often than stød variants such that
clusters contain [e?E , e?B], but not [eB]9. There are
43-45 clusters of stød-bearing phones and 15-19
clusters of mixed stød-bearing and stød-less vari-
ants which indicate that stød often is a more im-
portant feature than word position.

9Subscripts denote word position

27

We can conclude that modelling stød explicitly
in the pronunciation lexicon improves WER for
both GMM and DNN AMs. There is a statistically
significant overall WER improvement and we can
conclude that there was no adverse effect on per-
formance despite of the infrequent occurrence of
stød. In all cases but one we also observe improve-
ment from adding pitch features.

We find expert annotation is not necessary to
take advantage of stød in ASR. We used a g2p-
system to generate the pronunciation lexicon and
can observe consistent performance improvements
when we add stød annotation to the lexicon.

7.2 Stød-related acoustic features in ASR

We further investigate several features from SE-
LECT: PDD 10-13, PDM 13-14 and Peak slope.
Early experiments with GMM AMs showed sig-
nificantly worse empirical results with Peak Slope
and we chose to discard that feature from the rest
of the experiments. We bin together PDD 10-13
and PDM 13-14 and denote them as phase fea-
tures.

Abbr. MFCC Pitch Extra
M X × ×
MP X X ×
MPH X X HRF

MPP X X PDD10-13
PDM13-14

Table 9: Feature combinations and their abbreviations.

Harmonic Richness Factor (HRF) is a measure
of harmonicity in the speech signal that Fernan-
dez et al. (2014) use to improve ASR for Zulu and
Lao and we expect a relevant measure to include in
our study. We discard PLP features because AMs
trained on MFCC features generally perform bet-
ter than the PLP counterparts both in WER and
RTF. We also include pitch features because they
tend to improve performance and decoding speed
and we need to estimate F0 to estimate both phase
features and HRF.

The feature combinations we use are in Table 9
and we use early feature integration before LDA
because it gave better performance in Metze et al.
(2013) and worked well in previous experiments.

We will depart from standard test methodol-
ogy and optimise one set of decoder parameters
on SPTEST, DanPASS, and PAROLE48 which we
also use as test sets. We could not find a method

to completely isolate the impact the new acous-
tic features have on WER, but this is our best ef-
fort to reduce the impact from other factors. We
randomly choose to optimise decoder parameters
with the MP model. We will do a second evalu-
ation where we sweep the decoder beam size and
visualise the impact on RTF.

Table 1010 shows that we can get better per-
formance by adding HRF and phase features to
the feature input. The improvement is significant
on the multispeaker test sets, but not PAROLE48,
where the MFCC baseline shows the best perfor-
mance. The RTF constraint does not affect WER
on SPTEST and Figure 3 shows that increasing the
beam will have no effect, but we could increase the
beam to 17 when we decode with MPH and MPP,
but only to 14 with M or MP.

On PAROLE48, we see that M takes a small
performance hit to maintain real-time decoding
capabilities, but on DanPASS we can further im-
prove MPP and MPH performance because the
faster decoding speed allows us to use a larger de-
coding beam. For MPP, the improvement is signif-
icant at p < 0.01. The speed up in Figures 3 and
4 is constant for MPP and MPH compared to M.
The MP RTF varies considerably and we cannot
draw conclusions on the relationship to MPP and
MPH based on these experiments.

We can conclude that HRF, PDD10-13 and
PDM 13-14 are beneficial acoustic features to
use in Danish ASR. WER decreases and decod-
ing speed increases when we add these features.
While phase features seem to provide the best im-
provements, the phase feature extraction method is
slower than real-time and our current recommen-
dation is to use HRF. Notes in the Covarep source
code suggest that real-time phase feature extrac-
tion is possible at the cost of precision, but imple-
menting real-time phase feature extraction is be-
yond the scope of this research.

8 Conclusion

We discovered that stød annotation is reliable
when it is annotated by expert phoneticians and
used this insight to discover predictive acoustic
features that are novel in the phonetic character-
isation of stød.

We also discovered that we do not need ex-
pert annotation to use stød in ASR to improve

10See Table 1 for summaries of the corpora used as test
sets.

28

Features SPTEST PAROLE48 DanPASS
M 12.94 29.78 (29.89) 53.83
MP 13.10 30.38 54.73
MPH 12.58‡ 30.38 51.06 (50.46)
MPP 12.16‡ 30.05 49.02* (48.79*)

Table 10: WER performance using the same decoder parameters for each test set. WER under the RTF < 1
constraint are in parentheses if different. Statistical significance is compared to M. These numbers are not directly
comparable to Table 7.

Figure 4: Beam parameter sweep on DanPASS.

performance. The harmonic richness factor and
the phase features PDD10-13, PDM13-14 also
improve ASR performance and this indicates we
have successfully modelled stød explicitly in the
lexicon and implicitly with predictive acoustic fea-
tures without degrading overall performance. We
believe that these features can improve perfor-
mance in absence of stød annotation.

We tried to predict stød as a binary classifi-
cation task, i.e. predict the presence or absence
of stød regardless of the co-occurring phone, but
this was not possible because creaky voice, laryn-
gealisation and other acoustic signals that corre-
late with stød also occur when there is no stød-
bearing phone. In future work, we want to experi-
ment with pronunciation variants based on stød to
accurately model the optional nature of stød and
do an ablation study where we use more features
from SELECT, and do not include pitch features in
the feature input. We also need to investigate what
impact these features have in the absence of stød
annotation.

We used open source software and features
from ASR and speech analytics so our experi-
ments can be reproduced and reapplied to Swedish

and Norwegian. Språkbanken also includes
Swedish and Norwegian and eSpeak can generate
pronunciations with tones for both languages.

There are no previously published results
on Språkbanken or any of the test sets and
this was state-of-the-art performance in early
2016. New state-of-the-art performance on
Språkbanken-test11 also model stød in the lexi-
con.12

Acknowledgments

This work was supported by the Danish Agency
for Science and Higher Education, Copenhagen
Business School and Mirsk Digital ApS. We thank
Klaus Akselsen, Peter Juul Henrichsen, Dirk Hovy
and Srinivas Bangalore for support and mentoring
through the long process.

11See https://github.com/kaldi-asr/
kaldi/blob/master/egs/sprakbanken/s5/
RESULTS

12See https://github.com/kaldi-asr/
kaldi/blob/master/egs/sprakbanken/s5/
local/dictsrc/complexphones.txt

29

References
Oliver Adams, Trevor Cohn, Graham Neubig, Hilaria

Cruz, Steven Bird, and Alexis Michaud. 2018. Eval-
uation phonemic transcription of low-resource tonal
languages for language documentation. In LREC.

P. Boersma. 2002. Praat, a system for doing phonetics
by computer. Glot international, 5(9/10):341–345.

Gilles Degottex, John Kane, Thomas Drugman, Tuomo
Raitio, and Stefan Scherer. 2014. Covarep—a col-
laborative voice analysis repository for speech tech-
nologies. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference
on, pages 960–964. IEEE.

Jonathan Duddington. 2010. eSpeak Text to
Speech. Web publication: http://espeak.
sourceforge.net/.

Gunnar Fant. 1995. The LF-model revisited. Trans-
formations and frequency domain analysis. Speech
Trans. Lab. Q. Rep., Royal Inst. of Tech. Stockholm,
2(3):40.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an open source toolkit for han-
dling large scale language models. In Interspeech,
pages 1618–1621.

Raul Fernandez, Jia Cui, Andrew Rosenberg, Bhuvana
Ramabhadran, and Xiaodong Cui. 2014. Exploit-
ing Vocal-Source Features to Improve ASR Accu-
racy for Low-Resource Languages. In Fifteenth An-
nual Conference of the International Speech Com-
munication Association.

Eli Fischer-Jørgensen. 1989. A phonetic study of the
stød in Standard Danish. University of Turku, Pho-
netics.

J Fiscus. 2007. Speech recognition scoring toolkit ver.
2.3 (sctk).

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine learn-
ing, 63(1):3–42.

Nina Grønnum. 2005. Fonetik og Fonologi, 3. udg.
Akademisk Forlag, København.

Nina Grønnum. 2006. DanPASS-a Danish Phonet-
ically Annotated Spontaneous Speech corpus. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC), Gen-
ova, Italy, May.

Nina Grønnum, Miguel Vazquez-Larruscaı́n, and Hans
Basbøll. 2013. Danish Stød: Laryngealization or
Tone. Phonetica, 70(1-2):66–92.

Gert Foget Hansen. 2015. Stød og stemmekvalitet: En
akustisk-fonetisk undersøgelse af ændringer i stem-
mekvaliteten i forbindelse med stød. Ph.D. thesis,
Københavns Universitet, Faculty of Humanities, De-
partment of Nordic Research. In Danish.

Peter Juel Henrichsen. 2007. The Danish PAROLE
corpus-a merge of speech and writing. Current
Trends in Research on Spoken Language in the
Nordic Countries, 2:84–93.

Peter Juel Henrichsen and Thomas Ulrich Christiansen.
2012. Speech Transduction Based on Linguistic
Content. In Joint Baltic-Nordic Acoustics Meeting,
Odense, Denmark.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard H Hovy. 2013. Learning Whom to Trust
with MACE. In HLT-NAACL, pages 1120–1130.

Andreas Søeborg Kirkedal. 2013. Analysis of phonetic
transcriptions for Danish automatic speech recogni-
tion. Proceedings of the 19th Nordic Conference of
Computational Linguistics (NODALIDA 2013) May
22–24, 2013, Oslo University, Norway., NEALT
Proceedings Series 16.

Andreas Søeborg Kirkedal. 2014. Automatic Pho-
netic Transcription for Danish Speech Recognition.
CRITT-WCRE Conference.

Aditi Lahiri, Allison Wetterlin, and Elisabet Jönsson-
Steiner. 2005. Lexical specification of tone in north
germanic. Nordic journal of linguistics, 28(1):61–
96.

Shang wen Li, Yow-Bang Wang, Liang-Che Sun, and
Lin-Shan Lee. 2011. Improved tonal language
speech recognition by integrating spectro-temporal
evidence and pitch information with properly cho-
sen tonal acoustic units. In INTERSPEECH.

Florian Metze, Zaid A. W. Sheikh, Alexander H.
Waibel, Jonas Gehring, Kevin Kilgour, Quoc Bao
Nguyen, and Van Huy Nguyen. 2013. Models of
tone for tonal and non-tonal languages. 2013 IEEE
Workshop on Automatic Speech Recognition and
Understanding, pages 261–266.

Taniya Mishra, Andrej Ljolje, and Mazin Gilbert. 2011.
Predicting human perceived accuracy of ASR sys-
tems. In Twelfth Annual Conference of the Interna-
tional Speech Communication Association.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne,
Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian,
Petr Schwarz, Jan Silovsky, Georg Stemmer, and
Karel Vesely. 2011. The Kaldi Speech Recogni-
tion Toolkit. In IEEE 2011 Workshop on Auto-
matic Speech Recognition and Understanding. IEEE
Signal Processing Society. IEEE Catalog No.:
CFP11SRW-USB.

Tomas Riad. 2000. The origin of danish stød. Analogy,
Levelling and Markedness: Principles of Change in
Phonology and Morphology, pages 261–300.

Niklas Vanhainen and Giampiero Salvi. 2014. Free
Acoustic and Language Models for Large Vocab-
ulary Continuous Speech Recognition in Swedish.
training, 965(307568):420–8.

30

Tae-Jin Yoon, Xiaodan Zhuang, Jennifer Cole, and
Mark Hasegawa-Johnson. 2006. Voice quality
dependent speech recognition. In International
Symposium on Linguistic Patterns in Spontaneous
Speech. Citeseer.

31

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 32–42
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Adaptor Grammars for the Linguist: Word Segmentation Experiments
for Very Low-Resource Languages

Pierre Godard∗, Laurent Besacier†, François Yvon∗, Martine Adda-Decker?,
Gilles Adda∗, Hélène Maynard∗, Annie Rialland?

∗LIMSI, CNRS, Université Paris-Saclay / Orsay, France
†LIG, UGA, G-INP, CNRS, INRIA / Grenoble, France

?LPP, CNRS / Paris, France
∗{godard,yvon,gadda,hbm}@limsi.fr

†laurent.besacier@univ-grenoble-alpes.fr
?{martine.adda-decker,annie.rialland}@univ-paris3.fr

Abstract

Computational Language Documentation at-
tempts to make the most recent research in
speech and language technologies available
to linguists working on language preservation
and documentation. In this paper, we pursue
two main goals along these lines. The first is
to improve upon a strong baseline for the unsu-
pervised word discovery task on two very low-
resource Bantu languages, taking advantage of
the expertise of linguists on these particular
languages. The second consists in exploring
the Adaptor Grammar framework as a decision
and prediction tool for linguists studying a new
language. We experiment 162 grammar con-
figurations for each language and show that
using Adaptor Grammars for word segmenta-
tion enables us to test hypotheses about a lan-
guage. Specializing a generic grammar with
language specific knowledge leads to great im-
provements for the word discovery task, ulti-
mately achieving a leap of about 30% token
F-score from the results of a strong baseline.

1 Introduction

A large number of the world’s languages are ex-
pected to go extinct during this century – as
much as half of them according to Crystal (2002)
and Janson (2003). Such predictions have subse-
quently fostered a growing interest for a new field,
Computational Language Documentation (CLD),
as it is now clear that traditional field linguistics
alone will not meet the challenge of preserving
and documenting all of these languages.

CLD attempts to make the most recent research
in speech and language technologies available to
linguists working on language preservation and
documentation (e.g. (Anastasopoulos and Chiang,
2017; Adams et al., 2017)). A remarkable effort
in this direction has improved the data collection

tools to be used on the field (Bird et al., 2014; Bla-
chon et al., 2016), enabling to collect corpora for
several endangered languages (Adda et al., 2016).
In parallel, the language technology community is
investing more efforts to design methodologies tai-
lored for the new challenges posed by the analysis
of such linguistic material: the extreme variability
of the orthographic representation, the scarcity of
annotated data (both written and oral), as well as
the modeling of complex tonal systems.

This effort could greatly benefit from a tighter
collaboration between the two main research com-
munities involved in this endeavor, which often
struggle to cooperate efficiently. Knowledge back-
ground differs between linguists and computer sci-
entists; the definition of why a problem is inter-
esting or not may not be the same for the two
communities, theoretical and experimental plat-
forms do not intersect much, etc. Consequently,
for lack of investing enough energy working on
the same problems with the same tools and to-
wards the same goals, we might not achieve the
efficiency that is needed, as time is running out for
many languages. This view constitutes the under-
lying motivation of the work reported here.

We pursue two main goals in this spirit. The
first one is to improve upon a strong baseline
(Goldwater et al., 2009) for the unsupervised word
discovery task1 on two low-resource languages, by
teaming up with linguist experts. A natural idea to
achieve this goal is to engage them in formalizing
their linguistic knowledge regarding the languages
or language families under study, in the hope that
it will compensate for the small amount of avail-
able data. In our case, this expertise corresponds
to morphological and phonotactic constraints for

1We indifferently use the terms word discovery and word
segmentation to denote the task defined in Section 2.2.

32

https://doi.org/10.18653/v1/P17

two Bantu languages displaying very similar struc-
tures (see Section 3). For one language, we were
also able to elicit a list of prefixes and some ad-
ditional knowledge regarding the consonantal sys-
tem. Such expert knowledge can readily be inte-
grated in grammar rules using the framework of
Adaptor Grammars (see Section 6). Another in-
teresting property of this framework is its compat-
ibility with two strategies that are usually thought
as being mutually exclusive: rule-based learning,
still in wide use inside the linguistics community,
and statistical learning, prevalent in natural lan-
guage processing circles.

Our second goal is to study ways to help lin-
guists explore language data when little expert
knowledge is available. Our proposal is to com-
plement the grammatical description activity with
task-oriented search procedures, that will speed
up the exploration of competing hypotheses. The
intuition is that better grammars should not only
truthfully match the empirical data, but also im-
prove the quality of automatic analysis processes.
The word discovery task considered below should
thus be viewed as an extrinsic validation proce-
dure, rather than a goal in and of itself. This pro-
cess might also yield new linguistic insights re-
garding the language(s) under focus.

To sum up, the main contribution of this paper
is a methodology for systematically exploring (a
subpart of) the space of possible grammars, refin-
ing grammar rules (from the most generic to the
most language specific) at four levels of descrip-
tion (see Section 4). This results in a compari-
son of 162 alternative accounts of the grammar
for two languages. Our results (analyzed in Sec-
tion 5) show that enriching grammar rules with
language specific knowledge has a consistent pos-
itive impact in performance for the segmentation
task. They validate our hypotheses that (a) im-
proved grammatical descriptions actually correlate
with better automatic analysis; (b) Adaptor Gram-
mars provide a framework around which linguists
and computer scientists can effectively collabo-
rate, with tangible results for both communities.

2 Adaptor Grammars for Word Discovery

2.1 Adaptor Grammars

Formal grammars, and notably Context-Free
Grammars (CFGs), are a cornerstone of linguistic
description and provide a model for the structural
description of linguistic objects. Our grammars

capture simple aspects of the syntax and some less
trivial aspects of the morphological and phonolog-
ical structures. As discussed below, both levels of
descriptions are useful for word discovery.

A CFG is a 4-tuple G = (N,W,R, S) where N
and W are respectively the non-terminal and ter-
minal symbols, R a finite set of rules of the form
A → β, with A ∈ N and β ∈ (N ∪ W)∗, and
S ∈ N the start symbol. Our grammars will be
used to analyze the structure of complete utter-
ances and the start symbol S will always corre-
spond to the sentence top-level. Assuming that S,
Words, and Word belong to N , the top level rules
will typically look like: S → Words;Words →
WordWords;Words → Word, the last two rules
abbreviated as Words→ Word+.

Probabilistic CFGs (PCFGs) (Johnson, 1998)
extend this model by associating each rule with
a scalar value θA→β , such that for each A ∈ N ,∑

β θA→β = 1. Under some technical condi-
tions (Chi, 1999), PCFGs define probability dis-
tributions over the set of parse trees, where the
probability of a tree is a product of the probabil-
ity of the rules it contains. PCFGs can be learned
in a supervised way from treebanks or in a unsu-
pervised manner using, for instance, the EM algo-
rithm (Lari and Young, 1990).

PCFGs make unrealistic independence assump-
tions between the different subparts of a tree,
an observation that has yielded many subsequent
variations and extensions. Adaptor grammars
(AGs) (Johnson et al., 2007) define a powerful
mechanism to manipulate PCFG distributions to
better match the occurrences of trees and sub-
trees observed in actual corpora. Informally, an
AG is a CFG where non-terminals have the pos-
sibility to be adapted: when non-terminal A is
adapted, all subtrees rooted in A are “reified”,
meaning that they are no-longer viewed only as
decomposable objects, but can also be manipu-
lated and stored as a whole. In our grammars
below, adapted non-terminals are underlined, and
optional non-terminals appear between brackets.
Following (Johnson et al., 2007), we only adapt
non-recursive non-terminals.2

AGs define a framework to implement Bayesian
nonparametric learning of grammars, and are usu-
ally trained in an unsupervised manner using
sampling techniques (Monte-Carlo Markov Chain,

2A non-terminal A is recursive if R contains a rule where
A appears both in the left and right-hand sides.

33

MCMC). A typical run will produce, for each sen-
tence, a distribution of possible parses under the
grammar, from which we can then retain the most
frequent one as the “best” possible analysis.3

2.2 Word Segmentation using AGs

In this work, we are interested in the word segmen-
tation task: from an unsegmented stream of sym-
bols, the system must output delimited sequences
corresponding to actual words in the language. For
this, we assume a linguistic grammar G, which
parses sequences of letters (or phones) as being or-
ganized into Words, which themselves recursively
decompose into smaller units such as Morphs,
Syllables, etc. To induce word segmentation from
parse trees, we will consider that each span cov-
ered by the non-terminal symbol Word defines a
linguistic word, even though in a fully unsuper-
vised setting, this non-terminal might actually cor-
respond to larger or smaller linguistic units. Fig-
ure 2 illustrates this on two example parses.

Likewise, when examining the output of the
training process, we are in a position to collect sets
of word types (or morph types, syllable types, etc.)
and will do so based only on the identity of the
root symbol, i.e. without any certainty regarding
the linguistic status of the collected sequences.

3 Linguistic material

3.1 Mboshi and Myene

We experiment with two Northwestern Bantu Lan-
guages: Mboshi (Bantu C25), a language spoken
in Congo-Brazzaville, and Myene (B10, Gabon),
a cluster of six mutually intelligible varieties
(Adyumba, Enenga, Galwa, Mpongwe, Nkomi
and Orungu) spoken at the coastal areas and
around the town of Lambarene in Gabon.4 Unlike
southern Bantu relatives such as Swahili, Sotho
or Zulu, Mboshi and Myene are scarcely stud-
ied, protected, and resourced. We briefly describe
the main aspects related to phonetics, phonology,
morphology, and tonology of these languages.

Phonetics and phonology. Mboshi and Myene
both have a seven vowel system (i, e, E, a, O,
o, u). Mboshi has an opposition between long
and short vowels, which does not exist in Myene.
Mboshi consonantal system includes the follow-
ing phonemes: p, t, k, b, d, B, l, r, m, n, ñ, mb,

3In practice, we will retain the most frequent segmenta-
tion rather than the most frequent parse (see Section 2.2).

4Our Myene data correspond to the Orungu variant.

nd, ndz, ng, mbv, f, s, G, pf, bv, ts, dz, w, j. It
has a set of prenasalized consonants (mb, nd, ndz,
ng, mbv) which is common in Bantu languages
(Embanga Aborobongui, 2013; Kouarata, 2014).
Myene includes the following phonemes: p, t, k, b,
d, B, l, r, m, n, f, s, g, y, v, ŋ, w, z – many of them
with variants of realization. Prenasalized conso-
nants exist also in Myene (Ambouroue, 2007).

While both languages can be considered as
rarely written, linguists have nonetheless defined
a non-standard graphemic form for them, consid-
ered to be close to the language phonology. Af-
fricates and prenasalized plosives are coded using
multiple symbols (e.g. two symbols for dz, three
for mbv). For Mboshi, long and short vowels are
coded respectively as V and as VV. In Myene, the
transcription of the corpus involves not only the
phoneme set, but also the main variants (ñ, tS, dz)
and some marginal sounds found in loanwords.

Both languages display a complex set of phono-
logical rules. The deletion of a vowel before
another vowel in particular, common in Bantu
languages, occurs at 40% of word junctions in
Mboshi (Rialland et al., 2015). This tends to ob-
scure word segmentation and introduces an addi-
tional challenge for automatic processing.

Morphology. Words are composed of roots and
affixes, and almost always include at least one pre-
fix, while the presence of several prefixes and one
suffix is also very common. The suffix structure
mostly consists of a single vowel V (e.g. -a or -i)
whereas the prefix structure may be both CV or V
(or CVV in Mboshi). The most common syllable
structures are V and CV in both languages. CVC
also occurs in Myene, and CVV in Mboshi.5

The noun class prefix system is another fea-
ture typical of Bantu languages. For both lan-
guages, the structure of the verbs, also common
in Bantu languages, is as follows: Subject Marker
— Tense/Mood Marker — Root-derivative Exten-
sions — Final Vowel. A verb can be very short or
quite long, depending on the markers involved.

Tonology. Prosodic systems for both Mboshi
and Myene involve tones, but the transcribed data
used for this work do not encode tone markers.
Experiments to assess the usability of tonal infor-
mation for word segmentation were conducted in
(Godard et al., 2018b).

5CCV may also arise due to the presence of affricates and
prenasalized plosives mentioned in this section.

34

language #sent #tokens #types avg. token length

Mboshi 5130 30,556 5,312 4.19

Myene 4,579 18,047 4,190 4.72

Table 1: Corpora Statistics

3.2 Corpora for Mboshi and Myene
Corpora for Mboshi and Myene were collected
following a real language documentation sce-
nario, using a mobile app dedicated to fieldwork
language documentation (Blachon et al., 2016).
These corpora contain manual transcriptions in the
form of a non-standard graphemic form close to
the languages’ phonology. The correct word seg-
mentations for these transcripts were also anno-
tated by linguists. Basic statistics are in Table 1.
The Mboshi corpus is more comprehensively de-
scribed in (Godard et al., 2018a).6

4 Grammars

4.1 Structuring Grammar Sets
Our starting point is the set of grammars used
in (Johnson and Goldwater, 2009) and (Eskan-
der et al., 2016) which we progressively specialize
through an iterative refinement process involving
both field linguists and computer scientists. As we
wish to evaluate specific linguistic hypotheses, the
initial space of interesting grammars has been gen-
eralized in a modular, systematic, and hierarchical
way as follows. We distinguish four sections in
each grammar: sentence, word, syllable, charac-
ter. For each section, we test multiple hypothe-
ses, gradually incorporating more linguistic struc-
ture. Every hypothesis inside a given section can
be combined with every hypothesis of any other
section,7 thereby allowing us to explore a large
quantity of grammars and to analyze the contri-
bution of each particular hypothesis.

4.2 The Full Grammar Landscape
All the grammar sections (sentence, word, sylla-
ble, character) experimented in this paper are de-
tailed in Figure 1. We describe below the way each
section was designed.

6This dataset has already been used in several
studies targeting endangered languages and is avail-
able at http://www.islrn.org/resources/
747-055-093-447-8/.

7Note that if a non-terminal is absent from a hypothesis
(e.g. Syllable in a word level hypothesis), the corresponding
non-terminal in the subsequent hypotheses (e.g. at the sylla-
ble level) will be ignored.

• sentence level: we model 3 different hier-
archies of words. We introduce first the
flat variety with two rules generating right-
branching parse trees. colloc adds a sin-
gle level of word collocation, aimed to cap-
ture recurrent local word associations (such
as frequent bigrams); colloc3 displays a
deeper hierarchical structure with three lev-
els of collocations. Exploring more realistic
syntactic structures is left for future work.

• word level: here we propose 6 competing
hypotheses. flat is similar to previous
sentence variety but at the word level in-
stead of the sentence level. generic cor-
responds to a more structured version of
flat, as the specification of a sequence of
5 adapted morphemes allows, in principle,
the Adaptor Grammar to learn some mor-
photactics. bantu defines a generic mor-
phology for Bantu languages. basaa im-
plements the morphology of a well-studied
Bantu language, Basaa (A43 (Hamlaoui
and Makasso, 2015)). mboshi/myene
corresponds to a somewhat crude mor-
phology of Mboshi, also applicable to
Myene. Last mboshi/myene_NV refines
mboshi/myene with a specification of the
morphology of nouns and verbs. Addi-
tionally, for basaa, mboshi/myene and
mboshi/myene_NV which introduce a no-
tion of prefix, we also test a variant (called re-
spectively basaa+, mboshi/myene+ and
mboshi/myene_NV+) containing an ex-
plicit list of prefixes in Mboshi.

• syllable level: we contrast 3 hypotheses :
flat is similar to previous sentence and
word varieties but at the syllable level, defin-
ing the syllable as a mere sequence of char-
acters. generic/basaa is a generic set
of rules modeling phonotactics applicable
to a wide scope of languages (including
Basaa mentioned in the preceding level).
bantu/mboshi/myene displays a set of
rules more specific to Mboshi and Myene.8

• character level: rules in the chars set sim-
ply rewrite the characters (terminals) ob-

8In theory, we should not include a coda in this last hy-
pothesis, but loanwords and proper names in our data made
the Adaptor Grammar fail to parse without a coda. To de-
crease the impact of this rule, we chose not to adapt the cor-
responding non-terminal, in contrast to generic/basaa.

35

Sentence level (A)

Words → Word+

flat(A1)

Collocs → Colloc+
Colloc → Words
Words → Word+

colloc(A2)

Colloc3s → Colloc3+
Colloc3 → Colloc2s
Colloc2s → Colloc2+
Colloc2 → Collocs
Collocs → Colloc+
Colloc → Words
Words → Word+

colloc3(A3)

Word level (B)

Word → Morphs
Morphs → Morph+
Morph → Chars

flat(B1)

Word → M1 (M2 (M3 (M4 (M5))))
M1 → Chars
M2 → Chars
M3 → Chars
M4 → Chars
M5 → Chars

generic(B2)

Word → (Prefixes) Stem (Suffixes)
Prefixes → Chars
Stem → Chars
Suffixes → Chars

bantu(B3)

Word → (Prefix) Stem (Suffix)
Prefix → Syllable
Suffix → Syllable
Stem → Syllable
Stem → Syllable Syllable

basaa(B4)

Word → (Prefix1 (Prefix2)) Stem (Suffix)
Prefix1 → Syllable
Prefix2 → Syllable
Suffix → Syllable
Stem → Syllable (Syllable)

mboshi/myene(B5)

Word → Noun
Word → Verb
Word → Chars
Noun → (PrefixNoun) Stem (Suffix)
Verb → (Prefix1 (Prefix2)) Stem
PrefixNoun → Syllable
Prefix1 → Syllable
Prefix2 → Syllable
Suffix → Syllable
Stem → Syllable (Syllable (Syllable)

mboshi/myene NV(B6)

Syllable level (C)

Syllable → Chars
Chars → Char+

flat(C1)

Syllable → (Onset) Rhyme
Rhyme → Nucleus (Coda)
Onset → Consonants
Nucleus → Vowels
Coda → Consonants
Consonants → Consonant+
Vowels → Vowel+
Chars → Char+

generic/basaa(C2)

Syllable → (Onset) Rhyme
Rhyme → Nucleus (Coda)
Onset → Consonants
Nucleus → Vowel (Vowel)
Coda → Consonants
Consonants → Consonant+
Chars → Char+

bantu/mboshi/myene(C3)

Character level (D)

Char → Vowel
Char → Consonant
Vowel → u
Vowel → o
Vowel → i
Vowel → a
Vowel → e
...

chars(D1)

...
Consonant → m b
Consonant → n d
Consonant → n d z
...

chars+(D1+)

...
Prefix → o
Prefix → i
Prefix → e
Prefix → a
Prefix → l e
Prefix → l a
Prefix → l i i
...

{basaa, mboshi/myene, mboshi/myene NV}+
(B{4,5,6}+)

Figure 1: Grammar rules for all the hypotheses presented in Section 4.

Words

Word

Morph

Chars

m o r o

Word

Morph

Chars

a m i

Word

Morph

Chars

i

Word

Morph

Chars

o b e

A3B1C1D1, “moro ami i obe”

Words

Word

Stem

Syllable

m o

Syllable

r o

Word

Prefix1

a

Stem

Syllable

m i i

Word

Prefix1

o

Stem

Syllable

b e

A3B5C2D1+, “moro amii obe” (correct word segmentation)

Figure 2: Examples of parses – some non-terminals have been omitted for readability – obtained with two
grammars, and the corresponding word segmentation for Mboshi sentence “Moro a-mii o-be”. (CL1.man
3SG-swallow.PST CL14-bad; since Moro is an irregular noun, the prefix and the stem are difficult to
separate, which is signaled by a dot, following the Leipzig glossing rules.)

36

served in our data. chars+ adds rules to
capture the digraphs or trigraphs occurring in
Mboshi (see details in Section 3).

5 Experiments and Discussion

We now experiment along the methodology pre-
sented in Section 4. We report word segmenta-
tion performance using precision, recall, and F-
measure on tokens (WP, WR, WF), and types (LP,
LR, LF). We also report the exact-match (X) met-
ric which calculates the proportion of correctly
segmented utterances.9

In all the figures, and in this section, we use
the following compact names for grammatical hy-
potheses at each level:

• A1 (flat), A2 (colloc), A3 (colloc3),

• B1 (flat), B2 (generic), B3 (bantu),
B4 (basaa), B5 (mboshi/myene), B6
(mboshi/myene_NV), with additional “+”
variants for B4, B5, and B6 when a list
of prefixes is provided, for instance B6+
(mboshi/myene_NV+),

• C1 (flat), C2 (generic/basaa), C3
(bantu/mboshi/myene),

• D1 (chars), D1+ (chars+).

For each language, we evaluate our 162 gram-
mar configurations using Mark Johnson’s code,10

collecting parses after 2,000 sampling steps.11 We
adapt all non-recursive non-terminals and use a
Dirichlet prior to estimate the rule probabilities.
We place a uniform Beta prior on the discount pa-
rameter of the Pitman-Yor process, and a vague
Gamma prior on the concentration parameter.

Figure 3 presents token metrics (WP, WR, WF)
and type metrics (LP, LR, LF), as well as sentence
exact-match (X) for both corpora on all grammars.

5.1 Word Segmentation Results
Impact of sentence level variants We can see
in Figure 3 that A2 and A3 hypotheses globally
yield better results than A1 in both languages. For

9The exact-match metric includes single-word utterances.
10http://web.science.mq.edu.au/

~mjohnson/Software.htm
11The large number of experiments we are dealing with did

not allow us to average over several runs. Stable results were
obtained on a subset of grammars. Two particular configura-
tions in Mboshi (A3-B6-C3-D1+ and A1-B6-C1-D1) did not
reach 2,000 iterations within the maximum wall clock time
allowed by the cluster used for these experiments (2 weeks),
and are left out of the discussion.

Mboshi, the benefit of A3 vs. A2 appears espe-
cially on token metrics (WP, WR, WF), but this
contrast is less clear on Myene. For both lan-
guages, however, our results confirm that model-
ing collocation-like word groups at the sentence
level is important. These word dependencies seem
indeed related to a universal linguistic property.

Impact of word level variants If we now focus
solely on the A3 hypothesis for Myene in Figure 3,
we observe a general trend upwards for all metrics.
The benefit of gradually using more language-
specific grammars, from B1 to B6+, is clear.
While this trend is also observed for Mboshi, the
less specific B3 hypothesis yields the strongest re-
sults on token metrics (WP, WR, WF). Precision
on types (LP) with B3 is also the strongest, but
B6+ achieves better performance on type recall
and F-measure (LR and LF). The contrast between
B1 and B2 for all metrics on both languages (keep-
ing a focus on A3, but this can also be seen for A1
and A2) highlights the benefit of modeling some
morphotactics inside the word-level hypotheses,
which seems to correspond to another universal
linguistic property (the dependency between mor-
phemes inside a word).

Impact of syllable level variants It is difficult
to see a clear trend for the impact of syllable-level
variants in Figure 3. Importantly, the syllable level
will only be effective when combined with word
level variants B4, B5 and B6 (and their “+” ver-
sions) which model the concept of syllable: when
combined with B1, B2 or B3, each C level hy-
pothesis will default to its “Chars → Char+”
rule. Figure 4 illustrates the impact of C1, C2,
and C3 by averaging type and token F-measures
(LF and WF) over all grammar sections with a
syllable non-terminal (B4, B4+, B5, B5+, B6,
and B6+). The benefit of C2/C3 vs. C1 appears
more clearly, especially on type F-measures and
on Myene.12 Nevertheless, the impact of the syl-
lable level, and the capacity to incorporate phono-
tactics in our models, seems of less significance
for word segmentation than choices made at the
word and sentence levels.

Impact of character level variants In Figure 3,
it is also hard to see if there is any benefit in us-
ing D1+ over D1, i.e. adding digraphs or trigraphs

12The differences between C3 and C2, two very similar
hypotheses, are hardly significant.

37

(a) Mboshi corpus

(b) Myene corpus

Figure 3: Word segmentation performance evaluated with token metrics (WP, WR, WF), type metrics
(LP, LR, LF), and sentence exact-match (X) for Mboshi (top) and Myene (bottom). All grammars are
broken down by A, B, C, and D levels (D1 shown before D1+).

38

Figure 4: Impact of C variants on Mboshi and
Myene. Token F-measure (WF) and type F-
measure (LF) are averaged over hypotheses B4,
B4+, B5, B5+, B6, and B6+.

to the consonant inventory. Averaging over all hy-
potheses at the A, B, and C levels do not exhibit
any clearer impact. It is likely that refined models
at the syllable level (C) compensate for a less accu-
rate consonant inventory through the adaptation of
their non-terminals, and do learn some phonotac-
tics. This would explain the weak contribution of
D1+. To test this hypothesis, we set the sentence
level to A3 (the best compromise for Mboshi and
Myene) and the word level to B1, B2, or B3 (lev-
els without a Syllable non-terminal, which can-
cels the effect of the syllable level C). The token
and type F-measures averaged over the considered
hypotheses are shown Figure 5. We do observe
a benefit in using the D1+ character variant in
Mboshi, but not in Myene. This is not surprising,
as the digraph and trigraph rules added by the D1+
variant are specific to Mboshi and do not cover the
inventory for Myene.

Stronger results in Myene Segmentation per-
formance is globally superior in Myene. This can
probably be explained by corpus statistics (see Ta-
ble 1), as the average number of words per sen-
tence is 3.94 in Myene, and 5.96 in Mboshi. Since
sentence boundaries are also word boundaries, the
proportion of already known word boundaries is
higher in Myene, which makes word segmentation
a harder task in Mboshi. Figure 3 also reveals an
interesting contrast: token results are higher than
type results in Myene, while the converse is true
in Mboshi. The token/type ratio (5.75 tokens for
one type in Mboshi, and 4.30 in Myene) indicates
a higher lexical diversity in Myene, which might
explain weaker results on types. Strong results on
types for Mboshi, on the other hand, show the ca-

Figure 5: Impact of D variants on Mboshi and
Myene. Token F-measure (WF) and type F-
measure (LF) are averaged over hypotheses with
A level set to A3 and B level set to B1, B2, or B3.

pacity of AGs to generalize well on low-frequency
events, a property of particular interest in the low-
resource scenario.

Comparison to an existing baseline Overall,
our best performing grammars are A3-B3-C3-
D1+ for Mboshi (64.78% token F-measure) and
A3-B6+-C2-D1 for Myene (72.62% token F-
measure). This result is about 30 points higher
than a strong Bayesian baseline, the Dirichlet
process-based bigram word segmentation system
of Goldwater et al. (2006, 2009), 13 which yields
34.34% token F-score on Mboshi and 44.48% on
Myene.

5.2 How Can This Help a Linguist?

Our second goal is to understand more precisely
how such experiments can be useful for linguists,
beyond the benefit of having access to better auto-
matic word segmentation tools for their data.

Phonological status of complex consonants In
the analysis of the results (Section 5.1 above) we
showed the benefit of integrating digraphs or tri-
graphs in the consonants inventory for Mboshi.
This result is of special interest for linguists, since
it is in line with the most recent phonological anal-
yses of Mboshi (Embanga Aborobongui, 2013;
Kouarata, 2014; Amboulou, 1998) which agree
in recognizing complex consonants (represented
by digraphs or trigraphs) in the phonological in-
ventory of this language. The analysis of com-
plex consonants, in particular prenasalized conso-
nants, generated many debates in Bantu linguistics

13https://homepages.inf.ed.ac.uk/
sgwater/resources.html.

39

(Odden, 2015; Herbert, 1986; Downing, 2005).
The present experiments provide more substance
to support the integration of complex consonants
in the phonological inventory of Mboshi.

Learning prefixes without supervision Since
parses are produced to segment sentences into
words, it is possible to extract the most frequent
prefixes or suffixes (for B variants introducing
such a concept). The precision on the 20 most
frequently found prefixes for grammars without
prefix-supervision (B3, B4, B5 and B6)14 reaches
58.21% in Mboshi, and 61.21% in Myene. The
capacity of AGs to learn true prefixes without su-
pervision could thus help linguists in the process
of documenting a new language. On the super-
vised variants (B4+, B5+, and B6+), the preci-
sion achieved in Mboshi is 61.11%, and 63.07%
in Myene: the benefit of the supervision is lim-
ited; token measures for Mboshi with these vari-
ants (Figure 3) nevertheless indicate a benefit for
word segmentation.

6 Related Work

AGs have been used to infer the structure of un-
segmented sequences of symbols, offering a plau-
sible modeling of language acquisition (Johnson,
2008b; Johnson and Goldwater, 2009); they have
also been used for the unsupervised discovery of
word structure, applied to the Sesotho language by
Johnson (2008a). One notable outcome of this lat-
ter study was to demonstrate the effectiveness of
having an explicit hierarchical model of word in-
ternal structure ; an observation that was one of
our primary motivations for using AGs in our lan-
guage documentation work. In this series of stud-
ies, AGs are shown to generalize models of unsu-
pervised word segmentations such as the Bayesian
nonparametric model of Goldwater (2006), deliv-
ering hierarchical (rather than flat) decompositions
for words or sentences.

While AGs are essentially viewed as an unsu-
pervised grammatical inference tool, several au-
thors have also tried to better inform grammar in-
ference with external knowledge sources. This is
the case of Sirts and Goldwater (2013), who study
a semi-supervised learning scheme combining an-
notated data (parse trees) with raw sentences. The
linguistic knowledge considered in (Johnson et al.,
2014) aims to better model function words in a

14We include B3 variant, interpreting its non-terminal
Prefixes as a prefix.

language acquisition setting: explicitly represent-
ing the occurrence of these short (typically mono-
syllabic) tokens in front of content-bearing words
was shown to improve the resulting word segmen-
tations. The work of Eskander et al. (2016) consid-
ers the use of additional dictionaries, storing par-
tial lists of prefixes or suffixes collected either on
the Internet, or discovered during a first round of
training. We study similar complementary infor-
mation, which are collected in close collaboration
with linguistic experts.

Various other extensions or applications of AGs
are worth mentioning, such as O’Donnell et al.
(2009), which generalizes AGs so as to adapt frag-
ments of subtrees (rather than entire subtrees).
Botha and Blunsom (2013) consider the adapta-
tion of grammars from a more general class than
context-free grammars (mildly context-sensitive
grammars), in order to model discontinuous frag-
ments in non-concatenative morphology. Finally,
Börschinger and Johnson (2014) propose to model
the role of stress cues in language learning.

7 Conclusion

This paper had two main goals: (1) improve upon
a strong baseline for the unsupervised discovery of
words in two very low-resource Bantu languages;
(2) explore the Adaptor Grammar framework as an
analysis and prediction tool for linguists studying
a new language.

Systematic experiments with 162 grammar con-
figurations for each language have shown that us-
ing AGs for word segmentation is a way to test lin-
guistic hypotheses during a language documenta-
tion process. Conversely, we have also shown that
specializing a generic grammar with language spe-
cific knowledge greatly improves word segmenta-
tion performance. In addition, our paper reports
word segmentation results that are way higher than
a Bayesian baseline. These results invite us to fur-
ther this collaboration, and to analyze more thor-
oughly the usability of output parses in speeding
up the documentation process.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. We also thank Ramy Eskan-
der for his help in the early stages of this research.
This work was partly funded by French ANR and
German DFG under grant ANR-14-CE35-0002
(BULB project).

40

References
Oliver Adams, Trevor Cohn, Graham Neubig, and

Alexis Michaud. 2017. Phonemic transcription of
low-resource tonal languages. In Proceedings of
the Australasian Language Technology Association
Workshop 2017, pages 53–60.

Gilles Adda, Sebastian Stüker, Martine Adda-Decker,
Odette Ambouroue, Laurent Besacier, David Bla-
chon, Hélène Bonneau-Maynard, Pierre Godard, Fa-
tima Hamlaoui, Dmitri Idiatov, Guy-Noël Kouarata,
Lori Lamel, Emmanuel-Moselly Makasso, Annie
Rialland, Mark Van de Velde, François Yvon, and
Sabine Zerbian. 2016. Breaking the unwritten lan-
guage barrier: The Bulb project. In Proceedings of
SLTU (Spoken Language Technologies for Under-
Resourced Languages), Yogyakarta, Indonesia.

Célestin Amboulou. 1998. Le Mbochi: Langue
Bantu Du Congo-Brazzaville (Zone C, Groupe C20).
Ph.D. thesis, INALCO, Paris.

Odette Ambouroue. 2007. Éléments de description de
l’orungu, langue bantu du Gabon (B11b). Ph.D.
thesis, Université Libre de Bruxelles.

Antonios Anastasopoulos and David Chiang. 2017. A
case study on using speech-to-translation alignments
for language documentation. In Proceedings of the
2nd Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages, pages
170–178, Honolulu. Association for Computational
Linguistics.

Steven Bird, Florian R. Hanke, Oliver Adams, and Hae-
joong Lee. 2014. Aikuma: A mobile app for collab-
orative language documentation. ACL 2014.

David Blachon, Élodie Gauthier, Laurent Besacier,
Guy-Noël Kouarata, Martine Adda-Decker, and An-
nie Rialland. 2016. Parallel speech collection for
under-resourced language studies using the LIG-
Aikuma mobile device app. Procedia Computer Sci-
ence, 81:61–66.

Benjamin Börschinger and Mark Johnson. 2014. Ex-
ploring the Role of Stress in Bayesian Word Seg-
mentation using Adaptor Grammars. Transactions
of the Association of Computational Linguistics,
2:93–104.

Jan A. Botha and Phil Blunsom. 2013. Adaptor Gram-
mars for Learning Non-Concatenative Morphology.
In EMNLP, pages 345–356.

Zhiyi Chi. 1999. Statistical properties of proba-
bilistic context-free grammars. Comput. Linguist.,
25(1):131–160.

David Crystal. 2002. Language Death. Cambridge
University Press. Cambridge Books Online.

Laura J. Downing. 2005. On the ambiguous segmen-
tal status of nasals in homorganic NC sequences.
In The Internal Organization of Phonological Seg-
ments, pages 183–216.

Georges Martial Embanga Aborobongui. 2013. Pro-
cessus segmentaux et tonals en Mbondzi – (variété
de la langue embosi C25). Ph.D. thesis, Université
Paris 3 Sorbonne Nouvelle.

Ramy Eskander, Owen Rambow, and Tianchun Yang.
2016. Extending the Use of Adaptor Grammars for
Unsupervised Morphological Segmentation of Un-
seen Languages. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 900–910, Os-
aka, Japan. The COLING 2016 Organizing Commit-
tee.

Pierre Godard, Gilles Adda, Martine Adda-Decker,
Juan Benjumea, Laurent Besacier, Jamison Cooper-
Leavitt, Guy-Noël Kouarata, Lori Lamel, Hélène
Maynard, Markus Müller, Annie Rialland, Sebas-
tian Stüker, François Yvon, and Marcely Zanon
Boito. 2018a. A Very Low Resource Language
Speech Corpus for Computational Language Doc-
umentation Experiments. In Proceedings of LREC,
Miyazaki, Japan.

Pierre Godard, Kevin Loser, Alexandre Allauzen, Lau-
rent Besacier, and Francois Yvon. 2018b. Unsu-
pervised learning of word segmentation: Does tone
matter ? In Proceedings of the 19th International
Conference on Computational Linguistics and Intel-
ligent Text Processing (CICLING), Hanoi, Vietnam.

Sharon Goldwater. 2006. Nonparametric Bayesian
Models of Lexical Acquisition. Ph.D. thesis, Brown
University.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2006. Contextual Dependencies in Un-
supervised Word Segmentation. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 673–
680, Sydney, Australia. Association for Computa-
tional Linguistics.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word
segmentation: Exploring the effects of context.
Cognition, 112(1):21–54.

Fatima Hamlaoui and Emmanuel-Moselly Makasso.
2015. Focus marking and the unavailability of in-
version structures in the Bantu language Bàsàá. Lin-
gua, 154:35–64.

Robert K. Herbert. 1986. Language Universals,
Markedness Theory, and Natural Phonetic Pro-
cesses. De Gruyter Mouton, Berlin, Boston.

Tore Janson. 2003. Speak: A Short History of Lan-
guages. Oxford University Press.

Mark Johnson. 1998. PCFG models of linguistic tree
representations. Comput. Linguist., 24(4):613–632.

41

Mark Johnson. 2008a. Unsupervised Word Segmen-
tation for Sesotho Using Adaptor Grammars. In
Proceedings of the Tenth Meeting of ACL Special
Interest Group on Computational Morphology and
Phonology, pages 20–27, Columbus, Ohio. Associ-
ation for Computational Linguistics.

Mark Johnson. 2008b. Using Adaptor Grammars to
Identify Synergies in the Unsupervised Acquisition
of Linguistic Structure. In Proceedings of ACL-08:
HLT, pages 398–406, Columbus, Ohio. Association
for Computational Linguistics.

Mark Johnson, Anne Christophe, Emmanuel Dupoux,
and Katherine Demuth. 2014. Modelling function
words improves unsupervised word segmentation.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 282–292, Baltimore, Mary-
land. Association for Computational Linguistics.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric Bayesian inference: Experiments on
unsupervised word segmentation with adaptor gram-
mars. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 317–325, Boulder, Col-
orado. Association for Computational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Adaptor Grammars: A Framework for
Specifying Compositional Nonparametric Bayesian
Models. In Advances in Neural Information Pro-
cessing Systems 19, pages 641–648, Cambridge,
MA. MIT Press.

Guy-Noël Kouarata. 2014. Variations de formes dans
la langue mbochi (Bantu C25). Ph.D. thesis, Uni-
versité Lumière Lyon 2.

Kamran Lari and Steve J. Young. 1990. The esti-
mation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech and
Language, 4:35–56.

David Odden. 2015. Bantu Phonology. Oxford Hand-
books Online.

Timothy J. O’Donnell, Joshua B. Tenenbaum, and
Noah D. Goodman. 2009. Fragment grammars: Ex-
ploring computation and reuse in language. Techni-
cal report, Massachusetts Institute of Technology.

Annie Rialland, Georges Martial Em-
banga Aborobongui, Martine Adda-Decker,
and Lori Lamel. 2015. Dropping of the class-prefix
consonant, vowel elision and automatic phono-
logical mining in Embosi. In Proceedings of the
44th ACAL meeting, pages 221–230, Somerville.
Cascadilla.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adap-
tor grammars. Transactions of the Association for
Computational Linguistics, 1:255–266.

42

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 43–53
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

String Transduction with Target Language Models
and Insertion Handling

Garrett Nicolai† and Saeed Najafi‡ and Grzegorz Kondrak‡

†Department of Computer Science ‡Department of Computing Science
Johns Hopkins University University of Alberta
gnicola2@jhu.edu {snajafi, gkondrak}@ualberta.ca

Abstract

Many character-level tasks can be framed as
sequence-to-sequence transduction, where the
target is a word from a natural language. We
show that leveraging target language mod-
els derived from unannotated target corpora,
combined with a precise alignment of the
training data, yields state-of-the art results on
cognate projection, inflection generation, and
phoneme-to-grapheme conversion.

1 Introduction

Many natural language tasks, particularly those in-
volving character-level operations, can be viewed
as sequence-to-sequence transduction (Figure 1).
Although these tasks are often addressed in iso-
lation, they share a common objective — in each
case, the output is a word in the target language.

The hypothesis that we investigate in this pa-
per is that a single task- and language-independent
system can achieve state-of-the-art results by
leveraging unannotated target language corpora
that contain thousands of valid target word types.
We focus on low-data scenarios, which present
a challenge to neural sequence-to-sequence mod-
els because sufficiently large parallel datasets are
often difficult to obtain. To reinforce transduc-
tion models trained on modest-sized collections of
source-target pairs, we leverage monolingual text
corpora that are freely available for hundreds of
languages.

Our approach is based on discriminative string
transduction, where a learning algorithm assigns
weights to features defined on aligned source and
target pairs. At test time, an input sequence is con-
verted into the highest-scoring output sequence.
Advantages of discriminative transduction include
an aptitude to derive effective models from small
training sets, as wells as the capability to incorpo-
rate diverse sets of features. Specifically, we build

เฟเทอร ์ feather+1PL;PRES Feder /fɛðɚ/

feather

Phoneme-to-

Grapheme

Conversion

Transliteration
Inflection

Generation

Cognate

Projection

Sequence-to-sequence Transduction

Figure 1: Illustration of four character-level sequence-
to-sequence prediction tasks. In each case, the output
is a word in the target language.

upon DIRECTL+ (Jiampojamarn et al., 2010), a
string transduction tool which was originally de-
signed for grapheme-to-phoneme conversion.

We present a new system, DTLM, that com-
bines discriminative transduction with character
and word language models (LMs) derived from
large unannotated corpora. Target language mod-
eling is particularly important in low-data scenar-
ios, where the limited transduction models often
produce many ill-formed output candidates. We
avoid the error propagation problem which is in-
herent in pipeline approaches by incorporating the
LM feature sets directly into the transducer.

In addition, we bolster the quality of trans-
duction by employing a novel alignment method,
which we refer to as precision alignment. The idea
is to allow null substrings (nulls) on the source
side during the alignment of the training data,
and then apply a separate aggregation algorithm
to merge them nulls with adjacent non-empty sub-
strings. This method yields precise many-to-many
alignment links that lead to improved transduction
accuracy.

43

https://doi.org/10.18653/v1/P17

The contributions of this paper include the
following. (1) A novel method of incorporat-
ing strong target language models directly into
discriminative transduction. (2) A novel ap-
proach to unsupervised alignment that is partic-
ularly beneficial in low-resource settings. (3)
An extensive experimental comparison to pre-
vious models on multiple tasks and languages,
which includes state-of-the-art results on inflec-
tion generation, cognate projection, and phoneme-
to-grapheme generation. (4) Publicly available
implementation of the proposed methods. (5)
Three new datasets for cognate projection.

2 Baseline methods

In this section, we describe the baseline methods,
including the alignment of the training data, the
feature sets of DirecTL+ (henceforth DTL), and
reranking as a way of incorporating corpus statis-
tics.

2.1 Alignment

Before a transduction model can be derived from
the training data, the pairs of source and target
strings need to be aligned, in order to identify
atomic substring transformations. The unsuper-
vised M2M aligner (Jiampojamarn et al., 2007)
employs the Expectation-Maximization (EM) al-
gorithm with the objective of maximizing the joint
likelihood of its aligned source and target pairs.
The alignment involves every source and target
character. The pairs of aligned substrings may
contain multiple characters on both the source and
target sides, yielding many-to-many (M-M) align-
ment links.

DTL excludes insertions from its set of edit op-
erations because they greatly increase the com-
plexity of the generation process, to the point
of making it computationally intractable (Barton,
1986). Therefore, the M2M aligner is forced to
avoid nulls on the source side by incorporating
them into many-to-many links during the align-
ment of the training data. Although many-to-
many alignment models are more flexible than 1-1
models, they also generally require larger paral-
lel datasets to produce correct alignments. In low-
data scenarios, especially when the target strings
tend to be longer than the source strings, this ap-
proach often yields sub-optimal alignments (e.g.,
the leftmost alignment in Figure 2).

w ɔ k ə z w ɔ _ k _ ə z w ɔ k ə z

w a l k e r s w a l k e r s w a l k e r s

Figure 2: Examples of different alignments in
phoneme-to-letter conversion. The underscore denotes
a null substring.

2.2 Features

DTL is a feature-rich, discriminative character
transducer, which searches for a model-optimal
sequence of character transformation operations
for its input. The core of the engine is a dy-
namic programming algorithm capable of trans-
ducing many consecutive characters in a single
operation, also known as a semi-Markov model.
Using a structured version of the MIRA algo-
rithm (McDonald et al., 2005), the training pro-
cess assigns weights to each feature, in order to
achieve maximum separation of the gold-standard
output from all others in the search space.

DTL uses a number of feature templates to as-
sess the quality of an operation: source context,
target 𝑛-gram, and joint 𝑛-gram features. Con-
text features conjoin the rule with indicators for all
source character 𝑛-grams within a fixed window
of where the rule is being applied. Target n-grams
provide indicators on target character sequences,
describing the shape of the target as it is being pro-
duced, and may also be conjoined with the source
context features. Joint 𝑛-grams build indicators
on rule sequences, combining source and target
context, and memorizing frequently-used rule pat-
terns. An additional copy feature generalizes the
identity function from source to target, which is
useful if there is an overlap between the input and
output symbol sets.

2.3 Reranking

The target language modeling of DTL is limited to
a set of binary 𝑛-gram features, which are based
exclusively on the target sequences from the par-
allel training data. This shortcoming can be reme-
died by taking advantage of large unannotated cor-
pora that contain thousands of examples of valid
target words.

Nicolai et al. (2015) propose to leverage corpus
statistics by reranking the 𝑛-best list of candidates
generated by the transducer. They report con-
sistent modest gains by applying an SVM-based

44

reranker, with features including a word unigram
corpus presence indicator, a normalized character
language model score, and the rank and normal-
ized confidence score generated by DTL. How-
ever, such a pipeline approach suffers from er-
ror propagation, and is unable to produce output
forms that are not already present in the 𝑛-best list.
In addition, training a reranker requires a held-out
set that substantially reduces the amount of train-
ing data in low-data scenarios.

3 Methods

In this section, we describe our novel extensions:
precision alignment, character-level target lan-
guage modeling, and corpus frequency. We make
the new implementation publicly available.1

3.1 Precision Alignment

We propose a novel alignment method that pro-
duces accurate many-to-many alignments in two
stages. The first step consists of a standard 1-1
alignment, with nulls allowed on either side of the
parallel training data. The second step removes
the undesirable nulls on the source side by merg-
ing the corresponding 0-1 links with adjacent 1-1
links. This alignment approach is superior to the
one described in Section 2.1, especially in low-
data scenarios when there is not enough evidence
for many-to-many links.2

Our precision alignment is essentially a 1-1
alignment with 1-M links added when necessary.
In a low-resource setting, an aligner is often un-
able to distinguish valid M-M links from spurious
ones, as both types will have minimal support in
the training data. On the other hand, good 1-1
links are much more likely to have been observed.
By limiting our first pass to 1-1 links, we ensure
that only good 1-1 links are posited; otherwise, an
insertion is predicted instead. On the second pass,
the aligner only needs to choose between a small
number of alternatives for merging the insertions,
increasing the likelihood of a good alignment, and,
subsequently, correct transduction.

Consider the example in Figure 2 where 5
source phonemes need to be aligned to 7 target
letters. The baseline approach incorrectly links the

1http://github.com/GarrettNicolai/DTLM and /M2MP
2The improvement in the alignment quality is relative to

the performance of our transduction system, as we demon-
strate in Section 4.6 — the alignments are not necessarily
optimal from the linguistic point of view.

1: Algorithm:ForwardInsertionMerging
2: Input: (𝑥𝑇 ,𝑦𝑉)
3: Output:(𝛼𝑇+1,𝑉 +1)
4: 𝐶𝐼 = 0, 𝑃 𝐼 = 0
5: for 𝑡 =0; 𝑡 ≤ 𝑇 do
6: if 𝑡 > 0 and 𝑥𝑡 == _ then
7: 𝐶𝐼+=1
8: else
9: 𝑃𝐼 = 𝐶𝐼

10: 𝐶𝐼 = 0
11: for 𝑣=0; 𝑣 ≤ 𝑉 do
12: if 𝑡− 𝐶𝐼 == 0 then
13: 𝛼𝑡,𝑣 = 1
14: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 {insertions at the start of the word}
15: if 𝑡 > 0 or 𝑣 > 0 then
16: 𝛼𝑡,𝑣 = 0
17: if 𝑡 > 0 and 𝑣 > 0 then
18: for 𝑘 = 0; 𝑘 ≤ 𝑃𝐼 do
19: 𝛼𝑡,𝑣+= 𝛿(𝑥𝑡

𝑡−𝐶𝐼−𝑘, 𝑦
𝑣
𝑣−𝐶𝐼−𝑘)*

𝛼𝑡−𝐶𝐼−𝑘−1,𝑣−𝐶𝐼−𝑘−1

Figure 3: The forward step of M2M, modified to merge
insertions to adjacent characters.

letter ‘a’ with the phoneme /w/ (the leftmost align-
ment in the diagram). Our first-pass 1-1 alignment
(in the middle), correctly matches /O/ to ‘a’, while
‘l’ is treated as an insertion. On the second pass,
our algorithm merges the null with the preceding
1-1 link. By contrast, the second insertion, which
involves /@/, is merged with the substitution that
follows it (the rightmost alignment).

Figure 3 demonstrates how we modify the for-
ward step to merge insertions with adjacent sub-
stituions; similar modifications are made for the
backward step, expectation, and decoder. The in-
put consists of a source string x of length 𝑇 , and
a target string y of length 𝑉 . Both x and y may
contain underscores, which represent nulls from
the first alignment pass. The 𝛼 score represents
the sum of the likelihoods of all paths that have
been traversed through source character 𝑡 and tar-
get character 𝑣. In a 1-1 alignment, all 𝛼 scores ac-
cumulate along the diagonal, while in a many-to-
many alignment, other cells of the 𝛼 matrix may
be filled. Our precision alignment is a compromise
between these two methods: we consider adjacent
characters, but force the 𝛼 score to accumulate on
the diagonal. By allowing insertions and deletions
in the first pass, we force x and y to be of equal
length. We then perform a 1-1 alignment, expand-
ing the alignment size only when the source char-
acter is a null.

We supplement the forward algorithm of M2M
with two counters: PI is the number of adjacent
insertions immediately to the left of the current
character, while CI is the number of insertions that

45

have been encountered since the last substitution.
The loop at line 18 executes the 𝛼 score accumu-
lation, where 𝛿 is the likelihood of a specific se-
quence alignment, effectively merging insertions
with adjacent substitutions. An extended example
that illustrates the operation of the algorithm is in-
cluded in the Appendix.

3.2 Character-level language model

In order to incorporate a stronger character lan-
guage model into DTL, we propose an additional
set of features that directly reflect the probabil-
ity of the generated subsequences. We train a
character-level language model on a list of types
extracted from a raw corpus in the target lan-
guage, applying Witten-Bell smoothing and back-
off for unseen 𝑛-grams. During the generation
process, the transducer incrementally constructs
target sequences character-by-character. The nor-
malized log-likelihood score of the current output
sequence is computed according to the character
language model.

For consistency with other sets of features, we
convert these real-valued scores into binary indi-
cators by means of binning. Development exper-
iments led to the creation of bins that represent a
normal distribution around the mean likelihood of
words. Features fire in a cumulative manner, and
a final feature fires only if no bin threshold is met.
For example, if a sequence has a log-likelihood of
-0.85, the feature for -0.9 fires, as does the one for
-0.975, and -1.05, etc.

3.3 Corpus frequency counts

We also extend DTL with a feature set that can
be described as a unigram word-level language
model. The objective is to bias the model towards
generating output sequences that correspond to
words observed in a large corpus. Since an out-
put sequence can only be matched against a word
list after the generation process is complete, we
propose to estimate the final frequency count for
each prefix considered during the generation pro-
cess. Following Cherry and Suzuki (2009) we use
a prefix trie to store partial words for reference in
the generation phase. We modify their solution by
also storing the count of each prefix, calculated as
the sum of all of the words in which the prefix oc-
curs.

As with our language model features, unigram
features are binned. A unigram feature fires if the

pɪəs

DirecTL+

Language

Model

Unigram

Model

Candidate Prediction Score

piess 4.07

pies 4.06

piuss 3.97

Candidate LM Score Bin Prediction Score

pies -0.88 8 18.12

piers -0.94 9 14.97

pierce -0.97 9 13.21

Candidate Unigram count Bin Prediction Score

pious 23.9 10 14.88

pierce 30.7 10 13.12

piece 283.7 8 12.95

 2.09 pies

piers 1.90

pierce 1.90

pious 1.49

pierce 1.49

piece 1.64

Candidate Prediction Score

pierce 18.35

piers 18.27

press 16.93

pies 16.55

piece 14.05

Figure 4: An example of transduction with target lan-
guage models. Black cells represent firing features.

count of the generated sequence surpasses the bin
threshold, in a cumulative manner.

We found that the quality of the target uni-
gram set can be greatly improved by language-
based corpus pruning. Although unannotated cor-
pora are more readily available than parallel ones,
they are often noisier. Specifically, crowd-sourced
corpora such as Wikipedia contain many English
words that can unduly influence our unigram fea-
tures. In order to mitigate this problem, we prepro-
cess our corpora by removing all word unigrams
that have a higher probability in an English corpus
than in a target-language corpus.

Consider an example of how our new features
benefit a transduction model, shown in Figure 4.
Note that although we portray the extensions as
part of a pipeline, their scores are incorporated
jointly with DTL’s other features. The top-𝑛
list produced by the baseline DTL for the input
phoneme sequence /pI@s/ fails to include the cor-
rect output pierce. However, after the new lan-
guage model features are added, the correct form
makes its way to the top predictions. The new fea-
tures combine with the original features of DTL,
so that the high unigram count of piece is not suf-
ficient to make it the top prediction on the right

46

side of the diagram. Only when both sets of new
features are incorporated does the system manage
to produce the correct form, as seen at the bottom
of the diagram.

4 Experiments

In this section, we present the results of our exper-
iments on four different character-level sequence-
to-sequence tasks: transliteration, inflection gen-
eration, cognate projection, and phoneme-to-
grapheme conversion (P2G). In order to demon-
strate the generality of our approach, the exper-
iments involve multiple systems and datasets, in
both low-data and high-data scenarios.

Where low-data resources do not already exist,
we simulate a low-data environment by sampling
an existing larger training set. Low-data training
sets consist of 100 training examples, 1000 de-
velopment examples, and 1000 held-out examples,
except for cognate projection, where we limit the
development set to 100 training examples, and the
held-out set to the remaining examples. An output
is considered correct if it exactly matches any of
the targets in the reference data.

4.1 Systems

We evaluate DTLM, our new system, against two
strong baselines and two competitive tools. Pa-
rameter tuning was performed on the same devel-
opment sets for all systems.

We compare against two baselines. The first
is the standard DTL, as described in Section 2.2.
The second follows the methodology of Nicolai
et al. (2015), augmenting DTL with a reranker
(DTL+RR), as described in Section 2.3. Both
baselines use the default 2-2 alignment with dele-
tions produced by the M2M aligner. We train
the reranker using 10-fold cross validation on
the training set, using the reranking method of
Joachims (2002). Due to the complexity of its
setup on large datasets, we omit DTL+RR in such
scenarios. Except where noted otherwise, we train
4-gram character language models using the CMU
toolkit3 with Witten-Bell smoothing on the Uni-
Morph corpora of inflected word forms.4 Word
counts are determined from the first one million
lines of the corresponding Wikipedia dumps.

We also compare against Sequitur (SEQ), a
generative string transduction tool based on joint

3http://www.speech.cs.cmu.edu/SLM
4unimorph.org

source and target 𝑛-grams (Bisani and Ney, 2008),
and a character-level neural model (RNN). The
neural model uses the encoder-decoder architec-
ture typically used for NMT (Sutskever et al.,
2014). The encoder is a bi-directional RNN ap-
plied to randomly initialized character embed-
dings; we employ a soft-attention mechanism to
learn an aligner within the model. The RNN is
trained for a fixed random seed using the Adam
optimizer, embeddings of 128 dimensions, and
hidden units of size 256. We use a beam of size 10
to generate the final predictions. We experimented
with the alternative neural approach of Makarov
et al. (2017), but found that it only outperforms our
RNN when the source and target sides are largely
composed of the same set of symbols; therefore,
we only use it for inflection generation.

4.2 Transliteration

Transliteration is the task of converting a word
from a source to a target script on the basis of the
word’s pronunciation.

Our low-resource data consists of three back-
transliteration pairs from the 2018 NEWS Shared
Task: Hebrew to English (HeEn), Thai to English
(ThEn), and Persian to English (PeEn). These
languages were chosen because they represent
back-transliteration into English. Since the orig-
inal forms were originally English, they are much
more likely to appear in an English corpus than if
the words originated in the source language. We
report the results on the task’s 1000-instance de-
velopment sets.

Since transliteration is mostly used for named
entities, our language model and unigram counts
are obtained from a corpus of named entities. We
query DBPedia5 for a list of proper names, dis-
carding names that contain non-English charac-
ters. The resulting list of 1M names is used to train
the character language model and inform the word
unigram features.

The results in Table 1 show that our pro-
posed extensions have a dramatic impact on low-
resource transliteration. In particular, the seam-
less incorporation of the target language model
not only simplifies the model but also greatly im-
proves the results with respect to the reranking ap-
proach. On the other hand, the RNN struggles to
learn an adequate model with only 100 training ex-
amples.

5https://wiki.dbpedia.org

47

System HeEn ThEn PeEn
DTL 13.2 1.1 8.7
DTL+RR 19.0 2.7 13.6
DTLM 36.7 9.6 26.1
RNN 5.4 1.3 2.6
SEQ 7.8 4.4 8.5

Table 1: Word-level accuracy on transliteration (in %)
with 100 training instances.

System HeEn ThEn PeEn
DTL 21.9 37.0 23.6
DTLM 38.7 48.0 36.8
RNN 25.8 43.8 26.7
SEQ 25.5 44.9 31.2

Table 2: Word-level accuracy on transliteration (in %)
with complete training sets.

We also evaluate a larger-data scenario. Using
the same three languages, we replace the 100 in-
stance training sets with the official training sets
from the 2018 shared task, which contain 9,447,
27,273, and 15,677 examples for HeEn, TnEn, and
PeEn, respectively. The language model and fre-
quency lists are the same as for the low-resource
experiments. Table 2 shows that DTLM outper-
forms the other systems by a large margin thanks
to its ability to leverage a target word list. Addi-
tional results are reported by Najafi et al. (2018b).

4.3 Inflection generation

Inflection generation is the task of producing an
inflected word-form, given a citation form and
a set of morphological features. For example,
given the Spanish infinitive liberar, with the
tag V;IND;FUT;2;SG, the word-form liberarás
should be produced.

In recent years, inflection generation has at-
tracted much interest (Dreyer and Eisner, 2011;
Durrett and DeNero, 2013; Nicolai et al., 2015;
Ahlberg et al., 2015). Aharoni and Goldberg
(2017) propose an RNN augmented with hard at-
tention and explicit alignments for inflection, but
have difficulty consistently improving upon the
results of DTL, even on larger datasets. Fur-
thermore, their system cannot be applied to tasks
where the source and target are different lan-
guages, due to shared embeddings between the en-
coder and decoder. Ruzsics and Samardzic (2017)
incorporate a language model into the decoder of

System Average
DTL 40.7
DTLM 49.0
CLUZH 40.9

Table 3: Word-level accuracy (in %) on inflection gen-
eration with 100 training instances.

a canonical segmentation system. Our model dif-
fers in that we learn the influence of the language
model during training, in conjunction with DTL’s
other features. Deutsch et al. (2018) place a hard
constraint on the decoder, so that it only produces
observed derivational forms. We instead imple-
ment a soft constraint, encouraging candidates that
look like real words, but allowing the model to
generalize to unseen forms.

Our inflection data comes from the 2017
CoNLL–SIGMORPHON Shared Task on Rein-
flection (Cotterell et al., 2017). We use the
datasets from the low-resource setting of the in-
flection generation sub-task, in which the train-
ing sets are composed of 100 source lemmas with
inflection tags and the corresponding inflected
forms. We supplement the training data with
100 synthetic “copy” instances that simply trans-
form the target string into itself. This modifica-
tion, which is known to help in transduction tasks
where the source and target are nearly identical,
is used for the inflection generation experiments
only. Along with the training sets from the shared
task, we also use the task’s development and test
sets, each consisting of 1000 instances.

Since Sequitur is ill-suited for this type of trans-
duction, we instead train a model using the method
of the CLUZH team (Makarov et al., 2017), a
state-of-the-art neural system that was the winner
of the 2017 shared task. Their primary submis-
sion in the shared task was an ensemble of 20 indi-
vidual systems. For our experiments, we selected
their best individual system, as reported in their
system paper. For each language, we train models
with 3 separate seeds, and select the model that
achieves the highest accuracy on the development
set.

Table 3 shows that DTLM improves upon
CLUZH by a significant margin. The Appendix
contains the detailed results for individual lan-
guages. DTLM outperforms CLUZH on 46 of the
52 languages. Even for languages with large mor-
phological inventories, such as Basque and Polish,

48

with the sparse corpora that such inventories sup-
ply, we see notable gains over DTL. We also see
large gains for languages such as Northern Sami
and Navajo that have relatively small Wikipedias
(fewer than 10,000 articles).

DTLM was also evaluated as a non-standard
submission in the low-data track of the 2018
Shared Task on Universal Morphological Inflec-
tion (Cotterell et al., 2018). The results reported
by Najafi et al. (2018a) confirm that DTLM sub-
stantially outperforms DTL on average. Further-
more, a linear combination of DTLM and a neural
system achieved the highest accuracy among all
submissions on 34 out of 103 tested languages.

4.4 Cognate projection

Cognate projection, also referred to as cognate
production, is the task of predicting the spelling
of a hypothetical cognate in another language.
For example, given the English word difficulty,
the Spanish word dificultad should be produced.
Previously proposed cognate projection systems
have been based on SVM taggers (Mulloni, 2007),
character-level SMT models (Beinborn et al.,
2013), and sequence labeling combined with a
maximum-entropy reranker (Ciobanu, 2016).

In this section, we evaluate DTLM in both low-
and high-resource settings. Our low-resource data
consists of three diverse language pairs. The first
set corresponds to a mother-daughter historical re-
lationship between reconstructed Vulgar Latin and
Italian (VL-IT) and contains 601 word pairs manu-
ally compiled from the textbook of Boyd-Bowman
(1980). English and German (EN-DE), close sib-
lings from the Germanic family, are represented
by 1013 pairs extracted from Wiktionary. From
the same source, we also obtain 438 Slavic word
pairs from Russian and Polish (RU-PL), which are
written in different scripts (Cyrillic vs. Latin). We
make the new datasets publicly available.6

The results are shown in Table 4. Of the sys-
tems that have no recourse to corpus statistics,
the RNN appears crippled by the small training
size, while SEQ is competitive with DTL, espe-
cially on the difficult EN-DE dataset. On the other
hand, the other two systems obtain substantial im-
provements over DTL, but the gains obtained by
DTLM are 2-3 times greater than those obtained
by DTL+RR. This demonstrates the advantage of
incorporating the language model features directly

6http://github.com/GarrettNicolai/CognateData

System EN-DE RU-PL VL-IT
DTL 4.3 23.5 39.2
DTL+RR 7.1 32.8 43.6
DTLM 17.7 43.9 52.5
RNN 2.2 1.7 15.7
SEQ 9.2 22.3 36.9

Table 4: Word-level accuracy (in %) on cognate pro-
jection with 100 training instances.

System EN-ES EN-DE EN-RU
BZG-13 45.7 17.2 8.3
DTL 30.3 24.3 13.3
DTLM 56.8 33.5 45.9
RNN 34.3 20.5 15.0

Table 5: Word-level accuracy (in %) on large-scale
cognate projection.

into the training phase over simple reranking.
Our high-resource data comes from a previous

study of Beinborn et al. (2013). The datasets
were created by applying romanization scripts
and string similarity filters to translation pairs ex-
tracted from Bing. We find that the datasets
are noisy, consisting mostly of lexical loans from
Latin, Greek, and English, and include many com-
pound words that share only a single morpheme
(i.e., informatics and informationswissenschaft).
In order to alleviate the noise, we found it bene-
ficial to disregard all training pairs that could not
be aligned by M2M under the default 2-2 link set-
ting.

Another problem in the data is the overlap be-
tween the training and test sets, which ranges from
40% in EN-ES to 94% in EN-EL. Since we believe
it would be inappropriate to report results on con-
taminated sets, we decided to ignore all test in-
stances that occur in the training data. (Unfortu-
nately, this makes some of the test sets too small
for a meaningful evaluation.) The resulting dataset
sizes are included in the Appendix. Along with the
datasets, Beinborn et al. (2013) provide the pre-
dictions made by their system. We re-calculate the
accuracy of their predictions (BZG-13), discard-
ing any forms that were present in the training set,
and compare against DTL and DTLM, as well as
the RNN.

Table 5 shows striking gains. While DTL and
the RNN generally improve upon BZG-13, DTLM
vastly outstrips either alternative. On EN-RU,

49

DTLM correctly produces nearly half of poten-
tial cognates, 3 times more than any of the other
systems. We conclude that our results constitute a
new state of the art for cognate projection.

4.5 Phoneme-to-grapheme conversion

Phoneme-to-grapheme (P2G) conversion is the
task of predicting the spelling of a word from a se-
quence of phonemes that represent its pronuncia-
tion (Rentzepopoulos and Kokkinakis, 1996). For
example, a P2G system should convert [t r ae n z
d ah k sh ah n] into transduction. Unlike the op-
posite task of grapheme-to-phoneme (G2P) con-
version, large target corpora are widely available.
To the best of our knowledge, the state of the art
on P2G is the joint 𝑛-gram approach of Bisani and
Ney (2008), who report improvements on the re-
sults of Galescu and Allen (2002) on the NetTalk
and CMUDict datasets.

Our low-resource dataset consists of three lan-
guages: English (EN), Dutch (NL), and Ger-
man (DE), extracted from the CELEX lexical
database (Baayen et al., 1995).

Table 6 shows that our modifications yield sub-
stantial gains for all three languages, with consis-
tent error reductions of 15-20% over the reranking
approach. Despite only training on 100 words, the
system is able to convert phonetic transcriptions
into completely correct spellings for a large frac-
tion of words, even in English, which is notorious
for its idiosyncratic orthography. Once again, the
RNN is hampered by the small training size.

We also evaluate DTLM in a large-data sce-
nario. We attempt to replicate the P2G ex-
periments reported by (Bisani and Ney, 2008).
The data comes from three lexicons on which
we conduct 10-fold cross validation: English
NetTalk (Sejnowski and Rosenberg, 1993), French
Brulex (Mousty and Radeau, 1990), and English
CMUDict (Weide, 2005). These corpora contain
20,008, 24,726, and 113,438 words, respectively,
in both orthographic and phonetic notations. We
note that CMUDict differs from the other two lex-
icons in that it is much larger, and contains pre-
dominantly names, as well as alternative pronun-
ciations. When the training data is that abundant,
there is less to be gained from improving the align-
ment or the target language models, as they are al-
ready adequate in the baseline approach.

Table 7 shows the comparison of the results.
The P2G results obtained by Sequitur in our exper-

System EN NL DE
DTL 13.9 30.6 33.5
DTL+RR 25.3 32.6 51.5
DTLM 39.6 43.7 60.5
RNN 2.7 6.6 14.1
SEQ 15.9 30.5 28.6

Table 6: Word-level accuracy (in %) on phoneme-to-
grapheme conversion with 100 training instances.

NetTalk Brulex CMU
DTL 61.0 68.0 48.3
DTLM 75.2 76.8 49.0
RNN 55.8 67.1 48.0
SEQ 62.7 71.5 48.6

Table 7: Word-level accuracy (in %) on phoneme-to-
grapheme conversion with large training sets.

iments are slightly lower than those reported in the
original paper, which is attributable to differences
in data splits, tuned hyper-parameters, and/or the
presence of stress markers in the data. Sequitur
still outperforms the baseline DTL, but DTLM
substantially outperforms both Sequitur and the
RNN on both the NetTalk and Brulex datasets,
with smaller gains on the much larger CMUDict.
We conclude that our results advance the state of
the art on phoneme-to-grapheme conversion.

4.6 Ablation

Table 8 shows the results of disabling individ-
ual components in the low-resource setting of the
P2G task. The top row reproduces the full DTLM
system results reported in Table 6. The remain-
ing three show the results without the character-
level LM, word unigram, and precision alignment,
respectively. We observe that the accuracy sub-
stantially decreases in almost every case, which
demonstrates the contribution of all three compo-
nents.

In a separate experiment on the English G2P
dataset, we investigate the impact of the align-
ment quality by applying several different align-
ment approaches to the training sets. When M2M
aligner uses unconstrained alignment, it favors
long alignments that are too sparse to learn a
transduction model, achieving less than 1% accu-
racy. Kubo et al. (2011)’s MPALIGNER, which em-
ploys a length penalty to discourage such overlong
substring matches, improves moderately, achiev-

50

System EN NL DE
DTLM 39.6 43.7 60.5
-Language model 37.8 38.2 48.5
-Freq 22.0 37.1 56.7
-Precision 34.9 43.7 46.7

Table 8: Ablation test on P2G data with 100 training
instances.

ing 27.5% accuracy, while constraining M2M
to 2-2 improves further, to 34.9%. The accu-
racy increases to 39.6% when the precision align-
ment is employed. We conclude that in the low-
resource setting, our proposed precision alignment
is preferable to both MPALIGNER and the standard
M2M alignment.

4.7 Error Analysis

The following error examples from three different
tasks demonstrate the advantages of incorporating
the character-level LM, word frequency, and pre-
cision alignment, respectively. For the purpose
of insightful analysis, we selected test instances
for which DTLM produces markedly better output
than DTL.

In inflection generation, the second person plu-
ral form of knechten is correctly predicted as
knechtetet, instead of knechttet. In this case, our
character language model derived from a large text
corpus rightly assigns very low probability to the
unlikely 4-gram sequence chtt, which violates
German phonotactic constraints.

In the phoneme-to-grapheme conversion task,
[tIlEm@tri] is transduced to telemetry, instead of
tilemetry. In English, a reduced vowel phoneme
such as [I] may correspond to any vowel letter. In
this example, DTLM is able to successfully lever-
age the occurrence of the correct word-form in a
raw corpus.

In cognate projection, the actual cognate of
Kenyan is kenianisch, rather than kenyisch. This
prediction can be traced to the alignment of the
adjectival suffix -an to -anisch in the training data.
The match, which involves a target substring of
considerable length, is achieved through a merger
of multiple insertion operations.

The errors made by DTLM fall into a few differ-
ent categories. Occasionally, DTLM produces an
incorrect form that is more frequent in the corpus.
For example, DTLM incorrectly guesses a sub-
junctive form of the verb versetzen to be the high-

frequency versetzt, rather than the unseen verset-
zet. More important, the transducer is incapable
of generalizing beyond source-target pairs seen in
training. For example, consider the doubling of
consonants in English orthography (e.g. betting).
Unlike the RNN, DTLM incorrectly predicts the
present participle of rug as *ruging, because there
is no instance of the doubling of ‘g’ in the training
data.

5 Conclusion

We have presented DTLM: a powerful language-
and task-independent transduction system that can
leverage raw target corpora. DTLM is particularly
effective in low-resource settings, but is also suc-
cessful when larger training sets are available. The
results of our experiments on four varied trans-
duction tasks show large gains over alternative ap-
proaches.

Acknowledgments

The first author was supported in part by the
Defense Advanced Research Projects Agency’s
(DARPA) Low Resource Emergent Incidents
(LORELEI) program, under contract No.
HR0011-15-C0113. Any opinions and conclu-
sions expressed in this material are those of the
authors, and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency
(DARPA).

The second and third authors were supported
by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

We thank the members of the University of Al-
berta teams who collaborated with us in the con-
text of the 2018 shared tasks on transliteration
and morphological reinflection: Bradley Hauer,
Rashed Rubby Riyadh, and Leyuan Yu.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2004–2015, Vancouver,
Canada. Association for Computational Linguistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-

51

guage Technologies, pages 1024–1029. Association
for Computational Linguistics.

Harald R. Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX Lexical Database. Release
2 (CD-ROM). Linguistic Data Consortium, Univer-
sity of Pennsylvania, Philadelphia, Pennsylvania.

G. Edward Barton. 1986. Computational complexity
in two-level morphology. In Proceedings of the
24th Annual Meeting of the Association for Compu-
tational Linguistics, pages 53–59, New York, New
York, USA. Association for Computational Linguis-
tics.

Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.
2013. Cognate production using character-based
machine translation. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language
Processing, pages 883–891, Nagoya, Japan. Asian
Federation of Natural Language Processing.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech communication, 50(5):434–451.

Peter Boyd-Bowman. 1980. From Latin to Romance in
sound charts. Georgetown University Press.

Colin Cherry and Hisami Suzuki. 2009. Discriminative
substring decoding for transliteration. In Proceed-
ings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 1066–1075.
Association for Computational Linguistics.

Alina Maria Ciobanu. 2016. Sequence labeling for
cognate production. In Knowledge-Based and Intel-
ligent Information and Engineering Systems: Pro-
ceedings of the 20th International Conference KES-
2016, pages 1391–1399.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, Belgium.
Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
CoNLL–SIGMORPHON 2017 shared task: Uni-
versal morphological reinflection in 52 languages.
In Proceedings of the CoNLL–SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 1–30, Vancouver. Association for Computa-
tional Linguistics.

Daniel Deutsch, John Hewitt, and Dan Roth. 2018. A
distributional and orthographic aggregation model

for english derivational morphology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1938–1947. Association for Computa-
tional Linguistics.

Markus Dreyer and Jason Eisner. 2011. Discovering
morphological paradigms from plain text using a
Dirichlet process mixture model. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 616–627. Association
for Computational Linguistics.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
HLT-NAACL, pages 1185–1195.

Lucian Galescu and James F. Allen. 2002. Pronunci-
ation of proper names with a joint n-gram model
for bi-directional grapheme-to-phoneme conversion.
In Seventh International Conference on Spoken Lan-
guage Processing.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2010. Integrating joint n-gram features
into a discriminative training network. In NAACL-
HLT, pages 697–700, Los Angeles, CA. Association
for Computational Linguistics.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme
conversion. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics;
Proceedings of the Main Conference, pages 372–
379. Association for Computational Linguistics.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–
142. ACM.

Keigo Kubo, Hiromichi Kawanami, Hiroshi
Saruwatari, and Kiyohiro Shikano. 2011. Un-
constraned many-to-many alignment for automatic
pronunciation annotation. In Proceedings of the
Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection.
arXiv preprint arXiv:1707.01355.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In ACL.

Philippe Mousty and Monique Radeau. 1990. Brulex.
Une base de données lexicales informatisée pour
le français écrit et parlé. L’année Psychologique,
90(4):551–566.

52

Andrea Mulloni. 2007. Automatic prediction of cog-
nate orthography using support vector machines.
In Proceedings of the ACL 2007 Student Research
Workshop, pages 25–30, Prague, Czech Republic.
Association for Computational Linguistics.

Saeed Najafi, Bradley Hauer, Rashed Rubby Riyadh,
Leyuan Yu, and Grzegorz Kondrak. 2018a. Combin-
ing neural and non-neural methods for low-resource
morphological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, Belgium.
Association for Computational Linguistics.

Saeed Najafi, Bradley Hauer, Rashed Rubby Riyadh,
Leyuan Yu, and Grzegorz Kondrak. 2018b. Com-
parison of assorted models for transliteration. In
Proceedings of the Seventh Named Entities Work-
shop, pages 84–88. Association for Computational
Linguistics.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 922–931. Association for
Computational Linguistics.

Panagiotis A. Rentzepopoulos and George K. Kokki-
nakis. 1996. Efficient multilingual phoneme-to-
grapheme conversion based on HMM. Computa-
tional Linguistics, 22(3):351–375.

Tatyana Ruzsics and Tanja Samardzic. 2017. Neu-
ral sequence-to-sequence learning of internal word
structure. In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL
2017), pages 184–194, Vancouver, Canada. Associ-
ation for Computational Linguistics.

TJ Sejnowski and CR Rosenberg. 1993. NETtalk cor-
pus. URL< ftp://svrftp. eng. cam. ac. uk/pub/comp.
speech/dictionaries.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Robert Weide. 2005. The Carnegie Mellon pronounc-
ing dictionary [cmudict. 0.6].

53

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 54–65
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Complementary Strategies for Low Resourced Morphological Modeling

Alexander Erdmann and Nizar Habash
Computational Approaches to Modeling Language Lab

New York University Abu Dhabi
United Arab Emirates

{ae1541,nizar.habash}@nyu.edu

Abstract

Morphologically rich languages are challeng-
ing for natural language processing tasks due
to data sparsity. This can be addressed either
by introducing out-of-context morphological
knowledge, or by developing machine learning
architectures that specifically target data spar-
sity and/or morphological information. We
find these approaches to complement each
other in a morphological paradigm modeling
task in Modern Standard Arabic, which, in ad-
dition to being morphologically complex, fea-
tures ubiquitous ambiguity, exacerbating spar-
sity with noise. Given a small number of out-
of-context rules describing closed class mor-
phology, we combine them with word embed-
dings leveraging subword strings and noise re-
duction techniques. The combination outper-
forms both approaches individually by about
20% absolute. While morphological resources
already exist for Modern Standard Arabic,
our results inform how comparable resources
might be constructed for non-standard dialects
or any morphologically rich, low resourced
language, given scarcity of time and funding.

1 Introduction

Morphologically rich languages pose many chal-
lenges for natural language processing tasks. This
often takes the shape of data sparsity, as the in-
crease in the number of possible inflections for
any given core concept leads to a lower aver-
age word frequency of individual (i.e., unique)
word types. Hence, models have fewer chances
to learn about types based on their in-context
behavior. One common, albeit time consuming
response to this challenge is to introduce out-
of-context morphological knowledge, hand craft-
ing rules to relate forms inflected from the same
lemma. The other common response is to adopt
machine learning architectures specifically target-
ing data sparsity and/or morphological informa-

tion. We find these two responses to be comple-
mentary in a paradigm modeling task for Modern
Standard Arabic (MSA).

MSA is characterized by morphological rich-
ness and extreme orthographic ambiguity, com-
pounding the issue of data sparsity with noise
(Habash, 2010). Despite its challenges, MSA
is relatively well resourced, with many solutions
for morphological analysis and disambiguation
leveraging large amounts of annotated data, hand
crafted rules, and/or sophisticated neural archi-
tectures (Khoja and Garside, 1999; Habash and
Rambow, 2006; Smrž, 2007; Graff et al., 2009;
Pasha et al., 2014; Abdelali et al., 2016; Inoue
et al., 2017; Zalmout and Habash, 2017). Such
resources and techniques, however, are not avail-
able or not viable for the many under resourced
and often mutually unintelligible dialects of Ara-
bic (DA), which are similarly morphologically
rich and highly ambiguous (Chiang et al., 2006;
Erdmann et al., 2017). Many recent efforts seek
to develop morphological resources for DA, but
most are under developed or specific to one di-
alect (Habash et al., 2012; Eskander et al., 2013;
Jarrar et al., 2014; Al-Shargi et al., 2016; Eskan-
der et al., 2016a; Khalifa et al., 2016, 2017; Zribi
et al., 2017; Zalmout et al., 2018; Khalifa et al.,
2018).

This work does not aim to develop a full mor-
phological analysis and disambiguation resource,
but to inform how one might be most efficiently
developed for any DA variety or similarly low re-
sourced language, given scarcity of time and fund-
ing. For such a resource to be practical and eas-
ily extendable to new DA varieties, it must take
as input the natural, highly ambiguous orthogra-
phy. Thus, we do not rely on constructed phono-
logical representations to clarify ambiguities, as is
common practice when modeling morphology for
its own sake (Cotterell et al., 2016, 2017). To in-

54

https://doi.org/10.18653/v1/P17

form how such a resource should be developed,
we evaluate minimally rule based and unsuper-
vised techniques for clustering words that belong
to the same paradigm in MSA. We primarily use
pre-existing MSA resources only for evaluation,
constraining resource availability to emulate DA
settings during training, as we lack the resources
to evaluate our techniques in DA. Our best sys-
tem combines a minimal set of rules describing
closed class morphology with word embeddings
that leverage subword strings and noise reduc-
tion strategies. The former, despite being cheaper
and easier to produce than other rule-based sys-
tems, provides valuable out-of-context morpho-
logical knowledge, which the latter complements
by modeling the in-context behavior of words and
morphemes. Combining the techniques outper-
forms either individually by about 20% absolute.

2 Morphology and Ambiguity

Arabic morphology is structurally and function-
ally complex. Structurally, paradigms are rela-
tively large. Component cells convey morpho-
syntactic properties at a much finer granularity
than English. Functionally, many morphologi-
cal processes are non-concatenative, or templatic.
Arabic roots are lists of de-lexicalized radicals,
which must be mapped onto a template to derive
a word. The derived word will then exhibit some
predictable semantic and morpho-syntactic rela-
tionship to the root, based on its template. For ex-
ample, the root X X P r d d,1 having to do with re-
sponding, could take a singular nominal template
where geminates are collapsed, becoming XP rd,
‘response’, or a so-called broken plural template,
separating the geminate with a long vowel to be-
come XðXP rdwd, ‘responses’. Arabic orthography
complicates the issue further, as diacritics mark-
ing short vowels, gemination, and case endings
are typically not written. In addition to causing
frequent lexical ambiguity among forms that are
pronounced differently, this also causes templatic
processes to appear to be concatenative or com-
pletely disappear. For example, deriving ‘to cool’
XQK. brd (fully diacritized, X ��Q�K. bar∼ad) from ‘cold-

ness’ XQK. brd (fully diacritized, XQ�K. bar.d) involves
doubling the second root letter and adding a short
vowel before the third, yet these templatic changes
usually disappear in the orthography.

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).

Most templatic processes are derivational, de-
riving new core meanings with separate paradigms
from a shared root. Inflectional processes gener-
ally concatenate affixes to a shared stem to realize
different cells in the same paradigm. Broken plu-
rals however, like XðXP rdwd, are a notable excep-
tion, resulting from a templatic inflectional pro-
cess. Approximately 55% of all plurals are broken
(Alkuhlani and Habash, 2011).

Arabic is further characterized by frequent cliti-
cization of prepositions, conjunctions, and ob-
ject pronouns. Thus, a single syntactic word can
take many cliticized forms, potentially becoming
homonymous with inflections of unrelated lemmas
or distinct cells in the same paradigm. The XQK. brd,
‘response’–‘coldness’ ambiguity exemplifies this.
The ‘response’ meaning interprets H. b as a cliti-
cized preposition meaning ‘with’, while the ‘cold-
ness’ meaning interprets H. b as the first root radi-
cal. To investigate how these morphological traits
affect our ability to model paradigms, we define
the following morphological structures.

Paradigm All words that share a certain lemma
comprise a paradigm, e.g., in Figure 1, the
paradigm of verbal lemma �X �P rad∼, ‘to respond’,
contains the four words connected to it by a solid
line. Ambiguity within the paradigm is referred
to as syncretism, and is very common in Ara-
bic. For example, the present tense second per-
son masculine singular form is syncretic with the
third person feminine singular in verbs, as shown
by XQ�K trd, ‘you[masc.sing]/she respond(s)’. Addi-
tionally, orthography normalizes short vowel dis-
tinctions between past tense second person mas-
culine, second person feminine, and first person
forms (and sometimes third person feminine), thus
causing

��HX �X �P radadta, �H� X �X �P radadti, and
��HX �X �P

radadtu, respectively, to be orthographically syn-
cretic. Cliticized forms can also cause unique syn-
cretisms, e.g., A 	KXQK. brdnA has two possible inter-
pretations from the same lemma X ��Q�K. bar∼ad, ‘to

cool’. If the final suffix A 	K nA is interpreted as a
past tense verbal exponent, it means ‘we cooled’,
whereas if it is interpreted as a cliticized personal
pronoun, it becomes ‘he/it cooled us’.

Subparadigm At or below the paradigm level,
subparadigms are comprised of all words that
share the same lemma ambiguity. Lemma ambi-
guity refers to the set of all lemmas a word could
have been derived from out of context. Hence, XQK.

55

Figure 1: A clan of two families with two paradigms each, connected by both derivational and coincidental
ambiguities. Line dotting style is only used to visually distinguish paradigm membership.

brd and A 	KXQK. brdnA form a subparadigm, being the
only words in Figure 1 which can all be derived
exclusively from lemmas, �X �P rad∼, ‘response’, XQ�K.
bard, ‘coldness’, and X ��Q�K. bar∼ad, ‘to cool’.

Family At or above the paradigm level, a fam-
ily is comprised of all paradigms which can be
linked via derivational ambiguity, such that all
paradigms are derived from the same root. Thus,
all forms mapping to the two paradigms which in
turn map to the root X P H. b r d, relating to cold,
constitute a single family. The subparadigm of
XQK. brd and A 	KXQK. brdnA link the two component
paradigms via derivational ambiguity.2

Clan At or above the family level, a clan is com-
prised of all families which can be linked by coin-
cidental ambiguity. Thus, the subparadigm of XQK.
brd and A 	KXQK. brdnA, whose derivational ambiguity
joins the paradigms of the X P H. b r d family, also
connects that family to the unrelated X X P r d d
family via coincidental ambiguity. This is caused
by the multiple possible analyses of H. b as either
a cliticized preposition or a root letter.

3 Experiments

In this section, we describe the data, design, and
models used in our experiments.

2The linguistic concept of derivational family differs from
ours in that it does not require any ambiguous forms to be
shared by derivationally related paradigms. However, identi-
fying such derivational families automatically is non-trivial.
Even if the shared root can be identified, it can be difficult
to determine whether the root is mono or polysemous, e.g.,
P ¨ �� š ς r could refer to hair, poetry, or feeling. Regard-
less, our definition of family better serves our investigation
into the effects of ambiguity.

3.1 Data

To train word embedding models, we use a cor-
pus of 500,000 Arabic sentences (13 million
words) randomly selected from the corpus used
in Almahairi et al. (2016). This makes our find-
ings more generalizable to DA, as many dialects
have similar amounts of available data (Erdmann
et al., 2018). We clean our corpus via standard
preprocessing3 and analyze each word out of con-
text with SAMA (Graff et al., 2009) to get the set
of possible fully diacritized lemmas from which it
could be derived.4

To build an evaluation set, we sum the frequen-
cies of all types within each paradigm and bucket
paradigms based on frequency. We randomly se-
lect evaluation paradigms such that all 10 buck-
ets contribute at least 10 paradigms each. For
all selected paradigms, any paradigms from the
same clan are also selected, allowing us to as-
sume that the paradigms included in the evalua-
tion set are independent of those that are not in-
cluded. Paradigms with only a single type are
discarded, as these are not interesting for analy-
sis. Our resulting EVAL set contains 1,036 words
from 91 paradigms and a great deal of ambiguity
at all levels of abstraction (see Table 1). Because
we prohibit paradigms from entering EVAL with-
out the rest of their clan, EVAL also exhibits the
desirable property of reflecting a generally realis-
tic distribution of ambiguity: 36% of its vocab-
ulary are lemma ambiguous as compared to 39%
for the entire corpus.

3We remove the rarely used diacritics and Alif/Ya normal-
ize (El Kholy and Habash, 2012).

4We exclude words from the embedding model and eval-
uation set if they either cannot be analyzed by SAMA, only
receive proper noun analyses, or if they do not also occur in
the larger Arabic Gigaword corpus (Parker et al., 2011). This
controls for many idiosyncrasies.

56

Count Ambiguous Non-derivationally
Ambiguous

Clan 49 18 5
Family 55 24 11

Paradigm 91 60 14
Subparadigm 116 48 6

Word 1,036 372 85

Table 1: Statistics from the EVAL set. Morpholog-
ical structures by level of abstraction. Ambiguous
structures contain at least one lemma ambiguous
form. Non-derivationally ambiguous structures
contain at least one coincidentally lemma ambigu-
ous form.

Figure 2: Best clustering strategies for two
paradigms–dotted versus dashed ovals–given sin-
gle or multi prototype vocabulary representations.

3.2 Approach and Evaluation Metric

We build single and multi prototype representa-
tions of the entire vocabulary, then examine how
well they reflect the paradigms in EVAL. Each
representation can be thought of as a tree where
each word is a leaf at depth 0, i.e., W1, W2, and
W3 in Figure 2. Descending down the tree, words
are clustered with other words’ branches at subse-
quent depths until the clustering algorithm finishes
or the root is reached where all words in the vo-
cabulary are clustered together. All trees use some
model of word similarity to guide clustering. In
multi prototype representations, a word’s leaf pro-
totype at depth 0 can be copied and grafted onto
other words’ branches at non-zero depths before
those branches are clustered to its own. Such is the
case of W2, which is copied as W ′

2 at depth 1 of
W3’s branch before W3’s branch connects to W2’s.
This enables partially overlapping paradigms to be
modeled, like those in Figure 2.

We evaluate the trees via average maximum F-
score. For each word in EVAL, we descend from
its leaf, at each depth calculating an F-score for

the overlap between the words that have been
clustered to the leaf’s branch so far and the leaf
word’s known paradigm mates, i.e., the set of
words sharing at least one lemma with the leaf.
Thus, paradigms are soft clusters in our represen-
tation, in that, for each word in a paradigm, its set
of proposed paradigm mates need not be consis-
tent with any of its proposed paradigm mates’ sets
of proposed paradigm mates. We then take the
best F-score for each leaf word in EVAL, regard-
less of the depth level at which it was achieved,
and average these maximum F-scores. This re-
flects how cohesively paradigms are represented
in the tree.5 Additionally, we report the average
depth at which templatic and concatenatively re-
lated paradigm mates are added.

Because we evaluate via average maximum F-
score, this metric represents the potential perfor-
mance of any given model. Future work will
address predicting the depth level where aver-
age maximum F-score is achieved for a given
leaf word via rule-based and/or empirical tech-
niques that have proven successful for related
tasks (Narasimhan et al., 2015; Soricut and Och,
2015; Cao and Rei, 2016; Bergmanis and Gold-
water, 2017; Sakakini et al., 2017).

3.3 Word Similarity Models

We use the following word similarity models for
clustering words in single and multi prototype tree
representations.

LEVENSHTEIN The LEVENSHTEIN baseline
uses only orthographic edit distances to form a
multi prototype tree. At each depth level i, the
branch will include every word which has an
edit distance of i when compared to the leaf.
Transitivity does not hold in this model, as words
x and y could be in each other’s depth 1 branch,
but the fact that z is in y’s depth 1 branch does not
imply its inclusion in x’s depth 1 branch. If the
edit distance between x and z is greater than 1,
copies, or additional prototypes must be made of x
and y. Because morphology involves complicated
processes that cannot be explained merely via
orthographic similarity, we predict this model will
perform poorly. Still, this baseline is useful to
ensure that other models are learning something

5To control for idiosyncratic paradigms, we calculated a
macro F-score averaged over the average maximum F-scores
of individual paradigms, though we do not report this as re-
sults were not significantly different.

57

from words’ in-context behavior or out-of-context
morphological knowledge beyond what can be
superficially induced from edit distances.

DELEX We use a de-lexicalized (DELEX) mor-
phological analyzer to predict morphological re-
latedness. The analyzer covers all MSA closed-
class affixes and clitics and their allowed combi-
nations in open class parts-of-speech (POS); how-
ever there is no information about stems and lem-
mas in the model.6 The affixes and clitics and their
compatibility rules were extracted from SAMA

(Graff et al., 2009). They are relatively cheap to
create for any DA or other languages. The inde-
pendent, expensive component of SAMA is the in-
formation regarding stems and lemmas, which we
used to form our evaluation set. We are inspired by
Darwish (2002), who demonstrated the creation of
an Arabic shallow analyzer in one day. Our ap-
proach can be easily extended to DA at least in a
similar manner to Salloum and Habash (2014).

To determine if two MSA words are possibly
in the same paradigm, we do the following: (1) we
use the analyzer to identify all potential stems with
corresponding POS for each word (these stems
are simply the leftover string after removing any
prefixal and suffixal strings which match a prefix-
suffix combination deemed compatible by SAMA);
(2) each stem is deterministically converted into an
orthographic root as per Eskander et al. (2013) by
removing Hamzas (the set of letters representing
the glottal stop phoneme, i.e., Z ’,

@ Â, @
 Ǎ,

�
@ Ā,
ð' ŵ,

Zø' ŷ), long vowels (@ A, ø
 y, ð w, ø ý), and reduc-

ing geminate consonants (e.g., XXP rdd → XP rd);
(3) two words are determined to be possibly from
the same paradigm if there exists a possible ortho-
graphic root–POS analysis shared by both words.

DELEX builds a multi prototype tree with a
maximum depth of 1. For each leaf word, it uses
the above algorithm to identify all words in the
vocabulary which can possibly share a paradigm
with the leaf word, and grafts them into the branch.
Hence, a word can belong to more than one hy-
pothesized paradigm. Because DELEX has access

6The system includes 15 basic prefixes/proclitics (@ A, È@
Al, H. b,

	¬ f, ú

	̄ fy, ¼ k, È l, B lA, AÓ mA, 	à n, � s, �H t, ð w, ø

y, and φ) in 84 unique combinations; and 30 suffixes/enclitics
(@ A, 	à@ An, �H@ At, è h, Aë hA, Ñë hm, AÒë hmA, 	áë hn, ¼ k, Õ»
km, AÒ» kmA, 	á» kn, 	à n, A 	K nA, ú

	G ny, �è ~, �H t, A�K tA, 	àA�K tAn,

Õç�' tm, AÖ �ß tmA, 	á�K tn, ú

�G ty, 	á�
�K tyn, ð w, @ð wA, 	àð wn, ø
 y, 	áK

yn and φ) in 193 unique combinations.

to valuable morphological knowledge, we predict
it will be a competitive baseline. Furthermore, it
should produce nearly perfect recall, only miss-
ing rare exceptional forms, e.g., broken plurals
that introduce new consonants such as l .×@QK. brAmj,

‘programs’, the plural of l .×A 	KQK. brnAmj, ‘program’.
We expect its precision to be weak because it
lacks lexical or stem-pattern information, leading
to rampant clustering of derivationally related and
unrelated forms. For example, a word like �è 	Q
KAg.
jAŷz~, ‘prize’ (true root 	P ð h. j w z) receives the

orthographic root 	P h. j z (long vowel, hamza let-
ter, and suffix are dropped), which clusters it with
unrelated forms such as Z 	Qk. jz’, ‘part’ (true root
Z 	P h. j z ’), and 	Qk. jz, ‘shearing’ (true root 	P 	P h.
j z z).

Word Embedding Models (W2V, FT, and FT+)
We use different word embedding models to build
single prototype representations of the vocabulary
via binary hierarchical clustering (Müllner et al.,
2013). In order to analyze the effects of data spar-
sity, we do not impose a minimum word frequency
count, but learn vectors for the entire vocabulary.
At depth 0, we consider each leaf word to be its
own branch. Descending down the tree, we it-
eratively join the closest two branches based on
Ward distance (Ward Jr, 1963). Joined branches
are represented by the centroid of their component
words’ vectors (though, as in other models, we do
not include the leaf word as a match when calcu-
lating average maximum F-score). We continue it-
erating until only a single root remains containing
the entire vocabulary.

These trees are single prototype because the in-
put embeddings only provide one vector for each
word, regardless of whether or not it is ambiguous
in any way. While this is a limitation for these
models,7 existing multi prototype word embed-
dings generally model sense ambiguity, which is
easier to capture (though harder to evaluate) given
the unsupervised settings in which embeddings are
typically trained (Reisinger and Mooney, 2010;
Huang et al., 2012; Chen et al., 2014; Bartunov
et al., 2016). Adapting multi prototype embed-

7A single prototype oracle that always correctly maps
non-lemma ambiguous words to their paradigm and maps
lemma ambiguous words only to their largest possible
paradigm scores 97% (92% specifically on lemma ambigu-
ous types). This represents the best possible performance for
single prototype models.

58

dings to model lemma ambiguities is non-trivial,
especially without lots of supervision. We leave
this for future work.

Because trees built from word embeddings are
all constructed via the same binary clustering al-
gorithm, the depths at which templatic and con-
catenatively inflected paradigm mates are joined
in Table 2 are comparable vertically across W2V,
FT, and FT+ as well as horizontally. However, the
multi prototype trees are shorter and fatter, such
that the templatic and concatenative average join
depths are only comparable horizontally with each
other, i.e., within the same model.

W2V The Gensim implementation of
WORD2VEC (Mikolov et al., 2013a; Řehůřek
and Sojka, 2010) uses the SkipGram algorithm
with 200 dimensions and a context window of 5
tokens on either side of the target word. As this
does not have access to any subword information
and is specifically designed for semantics, not
morphology, we predict that it will not perform
well in our evaluation.

FT We train a FASTTEXT (Bojanowski et al.,
2016) implementation with the same parameters
as W2V, except a word’s vector is the sum of its
SkipGram vector and that of all its component
character n-grams between length 2 and 6. Since
short vowels are not written, many Arabic affixes
are only one character. With FASTTEXT bookend-
ing words with start/end symbols in its internal
representation, outermost single-letter affixes are
functionally two characters. By inducing knowl-
edge of such affixes, these character n-gram pa-
rameters outperform the language agnostic range
of 3 to 6 proposed by Bojanowski et al. (2016).

With the ability to model how subword strings
behave in context, FT should outperform both
LEVENSHTEIN and W2V, though without access
to scholar seeded knowledge of morphological
structures, it is difficult to predict how FT will
compare with DELEX. Errors may arise from clus-
tering words based on affixes indicative of syn-
tactic behavior instead of the stem, which indi-
cates paradigm membership. Also, if the word
is infrequent and contains no semantically dis-
tinct subword string with higher frequency, the
embeddings will be noisy. Frequency and noise
also interact with the hubbiness, or crowdedness
of the embedding region, as rural regions will re-
quire less precision in the vectors to cluster well,

whereas there is little room for noise in crowded
urban regions where many similar but morpholog-
ically unrelated words could interfere.

FT+ We build another FT model by concatenat-
ing the vectors learned from two variant FT mod-
els, one with the normal window size of 5 and one
with a narrow window size of 1. Both are trained
on a preprocessed corpus where phrases have been
probabilistically identified in potentially unique
distributions over multiple copies of each sen-
tence, as described in Erdmann et al. (2018).8 This
technique attempts to better model syntactic cues–
which are better encoded with narrow context win-
dows (Pennington et al., 2014; Trask et al., 2015;
Goldberg, 2016; Tu et al., 2017)–while avoiding
treating non-compositional phrases as composi-
tional, and also learning from multiple, poten-
tially complementary phrase-chunkings of every
sentence. By combining these sources of infor-
mation, FT+ is designed to learn more meaningful
vectors without requiring additional data. We pre-
dict it will uniformly outperform FT by reducing
noise in the handling of sparse forms like infre-
quent inflections–a hallmark of morphologically
rich languages.

FT+&DELEX We make unique copies for each
leaf word’s branch extending all the way to the
root in the single prototype FT+ tree. Then, for
each leaf word, at every depth of its branch copy,
we use DELEX to prune any words which could
not share an orthographic root with the leaf word.
Pruning is local to that branch copy, and does not
affect the branch copies of paradigm mates which
had originally been proposed by FT+ before mak-
ing branch copies. This makes FT+&DELEX a
multi-prototype model. After pruning, the F-score
is recalculated for each depth of each leaf word’s
branch and a new average maximum F-score is re-
ported. Because FT+ encodes information regard-
ing the in-context behavior of words, it is quite
complementary to the out-of-context morpholog-
ical knowledge supplied by DELEX. We predict
this model will outperform all others.

8For control, we compared every possible combination of
narrow and wide window sizes (1 or 5), dimension sizes (200
or 400), and techniques for phrase identification (none, deter-
ministic (Mikolov et al., 2013b), and probabilistic (Erdmann
et al., 2018)), but none approached the performance achieved
with the parameters used in FT+.

59

Word Similarity Multi Averaged Scores Join Depth
Model Prototype Max F-Score Precision Recall Concat Temp

LEVENSHTEIN X 22.0 35.5 23.4 3.5 4.1
DELEX X 52.9 41.6 99.3 1.0 1.0

W2V 2.1 6.7 28.1 17.1 17.4
FT 39.2 66.0 44.2 13.7 16.8

FT+ 50.2 71.8 52.9 13.3 16.4
FT+&DELEX X 71.5 74.0 81.3 13.3 16.4

Table 2: Scores for clustering words with their paradigm mates in tree representations built from different
models of word similarity. Scores are calculated as described in Section 3.2, with precision and recall
extracted from the depth that maximizes F and then averaged over all words in EVAL. Join depths refer to
the average depth at which templatic or concatenatively related paradigm mates are added to the branch.

4 Results and Discussion

The results in Table 2 provide strong evidence in
support of our hypotheses. The only model per-
forming worse than the LEVENSHTEIN edit dis-
tance baseline is W2V, which only understands the
in-context, semantic behavior of words. By be-
ing able to learn morphological knowledge from
in-context behavior of subword strings, FT greatly
improves over both W2V and LEVENSHTEIN,
demonstrating that it learns far more than can be
inferred from out-of-context subword strings, i.e.,
edit distance, or in-context distributional seman-
tic knowledge without any morphology, i.e., W2V.
As predicted, FT+ improves uniformly over FT in
all categories, presumably by reducing noise in
the vectors of infrequent inflections. Interestingly,
with no access to subword information, W2V per-
forms equally poorly on both templatic and con-
catenatively related paradigm mates, whereas FT

and FT+ greatly improve on concatenative mates,
but not templatic ones. This is likely because FT

and FT+ can identify patterns in subword strings,
but not in non-adjacent characters.

DELEX’s strong baseline performance demon-
strates that simple, out-of-context, de-lexicalized
knowledge of morphology is sufficient to out-
perform the best word embedding model that
only learns from words’ in-context behaviors.
However, given the complementarity between
DELEX’s knowledge and the information FT+ can
learn, it is not surprising that the combination of
these techniques, FT+&DELEX, far outperforms
either system individually.

Specific Examples We discuss a number
of examples that illustrate the variety in
the behavior and complementarity of rule-
based DELEX, embedding-based FT+, and the
combined FT+&DELEX models. For each

example, we specify the strength of the max-
imum F-score for the three models as such:9

strengthDELEX+strengthFT+→strengthFT+&DELEX,
e.g., LOW+MID→HI denotes poor DELEX and
mediocre FT+ performance on a word, yielding
high performance in the combined model.

• �è 	Q
KAg. jAŷz~, ‘prize’ (LOW+HI→HI)
This word has high orthographic root ambigu-
ity since its second morphological root radical
is a Hamza. This results in matching words
with unrelated true roots like Z 	Qk. jz’, ‘part’ and
	Qk. jz, ‘shearing’ under DELEX. It also has

high root fertility, in that different paradigms
can come from the same true root, like 	Q
K� A �g.
jAŷz, ‘permissible’, further challenging DELEX.
FT+ does relatively better, capturing the word’s
other inflections, even the broken plural 	Q
K @ñk.
jwAŷz, as their in-context behavior is similar to�è 	Q
KAg. jAŷz~. Interesting recall errors by FT+ in-
clude semantically and orthographically similar�è 	Q
KA 	̄ fAŷz~, ‘winner[fem.sing]’. The combina-
tion yields a perfect F-score.

• 	àñ«QîE
 yhrςwn, ‘they rush’ (HI+LOW→HI)
This word has an unambiguous orthographic
root with no root fertility, resulting in a perfect
F-score for DELEX. However, FT+ misses sev-
eral inflections such as ¨Qî 	E nhrς , ‘we rush’,

and �I«Qëð whrςt, ‘and I/you/she rushed’. FT+
also makes many semantically and/or syntacti-
cally similar precision errors: 	àñ«Qå��
 ysrςwn,
‘they hurry’, 	àñ«PA��
 ySArςwn, ‘they wrestle’,
and 	àñ«Q�®K
 yqrςwn, ‘they ring (a bell)’. The
combination leads to a perfect F-score.

• ú
¾J
ÓA 	JK
X dynAmyky, ‘dynamic’ (HI+HI→HI)

This word has an unambiguous orthographic
9The strength designation HI is used for F-scores above

75%, LOW for scores below 25%, and MID for the rest.

60

root based on a foreign borrowing and relatively
unique semantics and subword strings. Thus, it
achieves a perfect F-score in all three models.

• @ðQå���J 	K @ AntšrwA, ‘they spread out’
(MID+MID→HI)
This word has high orthographic root ambiguity
(and, incidentally, fertility) due to the presence
of 	à n and �H t, which could belong to a root,
template, or prefix. This leads to a 63% F-score
under DELEX with many precision errors:
èPA ���� 	K @ AntšArh, ‘his spreading out’, PðA ���� 	Kð
wntšAwr, ‘we discuss’, and ¼PA ���� 	K ntšArk, ‘we
collaborate’. FT+ scores only 47%, proposing
semantically related but morphologically unre-
lated or only derivationally related forms: e.g.,
Qå���J 	JÓ mntšr, ‘spread out’ (adjective), and @ð 	Q»QÖ �ß
tmrkzwA, ‘they centralized’ (antonym). This
semantic knowledge however, complements
DELEX’s knowledge, such that the combination
is almost perfect (98%).

• Z 	­» kf’, ‘efficient’ (LOW+LOW→LOW)
While 17% of words are LOW in DELEX and
28% in FT+, only 4% are LOW in FT+&DELEX.
This word exemplifies that 4%, occupying the
gap between DELEX’s knowledge and FT+’s. It
has an extremely ambiguous orthographic root
due to the true root containing a Hamza and the
first letter being interpretable as a proclitic or
root radical. Thus, DELEX achieves 2% F. FT+
is only slightly better (5%). It is likely that this
word’s low frequency is the main contributor to
its noisy embedding, as it only appears once in
our corpus. The combination F-score is thus,
only 11%.

5 Related Work

This work builds on several others addressing
word embeddings and computational morphology.

Word Embeddings Word embeddings are
trained by predicting either a target word given its
context (Continuous Bag of Words) or elements
of the context given a target (SkipGram) in
unannotated corpora (Mikolov et al., 2013a), with
the learned vectors modeling how words relate
to each other. Embeddings have been adapted
to incorporate word order (Trask et al., 2015) or
subword information (Bojanowski et al., 2016) to
motivate the learned vectors to specifically capture
syntactic, morphological, or other similarities.

Word embeddings are generally single proto-
type models, in that they learn one vector for each
word, which can be problematic for ambiguous
forms (Reisinger and Mooney, 2010; Huang et al.,
2012; Chen et al., 2014). Bartunov et al. (2016)
propose a multi prototype model that learns dis-
tinct vectors for distinct meanings of types based
on variation in the contexts within which they ap-
pear. Gyllensten and Sahlgren (2015), argue that
single prototype embeddings actually can model
ambiguity because the defining characteristics of
a word’s different meanings typically manifest in
different dimensions of the highly dimensional
vector space. They find ambiguous words’ rela-
tive nearest neighbors in a relative neighborhood
graph often correlate with distinct meanings. Such
works however, deal with sense ambiguity, or ab-
stract semantic distinctions between different us-
ages of a word with potentially the same morpho-
syntactic properties and core meaning. Evalu-
ation usually requires linking to large semantic
databases which, for Arabic, are still underdevel-
oped (Black et al., 2006; Badaro et al., 2014; El-
razzaz et al., 2017).

Computational Morphology This field of
study includes rule-based, machine learning, and
hybrid approaches to modeling morphology. The
traditional approach is to hand write rules to
identify the morphological properties of words
(Beesley, 1998; Khoja and Garside, 1999; Habash
and Rambow, 2006; Smrž, 2007; Graff et al.,
2009; Habash, 2010). These can be used for
out-of-context analysis–which SAMA (Graff
et al., 2009) performs for MSA–or they can be
combined with machine learning approaches that
leverage information from the context in which a
word appears. MADAMIRA (Pasha et al., 2014),
for example, is trained on an annotated corpus
to disambiguate SAMA’s analyses based on the
surrounding sentence.

Other systems use machine learning without
rules. They can train on annotated data, like
Faruqui et al. (2016) who learn morpho-syntactic
lexica from a small seed, or they can learn with-
out supervision, like Luo et al. (2017) who induce
"morphological forests" of derivationally related
words by predicting suffixes and prefixes based on
the vocabulary alone. Some approaches seek to
be language independent. MORFESSOR (Creutz
and Lagus, 2005), for instance, segments words
based on unannotated text. However, it deter-

61

ministically produces context-irrelevant segmen-
tations, causing error propagation in languages
like Arabic, characterized by high lexical ambigu-
ity (Saleh and Habash, 2009; Pasha et al., 2014).
A few systems have incorporated word embed-
dings to perform segmentation (Narasimhan et al.,
2015; Soricut and Och, 2015; Cao and Rei, 2016),
with some attempting to model and analyze re-
lations between underlying morphemes as well
(Bergmanis and Goldwater, 2017; Sakakini et al.,
2017), though none of these distinguish between
inflectional and derivational morphology. Eskan-
der et al. (2016b) propose another segmentation
system using Adaptor Grammars for six typolog-
ically distinct languages. Snyder and Barzilay
(2010) actually use multiple languages simultane-
ously, finding the parallels between them useful
for disambiguation in morphological and syntac-
tic tasks.

Our work is closely related to Avraham and
Goldberg (2017), who train embeddings on
a Hebrew corpus with disambiguated morpho-
syntactic information appended to each token.
Similarly, Cotterell and Schütze (2015) "guide"
German word embeddings with morphological an-
notation, and Gieske (2017) use morphological in-
formation encoded in word embeddings to inflect
German verbs. For Arabic, Rasooli et al. (2014)
induce paradigmatic knowledge from raw text to
produce unseen inflections, and Eskander et al.
(2013) identify orthographic roots and use them
to extract features for paradigm completion given
annotated data. While we adopt the concept of
approximating the linguistic root with an ortho-
graphic root, we do not use annotated data where
the stem has already been determined as in Eskan-
der et al. (2013). Thus, we generate all possible
orthographic roots for a given word instead of just
one, as discussed in Section 3.3.

Sakakini et al. (2017) provide an alternative
unsupervised technique for extracting roots in
Semitic languages, however, we chose to adopt
the orthographic root concept instead for several
reasons. Firstly, despite performing comparably
with other empirical techniques, Sakakini et al.
(2017)’s root extractor is not extremely accurate.
While our implementation generates potentially
multiple orthographic roots with imperfect preci-
sion, the near perfect recall is useful for pruning
without propogating error. A major reason why we
find DELEX and FT+ to complement one another

is the independence of the orthographic root ex-
traction rules and the distributional statistics lever-
aged by word embeddings. Sakakini et al. (2017)’s
root extractor however, depends on embeddings to
identify roots. Furthermore, their root extractor
cannot be used to generate multi prototype mod-
els as it only produces one root per word. Finally,
despite orthographic roots’ dependance on hand
written rules, we show that these rules are very
few, such that adapting Sakakini et al. (2017)’s
root extractor to a new language or dialect would
not necessarily require any less effort than writing
new rules.

6 Conclusion and Future Work

In this work, we demonstrated that out-of-context,
rule-based knowledge of morphological structure,
even in minimal supply, greatly complements
what word embeddings can learn about morphol-
ogy from words’ in-context behaviors. We dis-
cussed how Arabic’s morphological richness and
many forms of ambiguity interact with different
word similarity models’ ability to represent mor-
phological structure in a paradigm clustering task.
Our work quantifies the value of leveraging sub-
word information when learning embeddings and
the further value of noise reduction techniques tar-
geting the sparsity caused by complex morphol-
ogy. Our best performing model uses out-of-
context rules to prune unlikely paradigm mates
suggested by our best embedding model, achiev-
ing an F-score of 71.5% averaged over our eval-
uation vocabulary. Our results inform how one
would most cost effectively construct morphologi-
cal resources for DA or similarly under resourced,
morphologically complex languages.

Our future work will target templatic morpho-
logical processes which still challenge our best
model, requiring knowledge of patterns realized
over non-adjacent characters. We will also ad-
dress errors due to ambiguity, either by adapt-
ing multi prototype embedding models to cap-
ture morphological ambiguity, including knowl-
edge of paradigm structure in our de-lexicalized
rules, or by using disambiguated lemma frequen-
cies to model ambiguity probabilistically. In ap-
plying this work to DA, we will additionally
need to address the issue of noisy, unstandardized
spelling. We will also investigate different knowl-
edge transfer techniques to leverage the many re-
sources available for MSA.

62

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 11–16.

Faisal Al-Shargi, Aidan Kaplan, Ramy Eskander, Nizar
Habash, and Owen Rambow. 2016. Morphologi-
cally annotated corpora and morphological analyz-
ers for Moroccan and Sanaani Yemeni Arabic. In
10th Language Resources and Evaluation Confer-
ence (LREC 2016).

Sarah Alkuhlani and Nizar Habash. 2011. A Corpus
for Modeling Morpho-Syntactic Agreement in Ara-
bic: Gender, Number and Rationality. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics (ACL’11), Portland,
Oregon, USA.

Amjad Almahairi, Kyunghyun Cho, Nizar Habash, and
Aaron C. Courville. 2016. First result on Arabic
neural machine translation. CoRR, abs/1606.02680.

Oded Avraham and Yoav Goldberg. 2017. The inter-
play of semantics and morphology in word embed-
dings. arXiv preprint arXiv:1704.01938.

Gilbert Badaro, Ramy Baly, Hazem Hajj, Nizar
Habash, and Wassim El-Hajj. 2014. A large scale
Arabic sentiment lexicon for Arabic opinion mining.
In Proceedings of the EMNLP 2014 Workshop on
Arabic Natural Language Processing (ANLP), pages
165–173.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2016. Breaking sticks and ambi-
guities with adaptive skip-gram. In Artificial Intelli-
gence and Statistics, pages 130–138.

Kenneth Beesley. 1998. Arabic morphology using only
finite-state operations. In Proceedings of the Work-
shop on Computational Approaches to Semitic Lan-
guages, pages 50–7, Montereal.

Toms Bergmanis and Sharon Goldwater. 2017. From
segmentation to analyses: A probabilistic model for
unsupervised morphology induction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, volume 1, pages 337–346.

William Black, Sabri Elkateb, Horacio Rodriguez,
Musa Alkhalifa, Piek Vossen, Adam Pease, and
Christiane Fellbaum. 2006. Introducing the Arabic
wordnet project. In Proceedings of the third inter-
national WordNet conference, pages 295–300. Cite-
seer.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Kris Cao and Marek Rei. 2016. A joint model for word
embedding and word morphology. arXiv preprint
arXiv:1606.02601.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1025–1035.

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Shareef. 2006. Parsing Arabic
Dialects. In Proceedings of EACL, Trento, Italy.
EACL.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
CoNLL-SIGMORPHON 2017 shared task: Uni-
versal morphological reinflection in 52 languages.
CoRR, abs/1706.09031.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany.
Association for Computational Linguistics.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word-embeddings. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1287–1292.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Helsinki
University of Technology.

Kareem Darwish. 2002. Building a shallow Arabic
morphological analyzer in one day. In Computa-
tional Approaches to Semitic Languages, an ACL’02
Workshop, pages 47–54, Philadelphia, PA.

Ahmed El Kholy and Nizar Habash. 2012. Ortho-
graphic and morphological processing for English–
Arabic statistical machine translation. Machine
Translation, 26(1-2):25–45.

Mohammed Elrazzaz, Shady Elbassuoni, Khaled Sha-
ban, and Chadi Helwe. 2017. Methodical evaluation
of Arabic word embeddings. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
454–458, Vancouver, Canada.

Alexander Erdmann, Nizar Habash, Dima Taji, and
Houda Bouamor. 2017. Low resourced machine
translation via morpho-syntactic modeling: The
case of dialectal arabic. In Proceedings of MT Sum-
mit 2017, Nagoya, Japan.

Alexander Erdmann, Nasser Zalmout, and Nizar
Habash. 2018. Addressing noise in multidialectal
word embeddings. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2,
pages 558–565.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic extraction of morphological lex-
icons from morphologically annotated corpora. In

63

Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1032–1043.

Ramy Eskander, Nizar Habash, Owen Rambow, and
Arfath Pasha. 2016a. Creating resources for Dialec-
tal Arabic from a single annotation: A case study on
Egyptian and Levantine. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 3455–
3465, Osaka, Japan.

Ramy Eskander, Owen Rambow, and Tianchun Yang.
2016b. Extending the use of adaptor grammars
for unsupervised morphological segmentation of un-
seen languages. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 900–910.

Manaal Faruqui, Ryan McDonald, and Radu Soricut.
2016. Morpho-syntactic lexicon generation using
graph-based semi-supervised learning. Transac-
tions of the Association for Computational Linguis-
tics, 4:1–16.

Sharon Gieske. 2017. Inflecting verbs with word em-
beddings: A systematic investigation of morpholog-
ical information captured by German verb embed-
dings. Master’s thesis, University of Amsterdam.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. J. Artif. In-
tell. Res.(JAIR), 57:345–420.

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic morphological analyzer
(SAMA) version 3.1. Linguistic Data Consortium
LDC2009E73.

Amaru Cuba Gyllensten and Magnus Sahlgren.
2015. Navigating the semantic horizon using
relative neighborhood graphs. arXiv preprint
arXiv:1501.02670.

Nizar Habash, Ramy Eskander, and Abdelati Hawwari.
2012. A morphological analyzer for Egyptian Ara-
bic. In Proceedings of the twelfth meeting of the
special interest group on computational morphology
and phonology, pages 1–9. Association for Compu-
tational Linguistics.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
a morphological analyzer and generator for the Ara-
bic dialects. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics, pages 681–688. Association for
Computational Linguistics.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods. Springer.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing, volume 3. Morgan & Clay-
pool Publishers.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word

representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 873–882. Asso-
ciation for Computational Linguistics.

Go Inoue, Hiroyuki Shindo, and Yuji Matsumoto.
2017. Joint prediction of morphosyntactic cate-
gories for fine-grained Arabic part-of-speech tag-
ging exploiting tag dictionary information. In Pro-
ceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pages
421–431, Vancouver, Canada. Association for Com-
putational Linguistics.

Mustafa Jarrar, Nizar Habash, Diyam Akra, and Nasser
Zalmout. 2014. Building a corpus for Palestinian
Arabic: a preliminary study. In Proceedings of
the EMNLP 2014 Workshop on Arabic Natural Lan-
guage Processing (ANLP), pages 18–27.

Salam Khalifa, Nizar Habash, Fadhl Eryani, Ossama
Obeid, Dana Abdulrahim, and Meera Al Kaabi.
2018. A Morphologically Annotated Corpus of
Emirati Arabic. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan.

Salam Khalifa, Sara Hassan, and Nizar Habash.
2017. A morphological analyzer for Gulf Arabic
verbs. WANLP 2017 (co-located with EACL 2017),
page 35.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2016. Yamama: Yet another multi-dialect Arabic
morphological analyzer. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: System Demonstrations, pages
223–227.

Shereen Khoja and Roger Garside. 1999. Stemming
Arabic text. Lancaster, UK, Computing Depart-
ment, Lancaster University.

Jiaming Luo, Karthik Narasimhan, and Regina Barzi-
lay. 2017. Unsupervised learning of morphological
forests. arXiv preprint arXiv:1702.07015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Daniel Müllner et al. 2013. fastcluster: Fast hierar-
chical, agglomerative clustering routines for R and
Python. Journal of Statistical Software, 53(9):1–18.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2015. An unsupervised method for un-
covering morphological chains. arXiv preprint
arXiv:1503.02335.

Robert Parker, David Graff, Ke Chen, Junbo Kong, and
Kazuaki Maeda. 2011. Arabic Gigaword Fifth Edi-
tion. LDC catalog number No. LDC2011T11, ISBN
1-58563-595-2.

64

Arfath Pasha, Mohamed Al-Badrashiny, Ahmed El
Kholy, Ramy Eskander, Mona Diab, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A Fast, Comprehensive Tool
for Morphological Analysis and Disambiguation of
Arabic. In In Proceedings of LREC, Reykjavik, Ice-
land.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Mohammad Sadegh Rasooli, Thomas Lippincott, Nizar
Habash, and Owen Rambow. 2014. Unsupervised
morphology-based vocabulary expansion. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1349–1359.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 109–117. Association for Computational Lin-
guistics.

Tarek Sakakini, Suma Bhat, and Pramod Viswanath.
2017. Fixing the infix: Unsupervised discovery
of root-and-pattern morphology. arXiv preprint
arXiv:1702.02211.

Ibrahim M. Saleh and Nizar Habash. 2009. Automatic
extraction of lemma-based bilingual dictionaries for
morphologically rich languages. In Proceedings of
MT Summit, Ottawa, Canada.

Wael Salloum and Nizar Habash. 2014. ADAM: An-
alyzer for Dialectal Arabic Morphology. Journal
of King Saud University-Computer and Information
Sciences, 26(4):372–378.

Otakar Smrž. 2007. Functional Arabic Morphology.
Formal System and Implementation. Ph.D. thesis,
Charles University, Prague.

Benjamin Snyder and Regina Barzilay. 2010. Climb-
ing the tower of Babel: Unsupervised multilingual
learning. In Proceedings of the International Con-
ference on Machine Learning (ICML-10), Haifa, Is-
rael.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1627–1637.

Andrew Trask, David Gilmore, and Matthew Russell.
2015. Modeling order in neural word embeddings at
scale. arXiv preprint arXiv:1506.02338.

Lifu Tu, Kevin Gimpel, and Karen Livescu. 2017.
Learning to embed words in context for syntactic
tasks. arXiv preprint arXiv:1706.02807.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association, 58(301):236–244.

Nasser Zalmout, Alexander Erdmann, and Nizar
Habash. 2018. Noise-robust morphological dis-
ambiguation for dialectal Arabic. In Proceed-
ings of the 16th Meeting of the North American
Chapter of the Association for Computational Lin-
guistics/Human Language Technologies Conference
(HLT-NAACL18), New Orleans, Louisiana, USA.

Nasser Zalmout and Nizar Habash. 2017. Don’t throw
those morphological analyzers away just yet: Neural
morphological disambiguation for Arabic. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 715–
724.

Inès Zribi, Mariem Ellouze, Lamia Hadrich Belguith,
and Philippe Blache. 2017. Morphological dis-
ambiguation of Tunisian dialect. Journal of King
Saud University-Computer and Information Sci-
ences, 29(2):147–155.

65

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 66–77
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Modeling reduplication with 2-way finite-state transducers

Hossep Dolatian, Jeffrey Heinz
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

hossep.dolatian,jeffrey.heinz@stonybrook.edu

Abstract
This article describes a novel approach to
the computational modeling of reduplication.
Reduplication is a well-studied linguistic phe-
nomenon. However, it is often treated as
a stumbling block within finite-state treat-
ments of morphology. Most finite-state im-
plementations of computational morphology
cannot adequately capture the productivity of
unbounded copying in reduplication, nor can
they adequately capture bounded copying. We
show that an understudied type of finite-state
machines, two-way finite-state transducers (2-
way FSTs), captures virtually all reduplica-
tive processes, including total reduplication.
2-way FSTs can model reduplicative typol-
ogy in a way which is convenient, easy to de-
sign and debug in practice, and linguistically-
motivated. By virtue of being finite-state, 2-
way FSTs are likewise incorporable into exist-
ing finite-state systems and programs. A small
but representative typology of reduplicative
processes is described in this article, alongside
their corresponding 2-way FST models.

1 Introduction

Reduplication is a cross-linguistically common
word-formation process. Reduplication is roughly
divided into two categories, total reduplication
where an unbounded number of segments are
copied (1) vs. partial reduplication where a
bounded number of segments are copied (2). In
spoken language, reduplication usually involves
making at most two copies, though making three
copies is attested in spoken language (3) and is
common in sign language (Wilbur, 2005).

1) wanita→wanita∼wanita
‘woman’→‘women’
Indonesian (Cohn, 1989, 308)

2) takki→tak∼takki
‘leg’→‘legs’ Agta (Moravcsik, 1978, 311)

3) roar→ roar∼roar∼roar
‘give a shudder’→‘continue to shudder’
Mokilese (Moravcsik, 1978, 301)

Most of the world’s languages include at least
one reduplicative process, with the most com-
mon reduplicative process being total reduplica-
tion. The WALS database documents that 278 out
of 368 (75%) languages use both partial redupli-
cation and total reduplication as productive mor-
phological operations (Rubino, 2013). An extra 35
(10%) use only total reduplication as a productive
morphological operation. The 55 (15%) remain-
ing languages with no reduplicative processes in-
clude most Indo-European languages.1

Although reduplication has a rich history in
morpho-phonology, it continues to present chal-
lenges for computational and mathematical lin-
guistics (Sproat, 1992; Roark and Sproat, 2007).
Within computational linguistics, most of mor-
phology and phonology have been analyzed with
finite-state calculus as rational languages and
transductions (Kaplan and Kay, 1994; Beesley
and Karttunen, 2003). However, reduplication
cannot be easily modeled with the same finite-
state systems used to model the rest of morpho-
phonology. In the case of total reduplication, this
is because those finite-state systems cannot ex-
press unbounded copying in the first place (Culy,
1985). As for partial reduplication, those finite-
state systems are often discussed as being burden-
some models because of the state explosion that
partial reduplication causes (Roark and Sproat,
2007). This has lead some researchers to de-
velop finite-state approximations of total redu-
plication (Walther, 2000; Beesley and Karttunen,
2000; Cohen-Sygal and Wintner, 2006; Hulden,

1This 15% is debatable because some argue that total
reduplication is still used in those languages in one way or
another (Stolz et al., 2011).

66

https://doi.org/10.18653/v1/P17

2009a; Hulden and Bischoff, 2009). These are ap-
proximations because they cannot model the pro-
ductivity of total reduplication, the most common
reduplicative process. Another alternative is to
use formalisms that are beyond finite-state, e.g.
queue-based CFGs (Savitch, 1989), MCFGs (Al-
bro, 2000, 2005), and HPSG (Crysmann, 2017).

This article shows how a specific understud-
ied type of finite-state technology actually can ac-
count for virtually all forms of bounded and un-
bounded reduplication as they are found in typo-
logical studies (Moravcsik, 1978; Rubino, 2005).
This finite-state technology not only describes
reduplication as a process which applies to in-
finitely many words of unbounded size, but it does
so without the state-space explosion. The type
of transducer which accomplishes this is known
as a 2-way Finite-State Transducer or 2-way FST
(Savitch, 1982; Engelfriet and Hoogeboom, 2001;
Filiot and Reynier, 2016). While these computer
scientists are well aware that 2-way FSTS can
model unbounded copying, this is the first use of
2-way FSTs within computational linguisticst to
our knowledge.2

2-way FSTs are distinguished from the more
well-known (1-way) finite-state transducers or 1-
way FSTs by allowing the machine to move back
and forth on the input tape, but not on the output
tape. It is this increased power of 2-way FSTs
that allows them to adequately model reduplica-
tion without the difficulties of using 1-way FSTs.

In this paper, we focus on deterministic 2-way
FSTs. Like 1-way FSTs, 2-way FSTs can be ei-
ther deterministic or non-deterministic on the in-
put. Deterministic 1-way FSTs are less expres-
sive than non-deterministic 1-way FSTs (Elgot
and Mezei, 1965; Schützenberger, 1975; Choffrut,
1977; Mohri, 1997; Heinz and Lai, 2013). Sim-
ilarly, deterministic 2-way FSTs are less expres-
sive than non-deterministic 2-way FSTs (Culik
and Karhumäki, 1986). For the typology of redu-
plication studied in this article, deterministic 2-
way FSTs are sufficient. This result is in line with
work showing that various phonological and mor-
phological processes can be described with deter-
ministic finite-state technology (Chandlee et al.,
2012; Gainor et al., 2012; Chandlee and Heinz,
2012; Heinz and Lai, 2013; Chandlee, 2014; Luo,
2017; Payne, 2014, 2017).

22-way finite-state automata (2-way FSAs) have been
used to model non-concatenative Semitic morphology
(Narayanan and Hashem, 1993).

This article is organized as follows. 2-way
finite-state transducers (2-way FSTs) are intro-
duced in section §2, where we provide a for-
mal definition (§2.1), discuss their computational
properties (§2.2), and discuss their computational
complexity (§2.3). In §3, we illustrate how 2-way
FSTs can model reduplication, notably total redu-
plication (§3.1) and partial reduplication (§3.2).
In section §4, we contrast 2-way FSTs with 1-
way FSTs and show how the former are empir-
ically adequate, practically convenient or useful,
and linguistically-motivated for modeling redupli-
cation. To illustrate this, we briefly discuss how
we have used 2-way FSTs to develop the RedTyp
database, a database of reduplicative processes
with corresponding 2-way FSTs. Conclusions and
directions for future research are in §5.

2 Two-way finite-state transducers:
definition and properties

2.1 Definition

It is useful to imagine a 2-way FST as a machine
operating on an input tape and writing to an out-
put tape. The symbols on the input tape are drawn
from an alphabet Σ and the symbols written to the
output tape are drawn from an alphabet Γ. For an
input string w = σ1 . . . σn, the initial configura-
tion is that the FST is in some internal state q0,
the read head. The FST begins at the first posi-
tion of the tape reading σ1, and the writing head of
the FST is positioned at the beginning of an empty
output tape. After the FST reads the symbol under
the read head, three things occur:

• The internal state of the FST changes.
• The FST writes some string, possibly empty,

to the output tape.
• The read head may move in one of three

ways: it can either move to the left (-1), move
to the right (+1), or stay (0).

This process repeats until the read head “falls off”
one of the edges of the input tape. If for some input
string w, the FST falls off the right edge of the
input tape when the FST is in an accepting state
after writing u on the output tape, we say the FST
transduces, transforms, or maps, w to u. If for
some input stringw, the FST falls off the left edge,
falls off the right edge while in a non-accepting
state, or never falls off an edge, then the FST is
undefined at w. Note the writing head of the FST

67

can never move back along the output tape. It only
ever advances as strings are written.

Below is a formalization of 2-way FSTs based
on Filiot and Reynier (2016) and Shallit (2008).
We adopt the convention that inputs to a 2-way
FST are flanked with the start (o) and end bound-
aries (n). This larger alphabet is denoted by Σn.

4) Definition: A 2-way, deterministic FST is a
six-tuple (Q,Σn,Γ, q0, F, δ) such that:

Q is a finite set of states,
Σn = Σ∪ {o,n} is the input alphabet,
Γ is the output alphabet,
q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states,
δ : Q × Σ → Q × Γ∗ × D is the
transition function where the direction
D = {−1, 0,+1}.

A configuration of a 2-way FST T is an element
of Σ∗nQΣ∗n × Γ∗. The meaning of the configura-
tion (wqx, u) is that the input to T is wx and the
machine is currently in state q with the read head
on the first symbol of x (or has fallen off the right
edge of the input tape if x = λ) and that u is cur-
rently written on the output tape.

If the current configuration is (wqax, u) and
δ(q, a) = (r, v, 0) then the next configuration is
(wrax, uv), in which case we write (wqax, u)→
(wrax, uv). If the current configuration is
(wqax, u) and δ(q, a) = (r, v,+1) then the next
configuration is (warx, uv). In this case, we write
(wqax, u) → (warx, uv). If the current configu-
ration is (waqx, u) and δ(q, a) = (r, v,−1) then
the next configuration is (wrax, uv). We write
(waqx, u)→ (wrax, uv).

The transitive closure of→ is denoted with→+.
Thus, if c→+ c′ then there exists a finite sequence
of configurations c1, c2 . . . cn with n > 1 such that
c = c1 → c2 → . . .→ cn = c′.

Next we define the function that a 2-way FST
T = (Q,Σn,Γ, q0, F, δ) computes. For each
string w ∈ Σ∗, fT (w) = u ∈ Γ∗ provided
there exists qf ∈ F such that (q0 o wn, λ) →+

(ow n qf , u). Note that since a 2-way FST is de-
terministic, it follows that if fT (w) is defined then
u is unique.

There are situations where a 2-way FST T
crashes on some input w and hence fT (w) is
undefined. If the configuration is (qax, u) and
δ(q, a) = (r,−1, v) then the derivation crashes

and the transduction fT (ax) is undefined. Like-
wise, if the configuration is (wq, u) and q 6∈ F
then the transducer crashes and the transduction
fT is undefined on input w.

There is one more way in which fT may be
undefined for some input. The input may cause
the transducer to go into an infinite loop.3 This
occurs for input wx ∈ Σ∗n whenever there exist
q ∈ Q and u, v ∈ Γ∗ such that (q0wx, λ) →+

(wqx, u)→+ (wqx, uv).

2.2 Computational properties

With respect to acceptors, 1-way and 2-way finite-
state acceptors are equivalent in expressive power.
Both define the regular languages (Hopcroft and
Ullman, 1969; Shallit, 2008). However, with re-
spect to transducers, 1-way FSTs are strictly less
expressive than 2-way FSTs (Savitch, 1982; Aho
et al., 1969). For a 1-way FST, both the input
language and the output language must be regu-
lar languages. A 1-way FST thus cannot have its
output language be the non-regular copy language
Lww = {ww|w ∈ Σ∗}. In contrast, as we will see,
the output language of a 2-way FST can be a non-
regular language such as Lww. The next section
will show that this additional power allows 2-way
FSTs to productively model reduplication.

2-way FSTs are equivalent in expressivity to
MSO-definable string transductions (Engelfriet
and Hoogeboom, 2001) and to streaming string
transducers (1-way FSTs with registers) (Alur,
2010). They are closed under composition
(Chytil and Jákl, 1977) and their non-deterministic
variants are invertible (Courcelle and Engelfriet,
2012). 2-way FSTs are less powerful than Tur-
ing machines because they cannot move back and
forth over the output tape.

Note that given the difference in expressive
power between 1-way and 2-way FSTs, it makes
sense to give the classes of functions that they
compute different names. We follow Filiot and
Reynier (2016) who identify the class of functions
describable with a 1-way deterministic FST as ‘ra-
tional functions’, and they reserve the term ‘regu-
lar functions’ for functions describable with 2-way
deterministic FSTs.

3Infinite loops can be prevented through carefully design-
ing the 2-way FST. The 2-way FSTs which we have made do
not suffer from infinite loops. Infinite loops can likewise be
checked and stopped during run-time.

68

2.3 Computational complexity

Deterministic 1-way FSTs run in time linear to the
length of the input string. Since 2-way FSTs can
reread the input string, is this still the case? One
useful metric for measuring the complexity of de-
terministic 2-way FSTs is in terms of the number
of times the 2-way FST passes through the input
(Baschenis et al., 2016). In the case of the redupli-
cation examples in §3, a deterministic 2-way FST
can be designed with only two passes through the
input per copy. Thus, the run time for a deter-
ministic 2-way FST modeling reduplication which
makes at most n copies of an input string of length
m is 2n ·m. Since n is fixed by the reduplicative
morpheme, the run time is still linear in the size of
the input string.

Also, to our knowledge existing applications
of regular functions have been efficient (Alur and
Černý, 2011; Alur et al., 2014).

3 Illustrative use of two-way transducers
for reduplication

Having established what 2-way FSTs are and how
they behave, this section illustrates how they can
be used model reduplication. We provide two il-
lustrative examples: total reduplication (§3.1) and
partial reduplication (§3.2).

3.1 Total reduplication

Total reduplication is cross-linguistically the most
common reduplicative process (Rubino, 2005),
and it is used in an estimated 85% of the world’s
languages (Rubino, 2013). A canonical example
is total reduplication in Indonesian which marks
plurality (Cohn, 1989). Examples are in Table 1.

input gloss output gloss
buku ‘book’ buku∼buku ‘books’
wanita ‘woman’ wanita∼wanita ‘women’
hak ‘right’ hak∼hak ‘right’
k@ra ‘donkey’ k@ra∼k@ra ‘donkeys’

Table 1: Total reduplication in Indonesian.

Figure 1 shows a 2-way FST that captures this
total reduplication process. Basically, the 2-way
FST in Figure 1 operates by:

1. reading the input tape once from left to right
in order to output the first copy,

2. going back to the start of the input tape by
moving left until the start boundary o is
reached,

3. reading the input tape once more from left to
right in order to output the second copy.

Specifically, this figure is interpreted as follows.
The symbol Σ stands for any segment in the alpha-
bet except for {o,n}. The arrow from q1 to itself
means this 2-way FST reads Σ, writes Σ, and ad-
vances the read head one step to the right on the
input tape. The boundary symbol ∼ is a symbol
in the output alphabet Γ, and is not necessary. We
include it only for illustration.

We show an example derivation in Figure 2
of /buku/→[buku∼buku] using the 2-way FST in
Figure 1. The derivation shows the configurations
of the computation for the input /buku/ and is step
by step. Each tuple consists of four parts: input
string, output string, current state, transition. In
the input string, we underline the input symbol
which FST will read next. The output string is
what the 2-way FST has outputted up to that point.
The symbol λ marks the empty string. The cur-
rent state is what state the FST is currently in. The
transition represents the used transition arc from
input to output. In the first tuple, there is no transi-
tion arc used (N/A). But for other tuples, the form
of the arc is:

input state
input symbol:output string−−−−−−−−−−−−−−→

direction
output state

3.2 Partial reduplication
Partial reduplication processes are also very com-
mon. A canonical example is initial-CV reduplica-
tion found in many Austronesian languages (Ru-
bino, 2005). This section presents a simplified ver-
sion of initial-CV reduplication from Bikol that is
used to mark imperfective aspect (Mattes, 2007).4

Examples are in Table 2.

input gloss output gloss
Nirit ‘to laugh’ Ni∼Nirit ‘laughing’
diretsjo ‘to continue’ di∼diretsjo ‘continuing’
trabaho ‘to work’ ta∼trabaho ‘working’
draIf ‘to drive’ da∼draIf ’driving’

Table 2: Initial-CV reduplication in Bikol.

Initial-CV reduplication in Bikol has two
phonological modifications processes5 apply to
the reduplicant, i.e. the smaller copy:

4Initial-CV reduplication in Bikol targets the root and is
triggered by the addition of certain prefixes. For illustrative
purposes, we set aside these prefixes.

5These modifications effects are often called TETU (or
the emergence of the unmarked) effects in the linguistics lit-
erature (McCarthy and Prince, 1994, 1995).

69

q0start q1 q2 q3 qf
(o,λ,+1)

(Σ,Σ,+1)

(n,λ,-1)

(Σ,λ,-1)

(o,∼,+1)

(Σ,Σ,+1)

(n,λ,+1)

Figure 1: 2-way FST for total reduplication in Indonesian.

Outputting the first copy
1. (obukun, λ, q0 , N/A) 7. (obukun, buku∼, q2, q1

n:∼−−→
-1

q2)

2. (obukun, λ, q1, q0
o:λ−−→
+1

q1) 8. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

3. (obukun, b, q1, q1
Σ:Σ−−→
+1

q1) 9. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

4. (obukun, bu, q1, q1
Σ:Σ−−→
+1

q1) 10. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

5. (obukun, buk, q1, q1
Σ:Σ−−→
+1

q1) 11. (obukun, buku∼, q2, q2
Σ:λ−−→
-1

q2)

6. (obukun, buku, q1, q1
Σ:Σ−−→
+1

q1)

Outputting the second copy

12. (obukun, buku∼, q3, q2
o:λ−−→
+1

q3) 15. (obukun, buku∼buk, q3, q3
Σ:Σ−−→
+1

q3)

13. (obukun, buku∼b, q3, q3
Σ:Σ−−→
+1

q3) 16. (obukun, buku∼buku, q3, q3
Σ:Σ−−→
+1

q3)

14. (obukun, buku∼bu, q3, q3
Σ:Σ−−→
+1

q3) 17. (obukun, buku∼buku, qf , q3
n:n−−→
+1

qf)

Figure 2: Derivation of /buku/→[buku∼buku].

q0start q1 q2

q3 q4 q5 qf

(o,λ,+1) (C,C,+1)

(C,λ,+1)

(VM,VM,-1)

(VD,VM,-1)

(VM,VM,-1)

(VD,VM,-1)

(Σ,Σ,-1)

(o,∼,+1)

(Σ,Σ,+1)

(n,λ,+1)

Figure 3: 2-way FST for initial-CV reduplication in Bikol.

70

• complex onsets are reduced to simple onsets,
e.g. /trabaho/→[ta∼trabaho] ’working’
• diphthongs are reduced to monophthongs,

e.g. /draIf/→[da∼draIf] ’driving’

The 2-way FST in Figure 3 captures the par-
tial reduplication pattern and its modifications.
The symbol VM stands for monophthongs, VD for
diphthongs, and C for consonants. An example
derivation of /draIf/→[da∼draIf] using our 2-way
FST is provided in Figure 4.6

4 Contrasting 2-way FSTs with 1-way
FSTs

Having illustrated how 2-way FSTs can model
reduplication, here we contrast 2-way FSTs with
1-way FSTs on three criteria: empirical coverage,
practical utility, and intensional description.

We do not contrast 2-way FSTs with more pow-
erful formalisms like pushdown transducers (Al-
lauzen and Riley, 2012). We do not assume the
former are superior to other such formalisms. Our
goal is to show 2-way FSTs have practical and
scientific utility in computational linguistics; thus,
they merit further study.

4.1 Empirical coverage
In terms of empirical coverage, 2-way FSTs can
model virtually the entire typology of redupli-
cation (Moravcsik, 1978; Hurch, 2005; Inkelas
and Zoll, 2005; Rubino, 2005; Samuels, 2010).
This includes both local reduplication (as in the
two examples from §3), but likewise non-local or
‘wrong-side’ reduplication (Riggle, 2004), inter-
nal reduplication (Broselow and McCarthy, 1983),
multiple reduplication (Urbanczyk, 1999), sub-
constituent reduplication (Downing, 1998), and
cases of interactions between reduplication and
opaque phonological processes (overapplication,
underapplication, backcopying) (McCarthy and
Prince, 1995). This is especially the case for total
reduplication which is the most widespread redu-
plicative process (Rubino, 2013) but which cannot
be modeled with 1-way FSTs. In most cases, this
will be inadequate because total reduplication is
a productive grammatical process (Rubino, 2005,
2013).

We emphasize the term virtually because in our
investigation we have found only two marginal
cases of reduplication in the literature which can-
not be modeled by 2-way FSTs unless certain

6The FST treats the diphthong /aI/ as a single segment.

plausible assumptions are made. These two cases
involve reduplication producing suppletive allo-
morphs of morphemes as in Sye (Inkelas and Zoll,
2005, 52), and reduplication being blocked by ho-
mophony or haplology as in Kanuri (Moravcsik,
1978, 313). These two cases of ‘under-generation’
can be solved if we assume the language contains
a finite number of suppletive allomorphs, and if
we assume that there’s either a finite number of
banned identical sequences or a separate linguis-
tic mechanism that filters out ill-formed homo-
phonies.

Of course there are cases where 2-way FSTs
can ‘over-generate’ and model unattested types
of reduplication, e.g. reduplicate a word n times
for some natural number n or reduplicate a word
by reversing it. This over-generation can be ad-
dressed by either restricting the class of 2-way
FSTs used (Dolatian and Heinz, 2018) or by not
treating 2-way FSTs as having to be exact mod-
els of human cognition (Potts and Pullum, 2002).
For further discussion and solutions on how 2-way
FSTs can over- and under-generate, see Dolatian
and Heinz (In press.).

4.2 Practical utility

To showcase empirical coverage of 2-way FSTs
and their practical utility, we have constructed
the RedTyp database7 which contains entries for
138 reduplicative processes from 91 languages
gleaned from various surveys (Rubino, 2005;
Inkelas and Downing, 2015). 50 of these processes
were from Moravcsik (1978), an early survey
which is representative of the cross-linguistically
most common reduplicative patterns. RedTyp
contains 57 distinct 2-way FSTs that model the
138 processes.8 Each 2-way FST was designed
manually, implemented in Python, and checked
for correctness. On average, these 2-way FSTs had
8.8 states. This shows that 2-way FSTs are con-
cise and convenient computational descriptions
and models for reduplicative morphology. This is
in contrast to 1-way FSTs which suffer from an
explosion of states when modeling partial redupli-

7A copy of RedTyp can be found online at our GitHub
page https://github.com/jhdeov/RedTyp.

8To our knowledge, the only other database on reduplica-
tion is the Graz Database on Reduplication (Hurch, 2005 ff.).
However, RedTyp differs from the Graz Database because the
latter does not include computational representations or im-
plementations of its entries.

71

Outputting reduplicant

1. (odraIfn, λ, q0 , N/A) 4. (odraIfn, d, q3, q2
C:C−−→
+1

q3)

2. (odraIfn, λ , q1, q0
o:λ−−→
+1

q1) 5. (odraIfn, da, q4, q3
VD:VM−−−−→

-1
q4)

3. (odraIfn, d, q2, q1
C:C−−→
+1

q2)

Going back to the start of the tape

6. (odraIfn, da, q4, q4
Σ:λ−−→
-1

q4) 7. (odraIfn, da, q4, q4
Σ:λ−−→
-1

q4)

Outputting the base

8. (odraIfn, da∼, q5, q4
o:∼−−→
+1

q5) 11. (odraIfn, da∼draI, q5, q5
Σ:Σ−−→
+1

q5)

9. (odraIfn, da∼d, q5, q5
Σ:Σ−−→
+1

q5) 12. (odraIfn, da∼draIf, q5, q5
Σ:Σ−−→
+1

q5)

10. (odraIfn, da∼dr, q5, q5
Σ:Σ−−→
+1

q5) 13. (odraIfn, da∼draIf, qf , q5
n:λ−−→
+1

q5)

Figure 4: Derivation of /draIf/→[da∼draIf].

cation.9 On average, a language’s phoneme inven-
tory would include 22 consonants and 5 vowels
(Maddieson, 2013a,b). In order to handle initial-
CV, initial-CVC, or initial-CVCV reduplication
with a 1-way FST, the FST would require at least
an estimated 22, 110, and 2420 states respectively.

4.3 Linguistic motivation and origin
semantics

Finally, using 2-way FSTs for reduplication is lin-
guistically motivated and matches the intensional
descriptions behind the linguistic generalizations
on reduplication. 2-way FSTs do not approximate
reduplication like 1-way FSTs do. They can fully
and productively model reduplicative processes as
they appear in the typology, including both par-
tial and total reduplication. As said, this is be-
cause 1-way FSTs simply remember the possible
shapes for a reduplicant when the number of pos-
sible shapes is (large yet) finite as in partial redu-
plication. When the number of possible shapes to
remember is unbounded as in total reduplication,
a 1-way FST cannot productively model redupli-
cation. In contrast, a 2-way FST does not need
to remember strings of segments in order to copy
them, but actively copies them.

This contrast between copying and remember-
ing can be formalized with the notion of the origin
semantics of a transduction (Bojańczyk, 2014).

9The largest 2-way FST in RedTyp is for verbal reduplica-
tion in Kinande (Downing, 2000) with 29 states. This pattern
depends on the size of the root and the number and type of
suffixes and prefixes around it. In contrast, we estimate a
deterministic 1-way FST would require over 1,000 states for
this pattern of partial reduplication.

a.
q0start q1 q2

a:λ b:ab

b.
q0start q1 q2

a:a b:b

Figure 5: Pair of 1-way FSTs for the function fab.

Given a string-to-string function, the origin se-
mantics of a function is the origin information of
each symbol on in the output string. This is the po-
sition im of the read head on the input tape when
the transducer had outputted on.

To illustrate, consider a string-to-string func-
tion fab which maps ab to itself, and ev-
ery other string to the empty string: f(x) =
{(ab, ab), (a, λ), (b, λ), ...}. This function can be
modeled with at least two different 1-way FSTs as
in Figure 5 which differ in when they output the
output symbols a and b. In Figure 6, we show
the origin information created by the two 1-way
FSTs from Figure 5 for the mapping (ab, ab). The
two FSTs model the same function and are equiva-
lent in their general semantics of what they output;
however, they are not equivalent in their origin se-
mantics because they create differ origin informa-
tion for their output.

This notion of origin semantics can be used to
contrast how 1-way FSTs and 2-way FSTs model
reduplication. Consider the case of Bikol initial-
CV reduplication from section §3.2 and assume a
smaller alphabet Σ = {p,a,t}. This function can

72

a. b.

a b

a b

a b

a b

Figure 6: Origin information created by the 1-way
FSTs (5) for the mapping ab→ab.

be modeled by the same 2-way FST in Figure 3.
Because of the bound on the size of the redupli-
cant, this function can also be modeled with the
1-way FST in Figure 7.

The two transducers in Figures 3,7 are equiv-
alent in their general semantics because they can
output the same string. For example, given the in-
put /pat/, both FSTs will output [pa∼pat]. How-
ever, the two FSTs differ in their origin semantics.
Given the mapping /pat/→[pa∼pat], the two FSTs
will create different origin information. Setting
aside the word boundaries and reduplicant bound-
ary ∼, the 1-way FST associates the second pa
string of the output with the vowel a of the input
as in Figure 8a. This is because the second pa was
outputted when the 1-way FST was reading the a
in the input. In contrast, the 2-way FST associates
each segment in the output with an identical seg-
ment in the input as in Figure 8b.

The origin information created by the 2-way
FST matches theoretical treatments of how the
reduplicant’s segments are individually associated
with identical segments in the input (Marantz,
1982; Inkelas and Zoll, 2005). In contrast, the ori-
gin information created by the 1-way FST does not
match any linguistic intuitions of reduplication be-
cause non-identical segments are associated. This
difference in the origin semantics of the 1-way
FST and 2-way FST formalizes their difference in
behavior: the 1-way FST simply remembers what
strings of segments to output twice, while the 2-
way FST actively copies.

In Base-Reduplicant correspondence theory
(BRCT), what matters for reduplication is not the
relationship or correspondence between input and
output segments in the reduplication, but between
the two copies in the output (McCarthy and Prince,
1995). Origin semantics might be able to for-
malize the intuition behind BRCT with finite-state
technology (output symbols with the same origin

are in correspondence). The only computational
implementation of BRCT to our knowledge (Al-
bro, 2000, 2005) uses MCFGs to do so. Note how-
ever that the empirical validity of BRCT is ques-
tionable (Inkelas and Zoll, 2005; McCarthy et al.,
2012).

5 Conclusion

In summary, finite-state technology has often
been argued to be incapable of adequately and
efficiently capturing productive reduplication as
used in natural language. However, this arti-
cle shows that an understudied type of finite-
state machinery—2-way finite-state transducers—
can exactly model reduplication and its wide ty-
pology.

2-way FSTs can model the virtually entire ty-
pology of reduplication, without needing to ap-
proximate any processes (unlike 1-way FSTs).
They likewise do not suffer from a state explo-
sion for partial reduplication because the size of
the 2-way FST is not dependent on the size of the
alphabet. This allows 2-way FSTs to directly cap-
ture the copying aspect of reduplication instead
of remembering all potential reduplicants. This
makes 2-way FSTs be a practical, convenient, and
concise tool to model reduplication. As a sign
of their empirical coverage and utility, we devel-
oped the RedTyp database of reduplicative pro-
cesses that contains 57 distinct 2-way FSTs which
model common and uncommon reduplicative pro-
cesses covered in the literature (Moravcsik, 1978).

Having showcased their utility, several avenues
of future research remain, of which we highlight
three. First, we have approached reduplication
from the perspective of morphological generation.
Given an input /buku/, a 2-way can generate the
output [buku∼buku] easily. On the other hand, it
is an open question as to how to do morpholog-
ical analysis with 2-way FSTs to get the inverse
relation of [buku∼buku→buku].10

A second, more practical, area of research is
the integration of 2-way FSTs into natural lan-
guage processing. This obviously has many as-
pects. A first step may be the integration of 2-
way FSTs into existing platforms such as xfst
(Beesley and Karttunen, 2003), foma (Hulden,
2009b), open-fst (Allauzen et al., 2007), and
pynini (Gorman, 2016).

10One potential route may be the use of non-deterministic
2-way FSTs (Alur and Deshmukh, 2011).

73

q0start q1 q2

q3

q4 q5
o:o t:t

p:p

a:a∼ta

a:a∼pa

Σ : Σ

n:n

Figure 7: 1-way FST for partial reduplication.

a. Origin information of the 1-way FST

p a t

p a p a t

b. Origin information of the 2-way FST

p a t

p a p a t

Figure 8: Origin information of /pat/→[pa∼pat] cre-
ated by the 1-way FST (Figure 7) vs. the 2-way FST
(Figure 3).

Third, it is theoretically interesting that within
morpho-phonology, only reduplication requires
the bidirectional power of 2-way FSTs. The bulk
of morphology and phonology can be modeled
with non-deterministic 1-way finite-state trans-
ducers (Beesley and Karttunen, 2003; Jardine,
2016) or subclasses of them (Chandlee, 2017).
As a copying process, reduplication requires more
than just 1-way finite-state technology. This may
be a sign that it is of a different nature than the rest
of morpho-phonology (Inkelas and Zoll, 2005; Ur-
banczyk, 2017). It is an open question if 2-way
FSTs can likewise be used to model copying in
other areas of natural language, including syntac-
tic copying (Kobele, 2006).

Fourth, in the same way that Chandlee 2014;
2017 and Chandlee et al. (2014, 2015) have stud-
ied subclasses of 1-way FSTs and shown how they
map to subclasses of morpho-phonology, we are
currently investigating what proper subclasses of
2-way FSTs can be designed in order to make a
tighter fit with reduplicative typology. This would

open doors to not only better understanding the
computational properties of reduplication, but to
likewise develop learning algorithms for redupli-
cation. As of now, we hypothesize that a large
majority of reduplicative fall under a sub-class of
2-way FSTs (that we have discovered) based on a
2-way extension of the Output-Strictly Local sub-
class of 1-way FSTs (Chandlee et al., 2015). For
more discussion of this subclass for reduplication
and its learnability, see Dolatian and Heinz (2018).

In sum, the present study is the initial step
in formalizing the wide typology of reduplicative
processes into mathematically sound, yet expres-
sively adequate, formal-language theoretic terms.
Future work will include incorporating this tech-
nology into existing platforms and NLP systems,
and further bridging the gaps between computa-
tional and theoretical morpho-phonology.

Acknowledgments

This research is supported by NIH grant #R01-
HD087133 to JH. We thank the reviewers and au-
diences at CLS53, NAPhCX, the University of
Delaware, and Stony Brook University.

References
Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-

man. 1969. A general theory of translation. Mathe-
matical Systems Theory, 3(3):193–221.

Daniel M. Albro. 2000. Taking primitive Optimal-
ity Theory beyond the finite state. In Finite-state
phonology: proceedings of the 5th Workshop of SIG-
PHON, pages 57–67.

Daniel M. Albro. 2005. Studies in Computational
Optimality Theory, with Special Reference to the
Phonological System of Malagasy. Ph.D. thesis,
University of California, Los Angeles, Los Angeles.

Cyril Allauzen and Michael Riley. 2012. A pushdown
transducer extension for the OpenFst library. In Im-
plementation and Application of Automata, pages
66–77, Berlin, Heidelberg. Springer.

74

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Implementation and Application of Au-
tomata, pages 11–23, Berlin, Heidelberg. Springer.

Rajeev Alur. 2010. Expressiveness of streaming string
transducers. In Proceedings of the 30th Annual Con-
ference on Foundations of Software Technology and
Theoretical Computer Science,, volume 8, page 112.

Rajeev Alur and Jyotirmoy V. Deshmukh. 2011. Non-
deterministic streaming string transducers. In Au-
tomata, Languages and Programming, pages 1–20,
Berlin, Heidelberg. Springer.

Rajeev Alur, Adam Freilich, and Mukund
Raghothaman. 2014. Regular combinators for
string transformations. In Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14,
pages 9:1–9:10, New York, NY, USA. ACM.

Rajeev Alur and Pavol Černý. 2011. Streaming trans-
ducers for algorithmic verification of single-pass
list-processing programs. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL
’11, pages 599–610, New York, NY, USA. ACM.

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and
Gabriele Puppis. 2016. Minimizing Resources of
Sweeping and Streaming String Transducers. In
43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2016), vol-
ume 55 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 114:1–114:14, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

Kenneth R. Beesley and Lauri Karttunen. 2000. Finite-
state non-concatenative morphotactics. In Proceed-
ings of the 38th Annual Meeting on Association for
Computational Linguistics, ACL ’00, pages 191–
198, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite-
state morphology: Xerox tools and techniques.
CSLI Publications.

Mikołaj Bojańczyk. 2014. Transducers with origin in-
formation. In Automata, Languages, and Program-
ming, pages 26–37, Berlin, Heidelberg. Springer.

Ellen Broselow and John McCarthy. 1983. A theory
of internal reduplication. The Linguistic Review,
3(1):25–88.

Jane Chandlee. 2014. Strictly Local Phonological
Processes. Ph.D. thesis, University of Delaware,
Newark, DE.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 1–43.

Jane Chandlee, Angeliki Athanasopoulou, and Jeffrey
Heinz. 2012. Evidence for classifying metathesis
patterns as subsequential. In The Proceedings of the
29th West Coast Conference on Formal Linguistics,
pages 303–309, Somerville, MA. Cascillida Press.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential func-
tions. Transactions of the Association for Compu-
tational Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. In Proceedings of
the 14th Meeting on the Mathematics of Language
(MoL 2015), pages 112–125, Chicago, USA.

Jane Chandlee and Jeffrey Heinz. 2012. Bounded
copying is subsequential: Implications for metathe-
sis and reduplication. In Proceedings of the 12th
Meeting of the ACL Special Interest Group on Com-
putational Morphology and Phonology, SIGMOR-
PHON ’12, pages 42–51, Montreal, Canada. Asso-
ciation for Computational Linguistics.

Christian Choffrut. 1977. Une caractérisation des
fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. The-
oretical Computer Science, 5(3):325–337.

Michal P. Chytil and Vojtěch Jákl. 1977. Serial com-
position of 2-way finite-state transducers and simple
programs on strings. In Automata, Languages and
Programming, pages 135–147, Berlin, Heidelberg.
Springer.

Yael Cohen-Sygal and Shuly Wintner. 2006. Finite-
state registered automata for non-concatenative mor-
phology. Computational Linguistics, 32(1):49–82.

Abigail C Cohn. 1989. Stress in Indonesian and brack-
eting paradoxes. Natural language & linguistic the-
ory, 7(2):167–216.

Bruno Courcelle and Joost Engelfriet. 2012. Graph
Structure and Monadic Second-Order Logic, a Lan-
guage Theoretic Approach. Cambridge University
Press.

Berthold Crysmann. 2017. Reduplication in a compu-
tational HPSG of Hausa. Morphology, 27(4):527–
561.

Karel Culik and Juhani Karhumäki. 1986. The equiva-
lence of finite valued transducers (on HDT0L lan-
guages) is decidable. Theoretical Computer Sci-
ence, 47:71 – 84.

Christopher Culy. 1985. The complexity of the vo-
cabulary of Bambara. Linguistics and philosophy,
8:345–351.

75

Hossep Dolatian and Jeffrey Heinz. 2018. Learning
reduplication with 2-way finite-state transducers. In
Proceedings of Machine Learning Research: Inter-
national Conference on Grammatical Inference, vol-
ume 93 of Proceedings of Machine Learning Re-
search, pages 67–80, Wroclaw, Poland.

Hossep Dolatian and Jeffrey Heinz. In press. Redupli-
cation with finite-state technology. In Proceedings
of the 53rd Annual Meeting of the Chicago Linguis-
tics Society.

Laura J Downing. 1998. Prosodic misalignment and
reduplication. In Geert Booij and Jaap van Marle,
editors, Yearbook of Morphology 1997, pages 83–
120. Kluwer Academic Publishers, Dordrecht.

Laura J Downing. 2000. Morphological and
prosodic constraints on Kinande verbal reduplica-
tion. Phonology, 17(01):1–38.

C. C. Elgot and J. E. Mezei. 1965. On relations de-
fined by generalized finite automata. IBM Journal
of Research and Development, 9(1):47–68.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001.
MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic,
2(2):216–254.

Emmanuel Filiot and Pierre-Alain Reynier. 2016.
Transducers, logic and algebra for functions of finite
words. ACM SIGLOG News, 3(3):4–19.

Brian Gainor, Regine Lai, and Jeffrey Heinz. 2012.
Computational characterizations of vowel harmony
patterns and pathologies. In The Proceedings of the
29th West Coast Conference on Formal Linguistics,
pages 63–71, Somerville, MA. Cascillida Press.

Kyle Gorman. 2016. Pynini: A python library for
weighted finite-state grammar compilation. In Pro-
ceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata, pages 75–80. Asso-
ciation for Computational Linguistics.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language (MoL 13),
pages 52–63, Sofia, Bulgaria. Association for Com-
putational Linguistics.

John E Hopcroft and Jeffrey D Ullman. 1969. Formal
languages and their relation to automata. Addison-
Wesley Longman Publishing Co., Inc., Boston:MA.

Mans Hulden. 2009a. Finite-state machine construc-
tion methods and algorithms for phonology and
morphology. Ph.D. thesis, The University of Ari-
zona, Tucson, AZ.

Mans Hulden. 2009b. Foma: a finite-state compiler
and library. In Proceedings of the Demonstrations
Session at EACL 2009, pages 29–32. Association for
Computational Linguistics.

Mans Hulden and Shannon T Bischoff. 2009. A simple
formalism for capturing reduplication in finite-state
morphology. In Proceedings of the 2009 conference
on Finite-State Methods and Natural Language Pro-
cessing: Post-proceedings of the 7th International
Workshop FSMNLP 2008, pages 207–214, Amster-
dam. IOS Press.

Bernhard Hurch, editor. 2005. Studies on reduplica-
tion. 28. Walter de Gruyter, Berlin.

Bernhard Hurch. 2005 ff. Graz database on redu-
plication. Last accessed 10-26-2017 from http:
//reduplication.uni-graz.at/redup/.

Sharon Inkelas and Laura J Downing. 2015. What is
reduplication? Typology and analysis part 1/2: The
typology of reduplication. Language and Linguis-
tics Compass, 9(12):502–515.

Sharon Inkelas and Cheryl Zoll. 2005. Reduplication:
Doubling in Morphology. Cambridge University
Press, Cambridge.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33(2):247–283.

Ronald Kaplan and Martin Kay. 1994. Regular models
of phonological rule systems. Computational Lin-
guistics, 20(3):331–378.

Gregory Michael Kobele. 2006. Generating Copies:
An investigation into structural identity in language
and grammar. Ph.D. thesis, University of Califor-
nia, Los Angeles.

Huan Luo. 2017. Long-distance consonant agreement
and subsequentiality. Glossa: a journal of general
linguistics, 2(1):125.

Ian Maddieson. 2013a. Consonant Inventories. Max
Planck Institute for Evolutionary Anthropology,
Leipzig.

Ian Maddieson. 2013b. Vowel Quality Inventories.
Max Planck Institute for Evolutionary Anthropol-
ogy, Leipzig.

Alec Marantz. 1982. Re reduplication. Linguistic in-
quiry, 13(3):435–482.

Veronika Mattes. 2007. Reduplication in Bikol. Ph.D.
thesis, University of Graz, Graz, Austria.

John J McCarthy, Wendell Kimper, and Kevin Mullin.
2012. Reduplication in harmonic serialism. Mor-
phology, 22(2):173–232.

John J McCarthy and Alan Prince. 1995. Faithful-
ness and reduplicative identity. In Jill N. Beckman,
Laura Walsh Dickey, and Suzanne Urbanczyk, ed-
itors, Papers in Optimality Theory. Graduate Lin-
guistic Student Association, University of Mas-
sachusetts, Amherst, MA.

76

John J McCarthy and Alan S Prince. 1994. The emer-
gence of the unmarked: Optimality in prosodic mor-
phology. In Proceedings of the North East Linguis-
tic Society 24, page 33379, Amherst, MA. Graduate
Linguistic Student Association, University of Mas-
sachusetts.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269–311.

Edith Moravcsik. 1978. Reduplicative constructions.
In Joseph Greenberg, editor, Universals of Human
Language, volume 1, pages 297–334. Stanford Uni-
versity Press, Stanford, California.

Ajit Narayanan and Lama Hashem. 1993. On ab-
stract finite-state morphology. In Proceedings of the
Sixth Conference on European Chapter of the As-
sociation for Computational Linguistics, EACL ’93,
pages 297–304, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Amanda Payne. 2014. Dissimilation as a subsequential
process. In NELS 44: Proceedings of the 44th Meet-
ing of the North East Linguistic Society, volume 2,
pages 79–90, Amherst, MA. Graduate Linguistic
Student Association, University of Massachusetts.

Amanda Payne. 2017. All dissimilation is compu-
tationally subsequential. Language: Phonological
Analysis, 93(4):e353–e371.

Christopher Potts and Geoffrey K Pullum. 2002.
Model theory and the content of OT constraints.
Phonology, 19(3):361–393.

Jason Riggle. 2004. Nonlocal reduplication. In Pro-
ceedings of the 34th meeting of the North Eastern
Einguistics Society. Graduate Linguistic Student As-
sociation, University of Massachusetts.

Brian Roark and Richard Sproat. 2007. Computa-
tional Approaches to Morphology and Syntax. Ox-
ford University Press, Oxford.

Carl Rubino. 2005. Reduplication: Form, function and
distribution. In Studies on reduplication, pages 11–
29. Mouton de Gruyter, Berlin.

Carl Rubino. 2013. Reduplication. Max Planck Insti-
tute for Evolutionary Anthropology, Leipzig.

Bridget Samuels. 2010. The topology of infixation and
reduplication. The Linguistic Review, 27(2):131–
176.

Walter J Savitch. 1982. Abstract machines and gram-
mars. Little Brown and Company, Boston.

Walter J Savitch. 1989. A formal model for context-
free languages augmented with reduplication. Com-
putational Linguistics, 15(4):250–261.

Marcel-Paul Schützenberger. 1975. Sur certaines
opérations de fermeture dans les langages rationnels.
In Symposia Mathematica, volume 15, pages 245–
253.

Jeffrey Shallit. 2008. A Second Course in Formal Lan-
guages and Automata Theory, 1 edition. Cambridge
University Press, New York, NY, USA.

Richard William Sproat. 1992. Morphology and com-
putation. MIT press, Cambridge:MA.

Thomas Stolz, Cornelia Stroh, and Aina Urdze. 2011.
Total reduplication: The areal linguistics of a poten-
tial universal, volume 8. Walter de Gruyter, Berlin.

Suzanne Urbanczyk. 1999. Double reduplications in
parallel. In René Kager, Harry vn der Hulst, and
Wim Zonneveld, editors, The prosody-morphology
interface, pages 390–428. Cambridge University
Press, Cambridge.

Suzanne Urbanczyk. 2017. Phonological and morpho-
logical aspects of reduplication.

Markus Walther. 2000. Finite-state reduplication in
one-level prosodic morphology. In Proceedings of
the 1st North American chapter of the Association
for Computational Linguistics conference, NAACL
2000, pages 296–302, Stroudsburg, PA. Association
for Computational Linguistics.

Ronnie B Wilbur. 2005. A reanalysis of reduplication
in american sign language. In Studies on reduplica-
tion, pages 595–623. Berlin: Mouton de Gruyter.

77

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 78–83
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Automatically Tailoring Unsupervised Morphological Segmentation to the
Language

Ramy Eskander† Owen Rambow] Smaranda Muresan†‡

†Department of Computer Science, Columbia University
‡Data Science Institute, Columbia University
{rnd2110,smara}@columbia.edu

]Elemental Cognition, Inc.
owenr@elementalcognition.com

Abstract

Morphological segmentation is beneficial for
several natural language processing tasks
dealing with large vocabularies. Unsuper-
vised methods for morphological segmen-
tation are essential for handling a diverse
set of languages, including low-resource
languages. Eskander et al. (2016) intro-
duced a Language Independent Morpholog-
ical Segmenter (LIMS) using Adaptor Gram-
mars (AG) based on the best-on-average per-
forming AG configuration. However, while
LIMS worked best on average and outper-
forms other state-of-the-art unsupervised
morphological segmentation approaches, it
did not provide the optimal AG configura-
tion for five out of the six languages. We
propose two language-independent classi-
fiers that enable the selection of the opti-
mal or nearly-optimal configuration for the
morphological segmentation of unseen lan-
guages.

1 Introduction

As natural language processing becomes more
interested in many languages, including low-
resource languages, unsupervised morphologi-
cal segmentation remains an important area of
study. For most of the languages of the world,
we do not have morphologically annotated re-
sources. However, many human language tech-
nologies profit from morphological segmenta-
tion, for example machine translation (Nguyen
et al., 2010; Ataman et al., 2017) and speech
recognition (Narasimhan et al., 2014).

In this paper, we build on previous work on
unsupervised morphological segmentation us-
ing Adaptor Grammars (AGs) (Johnson, 2008;
Sirts and Goldwater, 2013; Eskander et al., 2016),
a type of nonparametric Bayesian models that
generalize probabilistic context-free grammars
(PCFGs) (Johnson et al., 2007), where the PCFG
is typically a morphological grammar that spec-

ifies the word structure. Specifically, we ex-
tend the research proposed by Eskander et al.
(2016), who investigate a large space of param-
eters when using Adaptor Grammars related to
(i) the underlying context-free grammar and (ii)
the use of a “Cascaded” system in which one
grammar chooses affixes to be seeded into an-
other in order to simulate the situation where
scholar-knowledge is available. Their results
on a development set of 6 languages (English,
German, Finish, Turkish, Estonian and Zulu)
show that the best performing AG-based con-
figuration (grammar and learning setup) differ
from language to language. For processing un-
seen languages, Eskander et al. (2016) proposed
the Language-Independent Morphological Seg-
menter (LIMS) based on the best-on-average
performing configuration when running leave-
one-out cross validation on the development
languages.

However, while LIMS works best on average
and has been shown to outperform other state-
of-the-art unsupervised morphological segmen-
tation systems (Eskander et al., 2016), it is not
the optimal configuration for any of the devel-
opment languages except Zulu. Thus, in this
paper we propose an approach to automatically
select the optimal or nearly-optimal language-
independent configuration for the morphologi-
cal segmentation of unseen languages. We train
two classifiers on the development languages
used by Eskander et al. (2016) to make choices
for unseen languages (Section 3). We show that
we can choose the best parameter settings for
the six development languages in a leave-one-
out cross validation, and also on an unseen test
language (Arabic).

2 Problem Definition and Dataset

Adaptor Grammars (AGs) have been used suc-
cessfully for unsupervised morphological seg-

78

https://doi.org/10.18653/v1/P17

Grammar Main Representation Compound Morph SubMorph Segmentation Level
Morph+SM Morph+ No Yes Yes Morph

Simple Prefix?+Stem+Suffix? No No No Prefix-Stem-Suffix
Simple+SM Prefix?+Stem+Suffix? No No Yes Prefix-Stem-Suffix

PrStSu Prefix+Stem+Suffix No Yes No Prefix-Stem-Suffix
PrStSu+SM Prefix+Stem+Suffix No Yes Yes Prefix-Stem-Suffix

PrStSu+Co+SM Prefix+Stem+Suffix Yes Yes Yes Prefix-Stem-Suffix
PrStSu2a+SM Prefix?+(Stem+Suffix) No Yes Yes Prefix-Stem-Suffix
PrStSu2b+SM (Prefix-Stem)+Suffix? No Yes Yes Prefix-Stem-Suffix

PrStSu2b++Co+SM (Prefix-Stem)+Suffix? Yes Yes Yes Prefix-Stem-Suffix

Table 1: Grammar Representations. Compound = Upper level representation of the word as a sequence of compounds;
Morph = Affix/Morph representation as a sequence of morphs. SubMorph (SM) = Lower level representation of characters
as a sequence of sub-morphs. “+" denotes one or more and “?" denotes optional.

mentation (Johnson, 2008; Sirts and Goldwater,
2013; Eskander et al., 2016), which is the task of
breaking down words in a language into a se-
quence of morphs. An AG model typically has
two main components: a PCFG and an adap-
tor that adapts the probabilities assigned to in-
dividual subtrees in the grammar. For the task
of morphological segmentation, a PCFG is typ-
ically a morphological grammar that specifies
word structure. Given a list of input strings, AGs
can learn latent tree structures.

Eskander et al. (2016) developed several AG
models based on different underlying context-
free grammars and learning settings, which we
briefly introduce below.

Grammars. Eskander et al. (2016) introduce a
set of 9 grammars (see Table 1) designed based
on three dimensions: 1) how the grammar gen-
erates the prefix, stem and suffix (morph vs.
tripartite), 2) the levels which are represented
in nonterminals (e.g., compounds, morphs and
sub-morphs) and 3) the levels at which the seg-
mentation into output morphs is produced. For
example, in the PrStSu+SM grammar a word
is modeled as a prefix, a stem and a suffix,
where the prefix and suffix are sequences of
zero or more morphs, while a morph is a se-
quence of sub-morphs, and the segmentation is
based on the prefix, suffix and stem level. The
PrStSu2a+SM grammar is similar, but a word is
modeled as a prefix and stem-suffix sequence,
where the prefix is optional, and stem-suffix is
either a stem or a stem and a suffix (see Eskan-
der et al. (2016) for more details). Figure 1 shows
the trees for segmenting the word replayings us-
ing the PrStSu+SM and PrStSu2a+SM grammars.

Learning Settings. Eskander et al. (2016) con-
sider three learning settings: Standard (Std),
Scholar-Seeded Knowledge (Sch) and Cascaded
(Casc). In the Standard setting, no scholar
knowledge is introduced in the grammars, while

in the Scholar-Seeded Knowledge setting the
grammars are augmented with scholar knowl-
edge in the form of information about affixes
gathered from grammar books (before learning
happens). The Cascaded setting approximates
the effect of scholar-seeded knowledge by first
using a high-precision AG to derive a set of af-
fixes and then insert those affixes into the gram-
mars used in a second learning step.

Eskander et al. (2016) show that the segmenta-
tion performance differs significantly across the
different grammars, learning settings and lan-
guages. For instance, the best performance for
German is obtained by running the Standard
PrStSu+SM configuration, while the Cascaded
PrStSu2a+SM configuration produces the best
segmentation for Finnish. That means, there
is no setup that yields the optimal segmenta-
tion for all languages. For the processing of an
unseen language (i.e., not part of the develop-
ment), Eskander et al. (2016) recommend using
the Cascaded PrStSu+SM configuration (referred
to as LIMS: Language-Independent Morpholog-
ical Segmenter), as it is the best-on-average per-
forming one when running leave-one-out cross
validation on the development languages.

Problem definition. While LIMS works best
on average, it is not the optimal configura-
tion for any of the development languages ex-
cept Zulu. Thus, in this paper, we address the
problem of automatically selecting the optimal
or nearly-optimal language-independent (Stan-
dard or Cascaded) configuration for the mor-
phological segmentation of unseen languages.

We use the 6 development languages used by
Eskander et al. (2016) as well as Arabic as a fully
unseen language. The data for English, German,
Finnish, Turkish and Estonian is from Morpho
Challenge1, and the data for Zulu is from the Uk-
wabelana corpus (Spiegler et al., 2010). For the

1http://research.ics.aalto.fi/events/morphochallenge/

79

Figure 1: Grammar trees for the word replayings: (a) PrStSu+SM, (b) PrStSu2a+SM

Lang. Source TRAIN DEV TEST
English Morpho Challenge 50,046 1,212 –
German Morpho Challenge 50,086 540 –
Finnish Morpho Challenge 49,909 1,494 –
Turkish Morpho Challenge 49,765 1,531 –

Estonian Morpho Challenge 49,909 1,500 –
Zulu Ukwabelana 50,000 1,000 –

Arabic PATB 50,000 – 1,000

Table 2: Data source and size information. TRAIN
= training corpus, DEV = development corpus
and TEST = test corpus.

unseen language we choose Arabic as it belongs
to the Semitic family, while none of the develop-
ment languages does. We obtain the Arabic data
by randomly selecting 50K words from the PATB
corpus (Maamourio et al., 2004). Table 2 lists the
sources and sizes of our corpora.

3 Method

Since we have nine grammars to choose from
(see Table 1) with two possible learning set-
ting (Standard and Cascaded), for a total of
18 possible configurations, we restrict our pool
of selection to the four configurations that
yield the best-on-average performance across
the development languages, namely Cascaded
PrStSu+SM, Cascaded PrStSu2a+SM, Standard
PrStSu+SM and Standard PrStSu2a+SM, with av-
erage EMMA F-scores (Spiegler and Monson,
2010) of 0.720, 0.695, 0.684 and 0.683, respec-
tively (see Section 2 and Table 1 for grammar
descriptions). EMMA stands for the Evaluation
Metric for Morphological Analysis (Spiegler and

Monson, 2010), and is a metric that has been
shown to be particularly adequate for evaluating
unsupervised methods for morphological seg-
mentation and superior to the metric used in the
Morpho Challenge competition series.

We use a supervised machine learning ap-
proach to select the best configuration. Since we
only have six development languages, we split
the classification task into two binary classifi-
cation ones: Approach Classification (Standard
(Std) vs. Cascaded (Casc)) and Grammar Classi-
fication (PrStSu+SM vs. PrStSu2a+SM), and run
leave-one-out cross validation on the develop-
ment languages for both tasks. Table 3 lists the
best configurations and the gold class labels (for
both Approach and Grammar) for the six devel-
opment languages.

Language
Best

Configuration
Approach

class
Grammar

class

English Std PrStSu+SM Std PrStSu+SM
German Std PrStSu+SM Std PrStSu+SM
Finnish Casc PrStSu2a+SM Casc PrStSu2a+SM
Turkish Std PrStSu+SM Std PrStSu+SM

Estonian Casc PrStSu2a+SM Casc PrStSu2a+SM
Zulu Casc PrStSu+SM Casc PrStSu+SM

Table 3: The best configurations and the gold class labels
for both the Approach classification and Grammar classifi-
cation for the six development languages.

3.1 Feature Generation

In order to generate morphological features for
the classification tasks, we run a phase of AG seg-
mentation using the Standard PrStSu+SM con-
figuration, where we only run 50 optimization
iterations (i.e., one tenth of the number of it-
erations in a complete segmentation process as

80

Feature ID Description
F01 Average no. of simple affixes per word
F02 Average no. of simple prefixes per word
F03 Average no. of simple suffixes per word
F04 Average no. of characters per affix
F05 No. of distinct simple affixes
F06 No. of distinct simple prefixes
F07 No. of distinct simple suffixes
F08 Average no. of complex affixes per word
F09 Average no. of complex prefixes per word
F10 Average no. of complex suffixes per word
F11 Average no. of characters per affix
F12 No. of distinct complex affixes
F13 No. of distinct complex prefixes
F14 No. of distinct complex suffixes

Table 4: Classification features

Language KNN NB RF
English Std PrStSu+SM Std PrStSu+SM Std PrStSu+SM

German Std PrStSu+SM Std PrStSu+SM Casc PrStSu+SM

Finnish Casc PrStSu2a+SM Casc PrStSu+SM (x) Casc PrStSu2a+SM

Turkish Std PrStSu+SM Std PrStSu+SM Std PrStSu+SM

Estonian Casc PrStSu2a+SM Casc PrStSu+SM (x) Std PrStSu2a+SM (x)

Zulu Casc PrStSu+SM Casc PrStSu+SM Casc PrStSu+SM

Accuracy 100.0% 66.7% 88.3%

Table 5: Overall system output. KNN = K-Nearest Neigh-
bors, NB = Naive Bayes and RF = Random Forest. Wrong
predictions are denoted by (x).

reported by Eskander et al. (2016)), as the pur-
pose is to quickly generate morphological clues
that help the classification rather than to ob-
tain highly optimized segmentation. We choose
this particular configuration due to its high effi-
ciency across all languages in addition to its rela-
tively small execution time. Upon generating the
initial segmentation, we extract 14 morpholog-
ical features for classification. The features are
listed in Table 4. We only consider affixes that
appear more than 10 times in the segmentation
output, where a simple affix contains only one
morpheme, while a complex affix contains one
or more simple affixes.

3.2 Classification

We experiment with three classification meth-
ods; K-Nearest Neighbors (KNN), Naive Bayes
(NB) and Random Forest (RF) for both the Ap-
proach (Std vs. Casc) and Grammar (PrStSu+SM
vs. PrStSu2a+SM) classification tasks. We con-
duct the two classification tasks separately, and
then we combine the outcome to obtain the best
configuration.

In the training phase, we perform leave-one-
out cross validation on the six development lan-
guages. In each of the six folds of the cross
validation, we choose one language in turn as
the test language. We use the training and de-

velopment corpora listed in table 2 for training
the models and evaluating the classifiers, respec-
tively.

Table 5 shows the final system output af-
ter combining the outcomes from the Approach
classification and Grammar Classification. KNN
predicts the right configuration consistently,
while NB picks the wrong grammars for Finnish
and Estonian, and RF predicts the wrong ap-
proach and grammar for Estonian. Thus, the
overall accuracies of KNN, NB and RF are 100%,
66.7% and 88.3%, respectively, which suggests
using KNN for classification. So for an unseen
language, we first run the Standard PrTuSu+SM
configuration for 50 optimization iterations to
obtain the morphological features. We then run
the KNN classifier on those features in order to
obtain the final AG configuration.

Studying the correlation between the mor-
phological features and the output shows that
features F14, F07, F11 and F03 in table 4, are
the most significant ones for the selection of the
best configuration. This illustrates the high re-
liance on information about suffixes as three out
of the four features, namely F14, F07 and F03, are
suffix-related.

4 Evaluation

We report results using the EMMA F-measure
score (Spiegler and Monson, 2010).

Results on an unseen language. We evaluate
our system on Arabic, a language that is not
part of the development of the system. Ara-
bic also belongs to the Semitic family, where
none of the development languages does. For
an unseen language, we first run the Standard
PrStSu+SM configuration for 50 optimization it-
erations to obtain the morphological features.
We then run the KNN classifier on those features
in order to obtain the final AG configuration. Ta-
ble 6 lists the EMMA F-scores for Arabic for all
grammars in both the Standard and Cascaded
setups. Our KNN classifier picks the Standard
PrStSu+SM configuration, which yields the best
segmentation among all the configurations with
an EMMA F-score of 0.701.

Comparison with existing unsupervised ap-
proaches. Table 7 compares the performance
of the selected configurations of our system (Ta-
ble 5) to three other systems; Morfessor (Creutz
and Lagus, 2007), MorphoChain (Narasimhan
et al., 2015) and LIMS (Eskander et al., 2016)
(where the cascaded PrStSu+SM configuration is

81

Grammar Standard Cascaded
Morph+SM 0.647 0.642

Simple 0.651 0.593
Simple+SM 0.680 0.631

PrStSu 0.642 0.646
PrStSu+SM 0.701 0.692

PrStSu+Co+SM 0.648 0.628
PrStSu2a+SM 0.676 0.682
PrStSu2b+SM 0.682 0.688

PrStSu2b+Co+SM 0.532 0.532

Table 6: Adaptor-grammar results (Emma F-scores) for the
Standard and Cascaded setups for Arabic. Boldface indi-
cates the best configuration and the choice of our system.

Grammar Morfessor MorphoChain LIMS Ours Best
English 0.805 0.746 0.809 0.821 0.826
German 0.740 0.625 0.777 0.790 0.790
Finnish 0.675 0.621 0.727 0.733 0.733
Turkish 0.551 0.551 0.591 0.647 0.647

Zulu 0.414 0.390 0.611 0.611 0.611
Estonian 0.779 0.679 0.805 0.828 0.847

Arabic 0.779 0.751 0.682 0.701 0.701
Avg. 0.678 0.623 0.715 0.733 0.736

Table 7: The performance of our system (Ours) compared
to Morfessor, MorphoChain, LIMS and an upper-bound
system (Best), using EMMA F-scores.

chosen). Our system has EMMA F-score error re-
ductions of 17.1%, 29.2% and 6.3% over Morfes-
sor, MorphoChain2 and LIMS, respectively, on
average across the development languages and
Arabic. It is also only 0.003 of average EMMA F-
score behind an oracle system, where the best
configuration is always selected (indicated as
Best). We are not able to compare versus the sys-
tem presented by Wang et al. (2016) as neither
their system nor their data is currently available.

5 Related Work

The first work that utilizes AGs for unsupervised
morphological segmentation is introduced by
Johnson (2008), while Sirts and Goldwater (2013)
propose minimally supervised AG models of dif-
ferent tree structures for morphological segmen-
tation. The most recent work on using AGs for
morphological segmentation is proposed by Es-
kander et al. (2016), where they experiment with
several AG models based on different underly-
ing grammars and learning settings. They also
research the use of scholar knowledge seeded
in the grammar trees. This knowledge could be
gathered from grammar books or automatically
generated via bootstrapping. This paper extends
their work by proposing a machine learning ap-

2Since MorphoChain expects large corpora in order to
learn the morphological chains, it does not perform well
on the small corpora we use in our setup, where we experi-
ment with real conditions of low-resource languages.

proach to select the best language-independent
model for each language.

In addition to the use of AGs, several mod-
els have been successfully used for unsupervised
morphological segmentation such as genera-
tive probabilistic models (utilized by Morfessor
(Creutz and Lagus, 2007)), and log-linear models
using contextual and global features (Poon et al.,
2009). Narasimhan et al. (2015) use a discrimina-
tive model for unsupervised morphological seg-
mentation that integrates orthographic and se-
mantic properties of words. The model learns
morphological chains, where a chain extends a
base form available in the lexicon.

Another recent notable work is introduced by
Wang et al. (2016), who use neural networks for
unsupervised segmentation, where they build
LSTM (Hochreiter and Schmidhuber, 1997) ar-
chitectures to learn word structures in order
to predict morphological boundaries. Another
variation of the this approach is presented by
Yang et al. (2017), where they use partial-word
information as character bigram embeddings
and evaluate their work on Chinese.

6 Conclusion and Future Work

We have shown that our language-independent
classifiers improve the state-of-the-art unsuper-
vised morphological segmentation proposed by
Eskander et al. (2016) by making choices that op-
timize for a given language, rather than choosing
parameters for all languages based on averages
on the development languages.

In future work, we plan to conduct an extrinsic
evaluation on tasks that could benefit from mor-
phological segmentation such as machine trans-
lation, information retrieval and summarization.
We also plan to optimize the segmentation mod-
els for those specific tasks.

Acknowledgements

This research is based upon work supported in
part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Re-
search Projects Activity (IARPA), via contract #
FA8650-17-C-9117. The views and conclusions
contained herein are those of the authors and
should not be interpreted as necessarily repre-
senting the official policies, either expressed or
implied, of ODNI, IARPA, or the U.S. Govern-
ment. The U.S. Government is authorized to re-
produce and distribute reprints for governmen-
tal purposes notwithstanding any copyright an-
notation therein.

82

References

Duygu Ataman, Matteo Negri, Marco Turchi, and
Marcello Federico. 2017. Linguistically mo-
tivated vocabulary reduction for neural ma-
chine translation from turkish to english. 108.

Mathias Creutz and Krista Lagus. 2007. Unsu-
pervised models for morpheme segmentation
and morphology learning. ACM Trans. Speech
Lang. Process., 4(1):3:1–3:34.

Ramy Eskander, Owen Rambow, and Tianchun
Yang. 2016. Extending the use of adap-
tor grammars for unsupervised morphologi-
cal segmentation of unseen languages. In Pro-
ceedings of he Twenty-Sixth International Con-
ference on Computational Linguistics (COL-
ING), Osaka, Japan.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

Mark Johnson. 2008. Unsupervised word seg-
mentation for Sesotho using adaptor gram-
mars. In Proceedings of the Tenth Meeting
of ACL Special Interest Group on Computa-
tional Morphology and Phonology, pages 20–
27, Columbus, Ohio. Association for Compu-
tational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon
Goldwater. 2007. Adaptor grammars: a frame-
work for specifying compositional nonpara-
metric bayesian models. In Advances in Neu-
ral Information Processing Systems 19, pages
641–648, Cambridge, MA. MIT Press.

Mohamed Maamourio, Ann Bies, Tim Buckwal-
ter, and Wigdan Mekki. 2004. Arabic treebank:
Building a large-scale annotated arabic cor-
pus. In Proceedings of the NEMLAR Confer-
ence on Arabic Language Resources and Tools,
Cairo, Egypt.

Karthik Narasimhan, Regina Barzilay, and
Tommi Jaakkola. 2015. An unsupervised
method for uncovering morphological chains.
In Twelfth AAAI Conference on Artificial
Intelligence.

Karthik Narasimhan, Damianos Karakos,
Richard M. Schwartz, Stavros Tsakalidis,
and Regina Barzilay. 2014. Morphologi-
cal segmentation for keyword spotting. In
EMNLP.

ThuyLinh Nguyen, Stephan Vogel, and Noah A.
Smith. 2010. Nonparametric word segmenta-
tion for machine translation. In Proceedings of
the 23rd International Conference on Compu-
tational Linguistics, COLING ’10, pages 815–
823, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Hoifung Poon, Colin Cherry, and Kristina
Toutanova. 2009. Unsupervised morpholog-
ical segmentation with log-linear models.
In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of
the North American Chapter of the Associ-
ation for Computational Linguistics, pages
209–217, Boulder, Colorado. Association for
Computational Linguistics.

Kairit Sirts and Sharon Goldwater. 2013.
Minimally-supervised morphological seg-
mentation using adaptor grammars. Trans-
actions of the Association for Computational
Linguistics, 1(May):231–242.

Sebastian Spiegler and Christian Monson. 2010.
Emma: A novel evaluation metric for morpho-
logical analysis. In Proceedings of the 23rd In-
ternational Conference on Computational Lin-
guistics (Coling 2010), pages 1029–1037, Bei-
jing, China. Coling 2010 Organizing Commit-
tee.

Sebastian Spiegler, Andrew van der Spuy, and Pe-
ter A. Flach. 2010. Ukwabelana - an open-
source morphological zulu corpus. In Pro-
ceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010),
pages 1020–1028, Beijing, China. Coling 2010
Organizing Committee.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard
de Melo. 2016. Morphological segmentation
with window LSTM neural networks. In Thir-
tieth AAAI Conference on Artificial Intelligence.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neu-
ral word segmentation with rich pretraining.
In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics,
ACL, Vancouver, Canada.

83

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 84–92
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

A Comparison of Entity Matching Methods
between English and Japanese Katakana

Michiharu Yamashita Hideki Awashima
Recruit Co., Ltd. / Megagon Labs

Tokyo, Japan
{chewgen, awashima}@r.recruit.co.jp, hidekazu.oiwa@gmail.com

Hidekazu Oiwa∗

Abstract
Japanese Katakana is one component of the
Japanese writing system and is used to express
English terms, loanwords, and onomatopoeia
in Japanese characters based on the phonemes.
The main purpose of this research is to find the
best entity matching methods between English
and Katakana. We built two research ques-
tions to clarify which types of entity match-
ing systems works better than others. The
first question is what transliteration should be
used for conversion. We need to transliter-
ate English or Katakana terms into the same
form in order to compute the string similar-
ity. We consider five conversions that translit-
erate English to Katakana directly, Katakana
to English directly, English to Katakana via
phoneme, Katakana to English via phoneme,
and both English and Katakana to phoneme.
The second question is what should be used
for the similarity measure at entity match-
ing. To investigate the problem, we choose
six methods, which are Overlap Coefficient,
Cosine, Jaccard, Jaro-Winkler, Levenshtein,
and the similarity of the phoneme probability
predicted by RNN. Our results show that 1)
matching using phonemes and conversion of
Katakana to English works better than other
methods, and 2) the similarity of phonemes
outperforms other methods while other simi-
larity score is changed depending on data and
models.

1 Introduction

Cleansing and preprocessing data is one of the es-
sential tasks in data analysis such as natural lan-
guage processing (Witten et al., 2016). In particu-
lar, finding the same entity from multiple datasets
is a important task. For example, when the same
entities are expressed by different languages, you
need to convert them to the same writing format
before entity matching.

∗The author is now at Google Inc.

The Japanese language has three kinds of char-
acter types, and they are used for different pur-
poses (Nagata, 1998). One of the character types
is Katakana, which is used to convert English
words, foreign languages, and alphabet letters into
Japanese characters (Martin, 2004). Katakana
is often transliterated by phonemes unique to
Japanese and that is similar but different from En-
glish pronunciation. In addition, whether terms
are expressed in English or Katakana is dependent
on sites. For example, on Japanese web pages,
there are many restaurants written in English and
Japanese even if they are the same stores such as
“Wendy’s”and“ウェンディーズ”. If it is the
same type of character, it is easier to identify the
entity simply by calculating the similarity of the
string, but in the case of different writing systems
like English and Katakana, it is difficult to identify
the entity.

In this research, we clarify the problem by ex-
ploring the following two research questions.
(1) What transliteration should be used for con-
version?

In order to change the same string form, the fol-
lowing method can be considered.

Figure 1: Method to Convert the Entity Name.

The first and second methods are to convert En-
glish to Katakana or Katakana to English and then
match the entities.

The third and fourth methods are to use pro-
nunciation information. Katakana is based on
phonemes and is a syllable system, where each

84

https://doi.org/10.18653/v1/P17

syllabogram corresponds to one sound in the
Japanese language. Therefore, the methods match
the entities after converting English or Katakana
into phonemes and converting the transliterated
phonemes to Katakana or English.

The fifth method also uses phonemes. This
method matches the entities based on the translit-
erated phoneme from both English and Katakana.
(2) What should be used for the similarity mea-
sure?

In order to calculate the similarity of a charac-
ter string for entity matching, it is necessary to se-
lect measures from many similarity measures. In
this research, as commonly used similarity mea-
sures, we use the similarity of Overlap Coeffi-
cient, Cosine, Jaccard, Jaro-Winkler, and Leven-
shtein (Cohen et al., 2003). Moreover, we propose
a similarity method using the probability of the
phonemes by prediction model. We clarify which
of the six similarity methods should be used to
compare the accuracy.

2 Related Work

Entity matching is a crucial task, and there is a
lot of research on entity matching (Shen et al.,
2015; Cai et al., 2013; Carmel et al., 2014;
Mudgal et al., 2018). In these studies, the attribute
information of an entity is used. In the case
where there is no attribute and there is only the
entity name, the character name information must
be used. Different from general entity linking
tasks, some works match entities only on entries
in tables (Muñoz et al., 2014; Sekhavat et al.,
2014). Although these studies match entities by
collecting additional information on the entity,
pronunciation information is not used.

In addition to studies of entity matching,
transliteration is also studied. Transliteration
is a task that converts a word in a language
into a character of a different language and
makes it as closely as possible to the native
pronunciation. Many studies on translitera-
tion are also conducted such as those on Hindi
and Myanmar (Pandey and Roy, 2017; Thu et al.,
2016). Some studies consider pronunciation in-
formation in transliteration (Yao and Zweig, 2015;
Toshniwal and Livescu, 2016; Rao et al., 2015).
Transliteration differs from entity matching itself
in the purpose of the task, but it is applicable to
entity matching because transliteration can extend
the information of the entity. Therefore, we use

transliteration to solve the task of entity matching.
There are some transliteration and entity match-

ing studies, but there is little research that solves
entity matching using transliteration information.
Our motivation is to extend our database from ex-
ternal data by entity matching because we have
relations of many types of clients such as restau-
rants, beauty salons, and companies and extension
of data is essential for discovery of new clients.
Therefore, we need to transform the name of the
entities and to find which methods are the best for
entity matching between English and Katakana.

3 Japanese Characters

Japanese characters are normally written in a com-
bination of three character types. One type is
ideographic characters, Kanji, from China, and the
other two types, Hiragana and Katakana, are pho-
netic characters. Kanji is mainly used for nouns
and stems of adjectives and verbs, and Hiragana is
used for helpful markings of adjectives, verbs and
Japanese words that are not expressed in Kanji. On
the other hand, Katakana is used to write sound ef-
fects and transcribe foreign words (Martin, 2004).
When we try entity matching with Japanese data,
we usually face English expressed in Japanese
Katakana in restaurants, companies, books, elec-
trical items, and so on. We usually cannot find
two names where one is written in English and the
other is written in Katakana within enormous data
because Japanese speakers use both English and
Katakana to write foreign words.

Dictionaries already exist for English words
with Japanese meanings, but few dictionaries also
exist for English with Katakana. The report
(Benson et al., 2009) mentions that the Japanese
language is based on morae rather than syllables.
A mora is a unit of sound that contributes to a
syllable’s weight. Katakana is more accurately
described as a way to write the set of Japanese
morae rather than the set of Japanese syllables, as
each symbol represents not a syllable but a unit of
sound of Japanese speech. A mora-based writing
system in Japanese represents a dimension of the
language that has no corresponding representation
in English. This challenges the transliteration task
of English and Katakana. Therefore, it is not easy
to convert English into Katakana.

The Japanese language also has a method to
transliterate Katakana into alphabet characters,
and this transliterated alphabet is called Romaji,

85

which is a phoneme of Japanese characters (Smith,
1996). Romaji is used in any context for non-
Japanese speakers who cannot read Japanese char-
acters, such as for names, passports, and any
Japanese entities. Romaji is the most common
way to input Japanese into computers and to dis-
play Japanese on devices that do not support
Japanese characters (DeFrancis, 1984), and almost
all Japanese people learn Romaji and are able to
read and write Japanese using Romaji. There-
fore, generally speaking, Japanese people who do
not write in English usually use Romaji to express
Katakana or foreign terms without Japanese char-
acters.

4 Methods

To solve the task of entity matching between En-
glish and Katakana, the entity name must some-
how be transliterated. Figure 2 shows the frame of
the task. For example, the word“angel”has four
features which are English, phonemes of English,
Japanese Katakana and Romaji. We state how to
convert the entity name, how to calculate the sim-
ilarity, and what the baseline is below.

Figure 2: Entity Matching Task between English and
Japanese Katakana.

4.1 Baseline
As the baseline, we used Romaji transliteration,
which is characters used to transliterate Katakana
to an alphabet sequence (DeFrancis, 1984). We
converted Katakana to English using Romaji and
then perform entity matching using both alpha-
bets. There are many different popular ways
of romanizing Katakana, and we use the Hep-
burn romanization because the romanization of a
Katakana word generally faithfully represents the
pronunciation of that Japanese word and many
Japanese speakers use it to express Katakana and
foreign terms without Japanese characteres. We
used the module romkan1 for this method. For ex-
ample, in terms of“Japan”, the Romaji translitera-
tion is“ジャパン”and the actual Katakana is also
”ジャパン”. As another example, in terms of“Or-
ange”, the Romaji transliteration is“オランゲ”

1https://pypi.python.org/pypi/romkan

but the actual Katakana is ”オレンジ”. In addition,
we also used Soundex2 as a benchmark of entity
matching between phoneme pairs. Soundex is a
phonetic algorithm for indexing names by sound,
as pronounced in English.

4.2 Predictive Model
We used a sequence to sequence model for translit-
eration. For example, the input is the sequence of
English characters (x1, ..., xn), and the output is
the sequence of phoneme characters (y1, ..., ym).
In our model, we estimated the conditional prob-
ability p of an output sequence (y1, ..., ym) given
an input sequence (x1, ..., xn) as follows:

p(y1, ..., ym|x1, ..., xn) (1)

Given an input sequence (x1, ..., xn), LSTM
computes a sequence of hidden states (h1, ..., hn).
During decoding, it defines a distribution over the
output sequence (y1, ..., ym) given the input se-
quence p(y1, ..., ym|x1, ..., xn) is:

p(y1, ..., ym|x1, ..., xn) =
m∏

t=1

p(yt|hn+t−1, yt−1)

(2)
We also used a bi-directional recurrent neural

network (Schuster and Paliwal, 1997). In our ar-
chitecture, one RNN processes the input from left
to right, while another processes it right to left.
The outputs of the two subnetworks are then com-
bined. This model has been applied to machine
translation and, in this case, the phoneme pre-
diction depends on the whole character sequence.
Figure 3 shows an architecture of our models in
this research. The combinations of input and
output are English-Katakana, Katakana-English,
English-Phoneme, Katakana-Phoneme, Phoneme-
English, and Phoneme-Katakana. The input and
the output of Figure 3 shows English-Phoneme as
an example, and our other models were created in
the same manner.

Figure 3: Architecture of the Predictive Model.
2https://www.archives.gov/research/census/soundex.html

86

4.3 Model Settings

We chose each hyper parameter of the model by
grid search. Targets of the hyper parameter were
word embedding, hidden layers, and input reverse.
Input of embedding and hidden layers was set to
256, 512, or 1024, and input of reverse is True or
False. In the experiment, we chose the best model
that has the lowest loss value for validation data
and applied the model for validation data. We used
categorical cross entropy as the loss value and
the optimizer was Adam (Kingma and Ba, 2014).
The hyper parameters used are shown in Table
1. Regarding the six models with RNN, we tried
to match the entities of the transliterated word as
shown in Figure 1.

At last, we created all word combinations with
the dataset and then calculated their similarity
score. Each model was trained by 80% of train
dataset and 20% was used as test data. Test data
was also used as an experiment for this research.

4.4 Similarity Metric

We implemented the module
”py stringmatching”3 that consists of a com-
prehensive and scalable set of string tokenizers
such as alphabetical tokenizers, whitespace
tokenizers, and string similarity measures. We
used this module to calculate the string similarity.
We chose Overlap Coefficient, Cosine, Jacquard,
Jaro-Winkler, and Levenshtein from the modules.
In addition to these similarities, we also proposed
a new method that uses a probability of predicted
phonemes from a term and compares each string
similarity in the tasks of matching entity names.
Definitions of each method are as follows.

Overlap coefficient measures the overlap be-
tween two sets, and is defined as the size of the
intersection divided by the smaller of the size of
the two sets. For two sets X and Y, the overlap
coefficient is:

|X ∩ Y |
min (|X|, |Y |) (3)

Cosine similarity measures the cosine of the an-
gle between two non-zero vectors, and we use
Ochiai coefficient as the angular cosine similar-
ity and the normalized angle. This measure com-
putes:

3https://pypi.python.org/pypi/py stringmatching

|X ∩ Y |√
(|X||Y |) (4)

Jaccard similarity measures the similarity be-
tween finite sample sets, and is defined as the size
of the intersection divided by the size of the union
of the sample sets. For two sets X and Y, Jaccard
similarity score is:

|X ∩ Y |
|X ∪ Y | (5)

Jaro-Winkler similarity (Winkler, 1999) mea-
sures the edit distance between two sequences. It
uses a prefix scale which gives weights to strings
that match from the beginning for a set prefix
length. For two sets X and Y, when si is the length
of the string si, m is the number of matching char-
acters, t is half the number of transpositions, and
l is the length of the common prefix at the start of
a string up to a maximum of four characters, Jaro-
Winkler similarity simw is:

simw = simj + (l · 0.1(1− simj))

simj =
1
3(

m
|sX | +

m
|sY | +

m−t
m)

(6)

Levenshtein distance measures the edit distance
between two sequences. It computes the minimum
cost to transform all edit procedures. Transform-
ing a string is to delete a character, insert a charac-
ter, and substitute one character for another.

The last similarity metric is the similarity of
the probability of a predicted phoneme for a
term, which we proposed. RNN model predicts
phoneme probability, and we applied this met-
ric for English-Phoneme and Katakana-Phoneme
models. The output layer is the sequence, and the
output of a predicted phoneme at the time t in our
model are calculated as {”ei”:0.37, “e”:0.31,
“æ”:0.23,…} using the vector of the hidden layer
of the decoder at time t. In this metric, we calcu-
late the distance of dynamic time warping (Müller,
2007) between two temporal sequences. Dynamic
time warping calculates an optimal match between
two-time series sequences with certain restric-
tions. We regard the probability vector as a time
point and use cosine similarity as a distance be-
tween two vectors. We computed all of the prob-
ability vectors from English and Katakana, and
measured the distance of dynamic time warping.

87

Table 1: Hyper Parameters of the Best Model (Acc is accuracy for validation data of train data.)
Input Output Embedding Hidden Layers Input Reverse Acc

English Katakana 512 512 False 0.765
Katakana English 1024 512 True 0.785
English Phoneme 1024 512 True 0.826
Katakana Phoneme 512 512 True 0.811
Phoneme English 512 512 True 0.815
Phoneme Katakana 1024 512 False 0.764

5 Experiments

5.1 Dictionary Data

We prepared corpora of English, Katakana, and
phonemes for training and creating models. We
found a corpus of English and phonemes, and a
corpus of English and Katakana. We created the
data by merging each dictionary and made the
original data ourselves as Japanese speakers.

At first, we used the dataset consisting of En-
glish, Katakana, and phonemes of English from
Benson’s dictionary4, which is made from JMDict
dictionary (Breen, 1995) and the sum of entries
is 17798. However, in this dataset, there are a
lot of mistakes because the creators are not na-
tive Japanese speakers, and they made it automati-
cally. So, we removed the noise by hand as native
Japanese speakers and then succeeded in cleansing
the data of which 20% was occupied by noise.

Second, we used the CMU Pronouncing Dic-
tionary5 that includes a large amount of English
terms and pronunciation signs but not Japanese
Katakana. We combined them with Katakana by
mecab-ipadic-NEologd6. mecab-ipadic-NEologd
is a customized dictionary-system for MeCab
(Kudo, 2006) that is an open-source text segmen-
tation library for text written in the Japanese lan-
guage, and some terms have both expression of
English and Katakana. We merged the CMU Pro-
nouncing Dictionary and mecab-ipadic-NEologd
where both of the dictionaries had terms.

At last, we created an original dictionary by ran-
domly extracting 3000 terms from the CMU Pro-
nouncing Dictionary and attached each Katakana
term by hand. We eventually concatenated those
dictionaries and deleted duplicates. The total num-
ber of entries is 26815.

4https://github.com/eob/englishjapanese-
transliteration/blob/master/data/dictionary.txt

5http://www.speech.cs.cmu.edu/cgi-bin/cmudict
6https://github.com/neologd/mecab-ipadic-neologd

5.2 Experimental Methodology

For the experiment, we prepared three valida-
tion datasets. One was test data that comprised
20% of the dictionary. Another was city names
in the U.S. from Google Maps API7. Google
Maps provide a city name and we were able to
find the same U.S. city expressed by English and
Japanese. We collected 1110 terms from Google
Maps. The last is the restaurant store names in
Japan from HOT PEPPER GOURMET8, which
is called HPG. HPG is one of the most famous
search services that provides information and dis-
count coupons for restaurants, cafes, bars, and any
place to eat in Japan. We know some restaurants
that have both names in alphabet characters and
Katakana from HPG, and built a validation dataset.
Table 2 shows all of the data we used.

In terms of measuring accuracy, we used a top-
five precision. We calculated the similarity scores
of all combinations of entities in the experiment
data and evaluated the precision of the entities in-
cluded in the top-five entities, and then compared
the value of top-five’s precision for each model
and similarity measure. The procedure of translit-
erating and measuring was as follows:
(1) En2Kana

We transliterated the sequence of alphabet char-
acters into Katakana through RNN model and
computed the similarity between the transliterated
Katakana and Katakana terms.
(2) Kana2En

We transliterated the sequence of Katakana into
English through RNN model and computed the
similarity between the transliterated English and
English terms.
(3) Both2Ph

We transliterated the sequence of alphabet
characters into phonemes through RNN model,
transliterated the sequence of Katakana into

7https://developers.google.com/maps
8https://www.hotpepper-gourmet.com/en

88

Table 2: Dataset for Experiment
Dataset Numbers of Entities Data Source Example

Total: 26815 Modified E. Benson’s dictionary English: artist
Train and Test Data Train: 21452 CMU Pronouncing Dictionary and mecab-ipadic-NEologd Katakana: アーティスト

Test: 5363 Our original dictionary Phoneme: AA R T IX S T AX

City Names in the U.S. 1110 Google Maps
English: Phoenix
Katakana: フェニックス

Restaurant Names 2458 HOT PEPPER GOURMET
English: ### Cafe
Katakana: ###カフェ

phonemes through RNN model, and computed
the similarity between both of the transliterated
phonemes to regard one phoneme character as one
index. In addition, we also used the probability
vector similarity in terms of this method as we
stated the end of subsection 4.4.
(4) En2Ph2Kana

We transliterated the sequence of alphabet
characters into phonemes through RNN model,
transliterated the transliterated phonemes into
Katakana through RNN model, and computed the
similarity between the transliterated Katakana and
Katakana terms.
(5) Kana2Ph2En

We transliterated the sequence of Katakana
into phonemes through RNN model, transliterated
the transliterated phonemes into English through
RNN model, and computed the similarity between
the transliterated English and English terms.
(6) En2Romaji

We converted the sequence of alphabet charac-
ters into Katakana based on Romaji and computed
the similarity between the Katakana of Romaji and
Katakana terms.
(7) Kana2Romaji

We converted the sequence of Katakana into al-
phabets based on Romaji and computed the simi-
larity between the alphabets of the Romaji and En-
glish terms.
(8)Both2Soundex

We transliterated the sequence of alphabet char-
acters into Soundex as pronunciation, transliter-
ated the sequence of Katakana based on Romaji
into Soundex, and computed the score of both
of the transliterated phonemes. We regarded one
Soundex character as one index.

5.3 Results

Figure 4 shows the top-five precision graph of all
methods and similarity metrics for each validation
dataset, and Table 3 shows the top-five precision
of predicted phoneme probability similarity.

Figure 4: Top-Five Precision for Each Method and
Similarity Measure.

89

First, we compared each of the eight methods
with the similarity scores of Overlap coefficient,
Cosine, Jacquard, Jaro-Winkler, and Levenshtein.
The tendency of accuracy is similar in almost all
methods in each dataset. In terms of the dictio-
nary test data and the city name data, Kana2En
and Both2Ph have the highest accuracy at 0.83
and 0.81 in Levenshtein distance. En2Kana was
the next highest with an accuracy of 0.74 in Lev-
enshtein. Regarding En2Ph2Kana, Kana2Ph2En,
and Kana2Romaji, the accuracy was not high in
any data. Likewise, even in the restaurant data, the
accuracy of Kana2En and Both2Ph was relatively
high at 0.55 and 0.46 in Levenshtein. However,
regarding En2Romaji, it clarified that the accu-
racy was quite different depending on the dataset.
In the dictionary test data, the accuracy was the
lowest at 0.36 in Levenshtein distance, and in the
city name data, the accuracy of En2Romaji is rel-
atively low. On the other hand, in the restaurant
data, En2Romaji was the highest accuracy at 0.57
in Levenshtein.

Second, focusing on the similarity measure, the
accuracy trends are similar in almost all meth-
ods in each data set although the accuracy differs
depending on the dataset. Levenshtein and Jaro-
Winkler are the highest in almost all methods, and
Overlap is the lowest. In other words, it shows
that it is better to use the editing distance for word
similarity in entity matching than other distance to
compute the same character string.

Lastly, we considered the similarity of proba-
bility vectors. In fact, this similarity achieved the
highest score. The test data of the dictionary and
the data of city names’ accuracy was over 0.9 and
that is about 10% higher than the second high-
est score. The restaurant data accuracy was 0.62,
which is 5% higher than the second highest score.
These results insist that pronunciation is crucial
for entity matching.

Table 3: Top 5 Precision of similarity of predicted
Phoneme Probability Vector

Test Data of Dict City Names Restaurant Names

0.91 0.92 0.62

5.4 Error Analysis and Discussion

Regarding the dictionary test data and the city
name data, the accuracy was over 80%, whereas
the accuracy of the restaurant data was under 70%.

Focusing on this phenomena, we analyzed how
words were converted in each dataset. Table 4
shows some examples of each conversion.

While short words such as“switch”and“Ben-
ton”succeeded in being transformed cleanly, long
words such as“coconut milk” and“South San
Francisco”could not be predicted accurately. This
is caused by the lack of long words in the train-
ing data. As the solution, it would be beneficial
to adjust the algorithm to long terms and extend
the dataset. However, in the case of Japanese, it
is difficult to divide a long word into two or more
words, because in comparison to English terms,
Japanese terms are not separated by spaces.

Furthermore, in the restaurant data, we mined
the reason why the accuracy was extremely low
and found three considerable reasons in addition
to the reason of word length. One reason is that
there were many alphabetical representations of
foreign languages other than English. For exam-
ple,“Amore” is Italian, and“MAI-THAI” is
Thai. Since our training data consisted only of
pure English words, and the model was created
for English, we can treat pure English terms as
dictionary data or American city name data, but
terms of other foreign languages cannot be con-
verted accurately. To solve the problem, it is es-
sential to create a model besides English for each
language, and to create a model to recognize what
language is written in words. The second is that
there are some shops written in Romaji charac-
ters such as“AKICHI”, which is not English but
the Romaji representation of Katakana. Therefore,
there should also be a model to determine whether
the word is a foreign word or Romaji. Third is
the mistakes of the datasets. In this study, we ex-
tracted both alphabetical and Katakana stores au-
tomatically from HPG database, but there was a
pattern in which English and Katakana combina-
tions did not correspond completely. One of them
is an abbreviation such as“Cafe X” and“X”.
Prefixes are sometimes omitted in the data.

Considering similarities, the predicted phoneme
probability had the highest score. Katakana is seg-
mental scripts, and each term is based on sounds,
but some exceptions are changed somehow by im-
plicit Japanese rules. Therefore, we can not pre-
dict the pronunciation perfectly. However, be-
cause we can predict candidates of the pronuncia-
tion as phoneme probability vector like {”ei”:0.37,
“e”:0.31,“æ”:0.23,…}, we could match enti-

90

Table 4: Example Results of Transliteration.

ties using vector similarity more accurately. This
is why the probability vector metric outperforms
all other metrics. We also computed the other top-
N precision, and the result was precision (N=10) at
67% and precision (N=30) at 74%. This opens the
way for narrowing down by entity matching with
the name alone.

For future work, in order to improve accuracy
on restaurant data, we could implement a few pro-
cedures. The first would be cleaning the datasets
because there are some pairs that do not corre-
spond. This time we checked the non-matching
pairs quickly but because of large volume of
the datasets, there could remain some amount of
noise. It could be solved by crowdsourcing of
many Japanese speakers. The second would be
polishing the transliteration model. We tried to use
an attention mechanism for RNN model, but the
accuracy was not good. We may polish the model
by adjusting the best hyper parameter. Moreover,
we could train pair data of English and Katakana
at the same time instead of independently to create
the model. In the entity matching task of the ac-
tual restaurant data, if we detect 60% through the
top-five precision, entity matching would be easy
through using additional data such as postal code
level addresses.

6 CONCLUSION

In this paper we built two research questions to
clarify how to solve heterogeneous entity match-
ing. The first question was what should be used
for conversion in entity matching between English
and Japanese Katakana. We proposed an entity
matching method that considers phoneme sym-
bols, and compared models to convert a term into

English, Katakana, and phonemes. The second
question was what should be used for the simi-
larity metric. We proposed a similarity method
that uses a phoneme probability vector predicted
by sequence to sequence models and compared six
metrics, which are Overlap Coefficient, Cosine,
Jacquard, Jaro-Winkler, Levenshtein, and the sim-
ilarity of phonemes.

Our experiments in the three real datasets
showed that 1) a phoneme matching system works
better than other methods, and 2) the similarity of
phoneme in the phoneme method and Levenshtein
similarity in other methods suit the entity match-
ing problems. We insist that phoneme information
is crucial for heterogeneous entity matching.

Based on these results, we will build an entity
matching system between English and Japanese
Katakana, and publish a part of it as an open-
source software. We can apply the system to ex-
tension of a dataset from a vast amount of data on
the web and to rare query expansion on a search
engine. Almost of our services have a search en-
gine and in some services, we are using a part of
the entity matching system to reduce outputs of 0
hits result. In the future, the model is expected to
be polished and applied to other languages. In this
paper it is tested on Japanese and English, but po-
tentially could be used on other languages. We be-
lieve that our method could apply to any language
that has phonetic characters.

Acknowledgments

In this research, we would like to thank Wang-
Chiew Tan and Akiko Ito for crucial advice and
supports of this work. We also thank the reviewers
for valuable feedbacks.

91

References
Edward Benson, Stephen Pueblo, Fuming Shih, and

Robert Berwick. 2009. English-japanese translitera-
tion.

Jim Breen. 1995. Building an electronic japanese-
english dictionary. In Japanese Studies Association
of Australia Conference. Citeseer.

Zhiyuan Cai, Kaiqi Zhao, Kenny Q Zhu, and Haixun
Wang. 2013. Wikification via link co-occurrence.
In Proceedings of the 22nd ACM international con-
ference on Conference on information & knowledge
management, pages 1087–1096. ACM.

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich,
Bo-June Paul Hsu, and Kuansan Wang. 2014.
Erd’14: entity recognition and disambiguation chal-
lenge. In ACM SIGIR Forum, volume 48, pages 63–
77. ACM.

William Cohen, Pradeep Ravikumar, and Stephen Fien-
berg. 2003. A comparison of string metrics for
matching names and records. In Kdd workshop on
data cleaning and object consolidation, volume 3,
pages 73–78.

John DeFrancis. 1984. Digraphia. Word, 35(1):59–66.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo. 2006. Mecab: Yet another
part-of-speech and morphological analyzer.
http://mecab.sourceforge.net.

Assunta Martin. 2004. The ‘katakana effect’and
teaching english in japan. English Today, 20(1):50–
55.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, An-
Hai Doan, Youngchoon Park, Ganesh Krishnan, Ro-
hit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep learning for entity matching: A design
space exploration. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
19–34. ACM.

Meinard Müller. 2007. Dynamic time warping. Infor-
mation retrieval for music and motion, pages 69–84.

Emir Muñoz, Aidan Hogan, and Alessandra Mileo.
2014. Using linked data to mine rdf from
wikipedia’s tables. In Proceedings of the 7th ACM
international conference on Web search and data
mining, pages 533–542. ACM.

Noriko Nagata. 1998. Input vs. output practice in ed-
ucational software for second language acquisition.
Language Learning and Technology, 1:23–40.

Pramod Pandey and Somnath Roy. 2017. A generative
model of a pronunciation lexicon for hindi. arXiv
preprint arXiv:1705.02452.

Kanishka Rao, Fuchun Peng, Haşim Sak, and
Françoise Beaufays. 2015. Grapheme-to-phoneme
conversion using long short-term memory recurrent
neural networks. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015 IEEE International
Conference on, pages 4225–4229. IEEE.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Yoones A Sekhavat, Francesco Di Paolo, Denilson Bar-
bosa, and Paolo Merialdo. 2014. Knowledge base
augmentation using tabular data. In LDOW.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Transactions on Knowl-
edge and Data Engineering, 27(2):443–460.

Janet S Smith. 1996. Japanese writing. The world’s
writing systems, pages 209–217.

Ye Kyaw Thu, Win Pa Pa, Yoshinori Sagisaka, and
Naoto Iwahashi. 2016. Comparison of grapheme-
to-phoneme conversion methods on a myanmar pro-
nunciation dictionary. In Proceedings of the 6th
Workshop on South and Southeast Asian Natural
Language Processing (WSSANLP2016), pages 11–
22.

Shubham Toshniwal and Karen Livescu. 2016. Jointly
learning to align and convert graphemes to
phonemes with neural attention models. In Spoken
Language Technology Workshop (SLT), 2016 IEEE,
pages 76–82. IEEE.

William E Winkler. 1999. The state of record linkage
and current research problems. In Statistical Re-
search Division, US Census Bureau. Citeseer.

Ian H Witten, Eibe Frank, Mark A Hall, and Christo-
pher J Pal. 2016. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-
to-sequence neural net models for grapheme-to-
phoneme conversion. In INTERSPEECH 2015,
pages 3330–3334. ISCA.

92

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 93–100
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

1

Abstract

Natural language reduplication can pose a

challenge to neural models of language,

and has been argued to require

variables (Marcus et al., 1999).

Sequence-to-sequence neural networks

have been shown to perform well at a

number of other morphological tasks

(Cotterell et al., 2016), and produce results

that highly correlate with human behavior

(Kirov, 2017; Kirov & Cotterell, 2018) but

do not include any explicit variables in

their architecture. We find that they can

learn a reduplicative pattern that

generalizes to novel segments if they are

trained with dropout (Srivastava et al.,

2014). We argue that this matches the scope

of generalization observed in human

reduplication.

1 Introduction

Reduplication is a common morphological

process in which all or part of a word is copied and

added to one side of the word’s stem. An example

of reduplication occurring in the language Karao

is given in (1):

(1) Reduplication in Karao

(from Ŝtekaurer et al. 2012):

manbakal → manbabakal

‘fight each other’ ‘fight each other’

(2 people) (>2 people)

In the example above, the stem ba is reduplicated

to create the affixed form baba. Berent (2013)

discusses four different possibilities for how

speakers could represent reduplication in their

1 We use the term explicit variable to refer to the algebraic

symbols that are often absent from connectionist theories of

cognition. However, a number of connectionist models do

incorporate explicit variables, such as the models in Marcus

minds: (i) memorization of which reduplicated

forms go with which stems, (ii) learning a function

that copies all segments that undergo

reduplication, (iii) learning a function that copies

all feature values that undergo reduplication, or

(iv) learning a function that uses algebraic

symbols to copy the appropriate material,

regardless of its segmental or featural content. She

concludes that reduplication and similar processes

in language involve the fourth possibility, which

she labels an identity function. An identity

function for reduplication is illustrated in (2), with

α acting as a variable that represents the

reduplicated sequence.

(2) Reduplication as an algebraic rule

α → αα

Marcus et al. (1999) came to a similar

conclusion regarding reduplication and identity

functions, after showing that infants could learn a

reduplication-like pattern and generalize that

pattern to novel segments. They used this as

evidence against connectionist models of

grammar, which do not typically include

explicit variables1 (see, for example, Elman, 1990;

Rumelhart & McClelland, 1986). Both

feed-forward and simple recurrent neural networks

fail at learning generalizable identity functions

(Berent, 2013; Marcus, 2001; Marcus et al., 1999;

Tupper & Shahriari, 2016).

In this paper, we revisit these arguments

against variable-free connectionist models in light

of recent developments in neural network

architecture and training techniques. Specifically,

we test Sequence-to-Sequence models (Sutskever

et al., 2014) with LTSM (Long Short-Term

(2001), Smolensky and Legendre (2006), and Moreton

(2012). See Pater (2018:§4) for a more detailed discussion

of different hybrids of connectionist and symbolic

approaches.

Seq2Seq Models with Dropout can Learn Generalizable Reduplication

Brandon Prickett, Aaron Traylor, and Joe Pater

Linguistics Department

University of Massachusetts Amherst
bprickett@umass.edu, aaron_traylor@brown.edu,

pater@linguist.umass.edu

93

https://doi.org/10.18653/v1/P17

2

Memory; Hochreiter & Schmidhuber, 1997) and

dropout (Srivastava et al., 2014). We find that the

scope of generalization for the models is increased

from copying segments to copying feature values

when dropout is added. Additionally, we argue that

variable-free feature copying is sufficient to model

human generalization, contrary to Berent’s (2013)

claim that an algebraic identity function is

necessary.

2 Background

The debate between connectionist and symbolic

theories of grammar has largely been focused on

the domain of morphology (for a review, see Pater,

2018). Reduplication was no exception, with

standard connectionist models failing to learn the

pattern (Gasser, 1993). Standard models also failed

to generalize a reduplicative pattern in a way that

mimicked human behavior (Marcus et al., 1999).

Marcus (2001) argued that this was evidence of the

need for variables in models of cognition. While

supporters of connectionism pointed out issues

with some of Marcus et al.’s (1999) conclusions

(e.g. Seidenberg & Elman, 1999), they failed to

show that a connectionist network with no

variables could learn reduplication without being

previously trained on a similar identity function

(see Endress, Dehaene-Lambertz, & Mehler, 2007

for an overview of these studies).

Research in phonotactics has also supported the

need for variables in models of language. Berent

(2013) showed that Hebrew speakers generalized a

phonotactic identity-based restriction in a way that

she argued required variables. She presented

various experimental results demonstrating that

speakers would generalize the restriction to novel

words, novel segments, and what she claimed to be

novel feature values (for more on our interpretation

of these findings, see §5.2). This ran contrary to the

predictions of phonotactic learning models that did

not include variables (Berent et al., 2012).

However, the models tested by Marcus et al.

(1999) and Berent et al. (2012) were relatively

simple compared to many modern neural network

architectures. The modern model that we will

examine is the Seq2Seq neural network (Sutskever

et al., 2014), originally designed for machine

translation. These models have been shown to

perform well at learning a variety of morphological

tasks (Cotterell et al., 2016), and produce results

that highly correlate with human behavior (Kirov,

2017; Kirov & Cotterell, 2018).

Since these models include a number of

recently-invented mechanisms, such as an

encoder-decoder structure (Sutskever et al., 2014),

Long Short-Term Memory layers instead of

simple, recurrent ones (Hochreiter &

Schmidhuber, 1997), and the possibility of dropout

during training (Srivastava et al., 2014), it’s

unclear whether they will be limited in the same

ways as their predecessors.

3 The Model

In this section, we will give a brief introduction to

each of the mechanisms in our model that we

consider to be relevant to the simulations presented

in §4. For the documentation on the Python

packages used to implement the model, see Chollet

et al. (2015) and Rahman (2016). We chose to

focus on Seq2Seq models because of their recent

success in a number of linguistic tasks

(summarized in §3.1). We leave exploring the

differences between this architecture and its

alternatives (such as simple recurrent networks) to

future work.

3.1 The Seq2Seq Architecture

Seq2Seq neural networks have the ability to map

from one string to another, without requiring a

one-on-one mapping between the strings’ elements

(Sutskever et al., 2014). The model achieves this

by using an architecture made up of an encoder and

decoder pair. Each member in the pair is its own

recurrent network, with the encoder processing the

input string and the decoder transforming that

processed data into an output string. The ability of

these models’ inputs and outputs to have

independent lengths is useful for morphology,

which usually involves adding or copying

segments in a stem. An example of this for

reduplication is shown in Figure 1.

Figure 1: Illustration of Seq2Seq architecture

modeling reduplication of the stem [ba].

94

3

In Figure 1, the encoder passes through the entire

input string (i.e. the stem [ba]) before transferring

information to the decoder. The decoder then

unpacks this information, and gives a reduplicated

form (i.e. [baba]) as output. In all of the simulations

discussed in this paper, the encoder is

bidirectional, meaning that it passes through the

input string starting from both the left and right

edges.

3.2 Long Short-Term Memory (LSTM)

LSTM (Hochreiter & Schmidhuber, 1997) is a kind

of recurrent neural network layer which allows the

model to store certain information in memory more

easily than a simple recurrent layer could. While

this architectural innovation was originally

designed to address the problem of vanishing

gradients (Bengio et al., 1994), it has been

demonstrated that LSTM can also provide models

with added representational power (Levy et al.,

2018).

The way the model performs both of these tasks

is by using cell states, bundles of interacting layers

that can learn which features are important for the

model to keep track of in a long-term way. During

training, the network is not only keeping track of

which information will allow it to predict the

output from the input, but also which information

at a given time step (i.e. at a given segment in the

simulations presented here) will help it to predict

the output at future time steps.

Vanishing gradients are not much of a concern

in morphological learning, since input and output

strings are relatively short in this domain of

language. However, the effects of LSTM's added

representational power on learning of

reduplication have not yet been explored.

3.3 Dropout

Dropout is a method used in neural network

training that helps models generalize correctly to

items outside of their training data (Srivastava et

al., 2014). It achieves this by having some units in

the network “drop out” in each forward pass. This

prevents the network from finding solutions that

are too dependent on a small number of units.

Practically speaking, this is implemented by

setting a probability with which each unit will drop

out (a hyper parameter set by the analyst) and then

multiplying every unit’s output by either a 0 or 1,

depending on whether it has been randomly chosen

to be dropped out or not. Which units are dropped

out is resampled each forward pass, causing the

network’s solution to be more general than it might

have been otherwise. This is illustrated for a single

forward pass in a simple, feed-forward network on

the right side of Figure 2. In this illustration,

dropout causes the output units to have an

activation of 2, instead of 4, because a unit in the

middle layer is being dropped out and cannot

contribute to the activations in the layer above it.

For the simulations presented here that use

dropout, it was applied with equal probability to all

layers of the network.

4 Experiments

To test whether reduplication can be modeled by a

neural network without explicit variables, we ran a

number of simulations in which the model was

trained on a reduplication pattern in a toy language

and tested on how it generalized that pattern to

novel data. To test what kind of generalization the

model was performing, we set up different

scenarios: one in which the model was tested on a

novel syllable made up of segments it had seen

reduplicating in its training data (§4.1), one in

which the model was tested on a syllable made

with a segment that it hadn’t received in training

(§4.2), and one in which the model was tested on a

syllable with a novel segment containing a feature

value that hadn’t been presented in the training

data (§4.3).

In the experiments presented here, a language’s

segments were each represented by a unique,

randomly-produced vector of 6 features (excluding

Figure 2: A simple, feed-forward network, with

and without dropout. Each circle is a unit and

each arrow is a connection. Dropped out units

are in grey. Each unit’s output (before dropout)

is denoted by the number inside of it. All

connections have a weight of 1 and all

activation functions are f(x)=x.

95

4

the simulations in §4.3), with feature values being

either -1 or 1 (corresponding to the [-] and [+] used

in standard phonological models). The inventory

was divided into consonants and vowels by

treating the first feature as [syllabic], i.e. any of the

feature vectors that began with -1 were considered

a consonant and any that began with 1 were

considered a vowel. If an inventory had no vowels,

one of its consonants was randomly chosen and its

value for the feature [syllabic] was changed to 1.

The toy language for any given simulation

consisted of all the possible CV syllables that could

be made with that simulation’s randomly created

segment inventory. Crucially, before the data was

given to the model, some portion of it was withheld

for testing (see the subsections below for more

information on what was withheld in each testing

condition). The mapping that the model was

trained on treated each stem (e.g. [ba]) as input and

each reduplicated form (e.g. [baba]) as output. The

model’s input and output lengths were fixed to 2

and 4 segments, respectively (reflecting the fact

that all the toy languages only had stems that were

2 segments long).

The models were trained for 1000 epochs, with

training batches that included all of the learning

data (i.e. learning was done in batch). The loss

function that was being minimized was

mean-squared error, and the minimization

algorithm was RMSprop (Tieleman & Hinton,

2012). The models had 2 layers each in the encoder

and decoder, with 18 units in each of these layers.

All other parameters were the default values in the

deep-learning Python package, Keras (Chollet et

al. 2015).

To test whether the model generalized to

withheld data, a relatively strict definition of

success was used in testing. The model was given

a withheld stem as input, and the output it predicted

was compared to the correct output (i.e. the

reduplicated form of the stem it was given). If

every feature value in the predicted output had the

same sign (positive/negative) as its counterpart in

the correct output, the model was considered to be

successfully generalizing the reduplication pattern.

However, if any of the feature values did not have

the same sign, that model was considered to be

non-generalizing. While we only report the results

from 25 runs in each condition, we ran many more

while investigating various hyperparameter

settings and possibilities about the construction of

the training data. The results presented here are

representative of the general pattern of results.

4.1 Generalizing to Novel Syllables

Our first set of simulations tested whether the

model could generalize to novel syllables. If the

model failed at this task, then it would mean that it

was memorizing whole words in the training data,

rather than learning an actual pattern. Figure 3

illustrates this.

In Figure 3, [da] is the syllable that was withheld

from training. This means that the model never saw

the mapping from [da]→[dada], but it did see the

segments that make up [da]. For example, the

training data [di] and [ba] would have

demonstrated the behavior of [d] and [a] to the

model, respectively.

For this condition, toy languages always

contained 40 segments in their inventory, and the

probability of a unit being dropped out was 0%.

The model successfully reduplicated syllables

from training in all runs for this condition.

Additionally, it generalized to novel syllables in

22 of the 25 simulations (88%). These results are

summarized in Figure 6. This shows that a standard

Seq2Seq model, with LSTM but no dropout, can

perform generalization to novel syllables, and does

so a majority of the time.

4.2 Generalizing to Novel Segments

The next scope of generalization described by Berent

(2013) is generalization to novel segments. To test

whether our model could achieve this, we created

languages with inventories of 40 segments (as

described above), but randomly chose a single

consonant in each run to be withheld for testing. This

is illustrated for a simplified example in Figure 4.

Figure 3: Illustration of generalization to a novel

syllable/word in a language with only eight

segments. Specific IPA labels are hypothetical.

Syllables surrounded by the black box were

presented in training, while the circled syllable was

withheld for testing.

96

5

In Figure 4, the consonant [d] is never shown to

the model in training. This means that the model

has no experience with reduplicating this vector of

feature values before testing. The model would

have been exposed to each of the feature values

making up this segment, though. For example, [t]

and [b] would have exposed the model to the place

and voicing features of [d], respectively.

For the results reported in this section, toy

languages always had inventories of 40 segments.

Two conditions were tested in regards to dropout:

one in which dropout never happened (0%) and

one which it happened to the majority of units in

any given forward pass (75%).

When no dropout was applied, the model was

unable to reliably generalize—with only 6 of the

25 runs achieving success on novel segments (24

out of 25 for trained segments). However, when

dropout was applied with a probability of 75%, the

model successfully generalized to novel segments

in 15 of the 25 runs (25 out of 25 for trained

segments). These results are summarized in Figure

6. This demonstrates that without dropout, our

model does not reliably generalize to novel

syllables, but that with dropout it does.

4.3 Generalizing to Novel Feature Values

 The most powerful form of generalization Berent

(2013) discusses is generalization to novel feature

values, which would signify the acquisition of a

proper identity function. In the context of

reduplication, this would involve correctly

applying the process to a stem that includes feature

values never seen in training. For example, if all of

the consonants in training were oral, but the

process generalized to nasal consonants, this

would demonstrate generalization to the novel

feature value [+nasal]. This is shown in Figure 5.

In the example above, the syllable [na]

represents a novel feature value. If a model only

learned a function that learned to copy individual

feature values from the stem into the reduplicant, it

wouldn’t generalize to this kind of novel feature

value correctly. This generalization can only occur

if the model learns to copy the reduplicant

irrespective of individual features.

For the results reported here, toy languages

always contained 43 segments in their inventory,

and these were not produced randomly (this made

it easier to ensure that a particular feature value

could be withheld). A variety of other segment

inventories were tested, with no changes in the

model’s performance. Results are presented here

for simulations using 0% and 75% dropout

probability, although numerous other values for

this were also tested.

Regardless of whether dropout occurred, the

model never generalized to novel feature values.

These results are summarized in Figure 6. This

shows that a standard Seq2Seq model, regardless

of whether it has dropout, cannot generalize to

novel feature values. We discuss in §5.2 why we

do not see this limitation as a flaw in terms of

modeling human language learning.

5 Discussion

5.1 Summary of Results

The results for each simulation can be viewed

side-by-side in Figure 6. The findings from this

series of experiments showed that even without

dropout, a Seq2Seq model is not simply learning to

Figure 4: Illustration of generalization to a novel

segments in a language with only eight sounds.

Specific IPA labels are hypothetical. Syllables

surrounded by the black box were presented in

training, while the circled syllable was withheld for

testing.

Figure 5: Illustration of generalization to a novel

feature values in a language with only nine sounds.

Specific IPA labels are hypothetical. Syllables

surrounded by the black box were presented in

training, while the circled syllable was withheld for

testing.

97

6

memorize <stem, reduplicant> pairs, since it was

able to generalize reduplication to novel stems (i.e.

novel syllables). We also showed that the model,

when using dropout in training, can reliably

generalize reduplication to novel segments.

5.2 Can humans generalize to novel feature

values?

When discussing generalization, Berent (2013)

used evidence from Hebrew speakers’ phonotactic

judgments to support the idea that they learn a true

identity function when acquiring their native

phonology. The judgments centered around a

phonotactic restriction in Hebrew that prohibits the

first two consonants in a stem from being identical.

For example, the word simem ‘he intoxicated’ is

grammatical, while the nonce word *sisem is not.

Berent (2013) showed that speakers generalized

this pattern by having them rate the acceptability

of various kinds of nonce forms.

The first results she discussed demonstrated

Hebrew speakers generalizing to novel words.

These words were made up of segments that were

attested in Hebrew. Speakers in this experiment

rated words with s-s-m stems (like *sisem above)

as significantly less acceptable than words with

s-m-m and p-s-m stems. This demonstrated that

Hebrew speakers were doing more than just

memorizing the lexicon of their language (i.e. that

they could extract phonotactic patterns).

The next results that Berent (2013) presented

involved Hebrew speakers generalizing the pattern

to novel segments. The segments of interest were

/tʃ/, /dʒ/ and /w/, all of which are not present in

native Hebrew stems. Even when these non-native

phonemes were used, Hebrew speakers rated

words whose first two consonants were identical

(e.g. dʒ-dʒ-r) as worse than those that did not

violate the phonotactic restriction (e.g. r-dʒ-dʒ).

This demonstrated that speakers had not just

memorized a list of consonants that cannot cooccur

(e.g. *pp, *ss, *mm, etc.) while acquiring their

phonological grammar.

Finally, Berent (2013) showed that speakers can

generalize the pattern to the segment [θ], which she

claimed represented generalization to a novel

feature value (which she referred to as across the

board generalization). While we agree with her

conclusions regarding the first two sets of results,

we find her interpretation of this final result to be

less convincing. The novel feature value that she

claimed was represented by [θ] was the feature

value [Wide]. However, this is a fairly

non-standard phonological feature. Using a more

standard featural representation for [θ], such as

[+anterior, +continuant, -strident] (Chomsky &

Halle, 1968), would mean that [θ] does not

represent a novel feature value for Hebrew, since

the language contains other, native, [+anterior],

[+continuant], and [-strident] sounds.

Returning to reduplication, a relevant

generalization experiment is Marcus et al. (1999).

In that experiment, infants generalized a

reduplication-like pattern to novel words with

novel segments, but not with novel feature values.

All of the words in Marcus et al.’s testing phase

used feature values that would have been familiar

to the infants from their native language of English.

To our knowledge, no experiment has shown

humans generalizing to truly novel feature values.

Because of this, we cannot conclude whether our

model’s results from §4.3 are human-like or not.

5.3 Why did dropout allow the model to

generalize to novel segments?

While we’ve shown that dropout increases the

Seq2Seq model’s scope of generalization, it still

remains unclear why this form of regularization

Figure 6: Full summary of results. Bars show the proportion of successful runs out of 25.

98

7

succeeds for this task. One hypothesis is that

dropout causes certain training data to be

indistiguishable from crucial testing data. For

example, if training includes the stems [pa] and

[da], but [ta] is withheld, a model without dropout

would not generalize to the novel item because it

was never trained on reduplicating [t]. However,

when dropout is applied, in a subset of epochs, the

unit activations distinguishing [t] from [d] will be

dropped out. This will allow the model to learn

how to reduplicate a syllable that is ambiguous

between [ta] and [da]. These ambiguous training

epochs could provide enough information to the

model for it to learn a function that generalizes

correctly to withheld segments.

This explanation could suggest that other forms

of regularization, such as an L2 prior, that don’t

create a similar kind of ambiguity, may not have

the same effect on reduplication learning.

5.4 Future Work

A number of avenues exist for furthering this line

of research. First of all, as mentioned in §5.2, the

full picture of how humans behave in regards to

generalizing reduplication-like patterns is still an

open question. Additionally, more direct modeling

of some of the experimental data that does exist on

this subject (e.g. Marcus et al., 1999) could help to

shed more light on how well a Seq2Seq network

with no explicit variables can model such results.

The simulations outlined here could also be

made to more realistically mimic natural language.

Stems of varying lengths, and with various syllabic

structures could pose an interesting challenge to

any model of reduplication. A reduplication

process that copies only part of the stem could also

test whether the model is capable of learning a

more complex identity function. Additionally,

presenting the data in a way that mimics the

exposure children receive could be useful, since

infants are not directly presented with stem-

reduplicant pairs in isolation.

Future research could also address the effects of

dropout presented here. First of all, since dropout

is one of many different regularization methods

(Wager et al., 2013), testing its alternatives could

be useful. And if it’s the case that dropout allows a

model to learn in a more human-like way, then

adding dropout to models of other domains of

language (such as phonotactics) should also be

explored.

5.5 Conclusion

In summary, we found that a Seq2Seq model could

learn a simple reduplication pattern and generalize

that pattern to novel items. Dropout increased the

model’s scope of generalization from novel

syllables to novel segments, demonstrating a

human-like behavior that has been previously used

as an argument against connectionist models with

no explicit variables (for other alternatives to

explicit variables in neural networks, see Garrido

Alhama, 2017; Gu et al., 2016). These results

weaken this line of argument against

connectionism. (Štekauer, Valera, & Körtvélyessy, 2012)

Acknowledgments

The authors would like to thank the members of the

UMass Sound Workshop, the members of the

UMass NLP Reading Group, Tal Linzen, and Ryan

Cotterell for helpful feedback and discussion.

Additionally, we would like to thank the

SIGMORPHON reviewers for their comments.

This work was supported by NSF Grant #1650957.

References

Bengio, Y., Simard, P., & Frasconi, P. (1994).

Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural

Networks, 5(2), 157–166.

Berent, I. (2013). The phonological mind. Trends in

Cognitive Sciences, 17(7), 319–327.

Berent, I., Wilson, C., Marcus, G. F., & Bemis, D. K.

(2012). On the role of variables in phonology:

Remarks on Hayes and Wilson 2008. Linguistic

Inquiry, 43(1), 97–119.

Chollet, F., & others. (2015). Keras. Retrieved

January 18, 2018, from https://github.com/keras-

team/keras

Chomsky, N., & Halle, M. (1968). The sound pattern

of English. New York, NY: Harper & Row.

Cotterell, R., Kirov, C., Sylak-Glassman, J.,

Yarowsky, D., Eisner, J., & Hulden, M. (2016).

The SIGMORPHON 2016 shared task—

morphological reinflection. In Proceedings of the

14th SIGMORPHON Workshop on Computational

Research in Phonetics, Phonology, and

Morphology (pp. 10–22).

Elman, J. L. (1990). Finding structure in time.

Cognitive Science, 14(2), 179–211.

Endress, A. D., Dehaene-Lambertz, G., & Mehler, J.

(2007). Perceptual constraints and the learnability

of simple grammars. Cognition, 105(3), 577–614.

99

8

Garrido Alhama, R. (2017). Computational modelling

of Artificial Language Learning. Dissertation,

Institute for Logic, Language and Computation

(ILLC) at the University of Amsterdam.

Gasser, M. (1993). Learning words in time: Towards

a modular connectionist account of the acquisition

of receptive morphology. Indiana University,

Department of Computer Science.

Gu, J., Lu, Z., Li, H., & Li, V. O. (2016).

Incorporating copying mechanism in sequence-to-

sequence learning. ArXiv Preprint

ArXiv:1603.06393.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural Computation, 9(8), 1735–

1780.

Kirov, C. (2017). Recurrent Neural Networks as a

Strong Domain-General Baseline for Morpho-

Phonological Learning. In Poster presented at the

2017 Meeting of the Linguistic Society of America.

Kirov, C., & Cotterell, R. (2018). Recurrent Neural

Networks in Linguistic Theory: Revisiting Pinker

& Prince (1988) and the Past Tense Debate.

Levy, O., Lee, K., FitzGerald, N., & Zettlemoyer, L.

(2018). Long Short-Term Memory as a

Dynamically Computed Element-wise Weighted

Sum. ArXiv Preprint ArXiv:1805.03716.

Marcus, G. (2001). The algebraic mind. Cambridge,

MA: MIT Press.

Marcus, G., Vijayan, S., Rao, S. B., & Vishton, P. M.

(1999). Rule learning by seven-month-old infants.

Science, 283(5398), 77–80.

Moreton, E. (2012). Inter-and intra-dimensional

dependencies in implicit phonotactic learning.

Journal of Memory and Language, 67(1), 165–

183.

Pater, J. (2018). Generative linguistics and neural

networks at 60: foundation, friction, and fusion.

Language.

Rahman, F. (2016). seq2seq: Sequence to Sequence

Learning with Keras. Python. Retrieved from

https://github.com/farizrahman4u/seq2seq

Rumelhart, D., & McClelland, J. (1986). On learning

the past tenses of English verbs. In J. McClelland

& D. Rumelhart (Eds.), Parallel Distributed

Processing: Explorations in the Microstructure of

Cognition (Vol. 2: Psychological and Biological

Models, pp. 216–271). The MIT Press.

Seidenberg, M. S., & Elman, J. L. (1999). Do infants

learn grammar with algebra or statistics? Science,

284(5413), 433f–433f.

Smolensky, P., & Legendre, G. (2006). The harmonic

mind: From neural computation to optimality-

theoretic grammar (Cognitive architecture), Vol.

1. MIT press.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,

I., & Salakhutdinov, R. (2014). Dropout: A simple

way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1),

1929–1958.

Štekauer, P., Valera, S., & Körtvélyessy, L. (2012).

Word-formation in the world’s languages: a

typological survey. Cambridge University Press.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014).

Sequence to sequence learning with neural

networks. In Advances in neural information

processing systems (pp. 3104–3112).

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-

rmsprop: Divide the gradient by a running average

of its recent magnitude. COURSERA: Neural

Networks for Machine Learning, 4(2), 26–31.

Tupper, P., & Shahriari, B. (2016). Which Learning

Algorithms Can Generalize Identity-Based Rules

to Novel Inputs? ArXiv Preprint

ArXiv:1605.04002.

Wager, S., Wang, S., & Liang, P. S. (2013). Dropout

training as adaptive regularization. Advances in

Neural Information Processing Systems, 351–359.

100

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 101–110
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

A Characterwise Windowed Approach to Hebrew Morphological
Segmentation

Amir Zeldes
Department of Linguistics

Georgetown University
amir.zeldes@georgetown.edu

Abstract

This paper presents a novel approach to the
segmentation of orthographic word forms in
contemporary Hebrew, focusing purely on
splitting without carrying out morphological
analysis or disambiguation. Casting the anal-
ysis task as character-wise binary classifica-
tion and using adjacent character and word-
based lexicon-lookup features, this approach
achieves over 98% accuracy on the benchmark
SPMRL shared task data for Hebrew, and 97%
accuracy on a new out of domain Wikipedia
dataset, an improvement of ≈4% and 5% over
previous state of the art performance.

1 Introduction

Hebrew is a morphologically rich language in
which, as in Arabic and other similar languages,
space-delimited word forms contain multiple units
corresponding to what other languages (and most
POS tagging/parsing schemes) consider multiple
words. This includes nouns fused with preposi-
tions, articles and possessive pronouns, as in (1),
or verbs fused with preceding conjunctions and
object pronouns, as in (2), which uses one ‘word’
to mean “and that they found him”, where the first
two letters correspond to ‘and’ and ‘that’ respec-
tively, while the last two letters after the verb mean
‘him’.1

(1) |מהבית
〈m.h.byt〉 [me.ha.bayit]
from.the.house

(2) ושמצאוהו
〈w.š.mc’w.hw〉 [ve.še.mtsa’u.hu]
and.that.found-3-PL.him

1In all Hebrew examples below, angle brackets denote
transliterated graphemes with dots separating morphemes,
and square brackets represent standard Hebrew pronuncia-
tion. Dot-separated glosses correspond to the segments in
the transliteration.

This complexity makes tokenization for Hebrew
a challenging process, usually carried out in two
steps: tokenization of large units, delimited by
spaces or punctuation as in English, and a sub-
sequent segmentation of the smaller units within
each large unit. To avoid confusion, the rest of
this paper will use the term ‘super-token’ for large
units such as the entire contents of (1) and ‘sub-
token’ for the smaller units.

Beyond this, three issues complicate Hebrew
segmentation further. Firstly, much like Arabic
and similar languages, Hebrew uses a consonantal
script which disregards most vowels. For exam-
ple in (2) the sub-tokens ve ‘and’ and še ‘that’ are
spelled as single letters 〈w〉 and 〈š〉. While some
vowels are represented (mainly word-final or et-
ymologically long vowels), these are denoted by
the same letters as consonants, e.g. the final -u in
vešemtsa’uhu, spelled as 〈w〉, the same letter used
for ve ‘and’. This means that syllable structure, a
crucial cue for segmentation, is obscured.

A second problem is that unlike Arabic, He-
brew has morpheme reductions creating segments
which are pronounced, but not distinguished in the
orthography.2 This affects the definite article after
some prepositions, as in (3) and (4), which mean
‘in a house’ and ‘in the house’ respectively.

(3) בבית
〈b.byt〉 [be.bayit]
in.house

(4) בבית
〈b..byt〉 [b.a.bayit]
in.the.house

2A reviewer has mentioned that Arabic does have some
reductions, e.g. in the fusion of articles with the preposition
li- ‘to’ in li.l- ‘to the’. This is certainly true and problematic
for morphological segmentation of Arabic, however in these
cases there is always some graphical trace of the existence of
the article, whereas in the Hebrew cases discussed here, no
trace of the article is found.

101

https://doi.org/10.18653/v1/P17

In (4), the definite article ha merges with the
preposition be to produce the pronounced form ba;
however the lack of vowel orthography means that
both forms are spelled alike.

A final problem is the high degree of ambiguity
in written Hebrew, which has often been exempli-
fied by the following example, reproduced from
Adler and Elhadad (2006), which has a large num-
ber of possible analyses.

(5) Mבצל
〈b.cl.m〉 be.cil.am - in.shadow.their
〈b.clm〉 (be./b.a.)celem - in.(a/the).image
〈b.clm〉 (be./b.a.)calam in.(a/the).photographer

〈bcl.m〉 bcal.am - onion.their
〈bclm〉 becelem - Betzelem (organization)

Because some options are likelier than others, in-
formation about possible segmentations, frequen-
cies and surrounding words is crucial. We also
note that although there are 7 distinct analyses in
(5), in terms of segmenting the orthography, only
two positions require a decision: either 〈b〉 is fol-
lowed by a boundary or not, and either 〈l〉 is or
not.

Unlike previous approaches which attempt a
complete morphological analysis, in this paper the
focus is on pure orthographic segmentation: de-
ciding which characters should be followed by
a boundary. Although it is clear that full mor-
phological disambiguation is important, I will ar-
gue that a pure splitting task for Hebrew can be
valuable if it produces substantially more accu-
rate segmentations, which may be sufficient for
some downstream applications (e.g. sequence-to-
sequence MT)3, but may also be fed into a mor-
phological disambiguator. As will be shown here,
this simpler task allows us to achieve very high
accuracy on shared task data, substantially out-
performing the pure segmentation accuracy of the
previous state of the art while remaining robust
against out-of-vocabulary (OOV) items and do-
main changes, a crucial weakness of existing tools.

The contributions of this work are threefold:

1. A robust, cross-domain state of the art model
for pure Hebrew word segmentation, inde-
pendent of morphological disambiguation,
with an open source implementation and pre-
trained models

3cf. Habash and Sadat (2006) on consequences of pure
tokenization for Arabic MT.

2. Introducing and evaluating a combination of
shallow string-based features and ambiguous
lexicon lookup features in a windowed ap-
proach to binary boundary classification

3. Providing new resources: a freely available,
out-of-domain dataset from Wikipedia for
evaluating pure segmentation; a converted
version in the same format as the origi-
nal Hebrew Treebank data used in previous
work; and an expanded morphological lexi-
con based on Universal POS tags.

2 Previous Work

Earlier approaches to Hebrew morphological seg-
mentation include finite-state analyzers (Yona and
Wintner, 2005) and multiple classifiers for mor-
phological properties feedings into a disambigua-
tion step (Shacham and Wintner, 2007). Lattice
based approaches have been used with variants of
HMMs and the Viterbi algorithm (Adler and El-
hadad, 2006) in order to generate all possible anal-
yses supported by a broad coverage lexicon, and
then disambiguate in a further step. The main dif-
ficulty encountered in all these approaches is the
presence of items missing from the lexicon, either
due to OOV lexical items or spelling variation, re-
sulting in missing options for the disambiguator.
Additionally, there have been issues in comparing
results with different formats, datasets, and seg-
mentation targets, especially before the creation of
a standard shared task dataset (see below).

Differently from work on Arabic segmentation,
where state of the art work operates as either a
sequence tagging task (often using BIO-like en-
coding and CRF/RNN sequence models, Mon-
roe et al. 2014), or a holistic character-wise seg-
mentation ranking task (Abdelali et al., 2016),
work on Hebrew segmentation has focused on seg-
mentation in the context of complete morpholog-
ical analysis, including categorical feature out-
put (gender, tense, etc.). This is in part due to
tasks requiring the reconstruction of orthograph-
ically unexpressed articles as in (4) and other or-
thographic changes which require morphological
disambiguation, such as recovering base forms of
inflected nouns and verbs, and inserting segments
which cannot be aligned to any orthographic ma-
terial, as in (6) below. In this example, an un-
expressed possessive preposition šel is inserted,
in contrast to segmentation practices for the same
construction e.g. in Arabic and other languages,

102

where the pronoun sub-token is interpreted as in-
herently possessive.

(6) ביתה
〈byt.h〉 [beyt.a] ‘her house’ (house.her)
Target analysis:
〈byt šl hy’〉 [bayit šel hi] ‘house of she’

Most recently, the shared task on Statistical Pars-
ing of Morphologically Rich Languages (SPMRL
2013-2015, see Seddah et al. 2014) introduced a
standard benchmark dataset for Hebrew morpho-
logical segmentation based on the Hebrew Tree-
bank (Sima’an et al. 2001; the data has ≈94K
super-tokens for training and ≈21K for testing
and development), with a corresponding shared
task scored in several scenarios. Systems were
scored on segmentation, morphological analysis
and syntactic parsing, while working from raw
text, from gold segmentation (for morphological
analysis and parsing), or from gold segmentation
and morphology (for parsing).

The current state of the art is the open source
system yap (‘yet another parser’, More and Tsar-
faty 2016), based on joint morphological and syn-
tactic disambiguation in a lattice-based parsing ap-
proach with a rich morphological lexicon. This
will be the main system for comparison in Section
5. Although yap was designed for a fundamentally
different task than the current system, i.e. canoni-
cal rather than surface segmentation (cf. Cotterell
et al. 2016), it is nevertheless currently also the
best performing Hebrew segmenter overall and
widely used, making it a good point for compar-
ison. Conversely, while the approach in this paper
cannot address morphological disambiguation as
yap and similar systems do, it will be shown that
substantially better segmentation accuracy can be
achieved using local features, evaluated character-
wise, which are much more robustly attested in the
limited training data available.

3 Character-wise Classification

In this paper we cast the segmentation task as
character-wise binary classification, similarly to
approaches in other languages, such as Chinese
(Lee and Huang, 2013). The goal is to predict for
each character in a super-token (except the last)
whether it should be followed by a boundary. Al-
though the character-wise setup prevents a truly
global analysis of word formation in the way that a
lattice-based model allows, it turns out to be more

robust than previous approaches, in large part be-
cause it does not require a coherent full analysis in
the case of OOV items (see Section 5).

3.1 Feature Extraction

Our features target a window of n characters
around the character being considered for a fol-
lowing boundary (the ‘target’ character), as well
as characters in the preceding and following super-
tokens. In practice we set n to ±2, meaning each
classification mainly includes information about
the preceding and following two characters.

The extracted features for each window can be
divided into three categories: character identity
features (i.e. which letters are observed), numer-
ical position/length features and lexicon lookup
features. The lexicon is based on the fully in-
flected form lexicon created by the MILA center,
also used by More and Tsarfaty (2016), but POS
tags have been converted into much less sparse
Universal POS tags (cf. Petrov et al. 2012) match-
ing the Hebrew Treebank data set. Entries not
corresponding to tags in the data (e.g. compound
items that would not be a single unit, or additional
POS categories) receive the tag X, while complex
entries (e.g. NOUN + possessive) receive a tag af-
fixed with ‘CPLX’. Multiple entries per word form
are possible (see Section 4.2).

Character features For each target character
and the surrounding 2 characters in either direc-
tion, we consider the identity of the letter or punc-
tuation sign from the set {",-,%,',.,?,!,/} as a cat-
egorical feature (using native Hebrew characters,
not transliteration). Unavailable characters (less
than 2 characters from beginning/end of word)
and OOV characters are substituted by the under-
score. We also encode the first and last letter of the
preceding and following super-tokens in the same
way. The rationale for choosing these letters is that
any super-token always has a first and last charac-
ter, and in Hebrew these will also encode definite
article congruence and clitic pronouns in adjacent
super-tokens, which are important for segment-
ing units. Finally, for each of the five character
positions within the target super-token itself, we
also encode a boolean feature indicating whether
the character could be ‘vocalic’, i.e. whether it is
one of the letters sometimes used to represent a
vowel: {’,h,w,y}. Though this is ostensibly redun-
dant with letter identity, it is actually helpful in the
final model (see Section 7).

103

location substring lexicon response
super token [šmhpkny] _
str so far [šmh]... ADV|NOUN|VERB

str remaining ..[pkny] _
str -1 remain ..[hpkny] _
str -2 remain .[mhpkny] ADJ|NOUN|CPLXN

str from -4 [__šmh].... _

str from -3 [_šmh].... _

str from -2 [šmh].... ADV|NOUN|VERB

str from -1 .[mh].... ADP|ADV

str to +1 ..[hp]... _
str to +2 ..[hpk].. NOUN|VERB

str to +3 ..[hpkn]. _
str to +4 ..[hpkny] _
prev string [xšbnw] VERB

next string [hw’] PRON|COP

Table 1: Lexicon lookup features for character 3 in the
super-token š.mhpkny. Overflow positions (e.g. sub-
string from char -4 for the third character) return ‘_’.

Lexicon lookup Lexicon lookup is performed
for several substring ranges, chosen using the de-
velopment data: the entire super-token, and char-
acters up to the target inclusive and exclusive; the
entire remaining super-token characters inclusive
and exclusive; the remaining substrings starting at
target positions -1 and -2; 1, 2, 3 and 4-grams
around the window including the target charac-
ter; and the entire preceding and following super-
token strings. Table 1 illustrates this for character
#3 in the middle super-token from the trigram in
(7). The value of the lexicon lookup is a categori-
cal variable consisting of all POS tags attested for
the substring in the lexicon, concatenated with a
separator into a single string.

(7) הוא שמהפכני חשבנו
〈xšbnw š.mhpkny hw’〉
[xašavnu še.mahapxani hu]
thought-1PL that.revolutionary is
‘we thought that it is revolutionary’

Numerical features To provide information
about super-token shape independent of lexicon
lookup, we also extract the super-token lengths of
the current, previous and next super-token, and en-
code the numerical position of the character being
classified as integers. We also experimented with
a ‘frequency’ feature, representing the ratio of the
product of frequencies of the substrings left and
right of a split under consideration divided by the

frequency of the whole super-token. Frequencies
were taken from the IsraBlog dataset word counts
provided by Linzen (2009).4 While this fraction
in no way represents the probability of a split, it
does provide some information about the relative
frequency of parts versus whole in a naive two-
segment scenario, which can occasionally help the
classifier decide whether to segment ambiguous
cases (although this feature’s contribution is small,
it was retained in the final model, see Section 7).

Word embeddings For one of the learning ap-
proaches tested, a deep neural network (DNN)
classifier, word embeddings from a Hebrew dump
of Wikipedia were added for the current, preced-
ing and following super-tokens, which were ex-
pected to help in identifying the kinds of super-
tokens seen in OOV cases. However somewhat
surprisingly, the approach using these features
turned out not to deliver the best results despite
outperforming the previous state of the art, and
these features are not used in the final system (see
Section 5).

Note that although we do not encode word iden-
tities for any super-token, and even less so for
models not using word embeddings, length infor-
mation in conjunction with lexicon lookup and
first and last character can already give a strong
indication of the surrounding context, at least for
those words which turn out to be worth learning.
For example, the frequent purpose conjunction
〈kdy〉 kedey ‘in order to’, which strongly signals
a following infinitive whose leading 〈l〉 should not
be segmented, is uniquely identifiable as a three
letter conjunction (tag SCONJ) beginning with 〈k〉
and ending with 〈y〉. This combination, if rel-
evant for segmentation, can be learned and as-
signed weights for each of the characters in ad-
jacent words.

3.2 Learning Approach

Several learning approaches were tested for the
boundary classification task, including decision
tree based classifiers, such as a Random Forest
classifier, the Extra Trees variant of the same al-
gorithm (Geurts et al., 2006), and Gradient Boost-
ing, all using the implementation in scikit-learn
(Pedregosa et al., 2011), as well as a DNN clas-
sifier implemented in TensorFlow (Abadi et al.,
2016). An initial attempt using sequence-to-
sequence learning with an RNN was abandoned

4Online at http://tallinzen.net/frequency/

104

early as it underperformed other approaches, pos-
sibly due to the limited size of the training data.

For tree-based classifiers, letters and categori-
cal lexicon lookup values were pseudo-ordinalized
into integers (using a non-meaningful alphabetic
ordering), and numerical features were retained
as-is. For the DNN, the best feature represen-
tation based on the validation set was to encode
characters and positions as one-hot vectors, lex-
icon lookup features as trainable dense embed-
dings, and to bucketize length features in single
digit buckets up to a maximum of 15, above which
all values are grouped together. Additionally, we
prohibit segmentations between Latin letters and
digits (using regular expressions), and forbid pro-
ducing any prefix/suffix not attested in training
data, ruling out rare spurious segmentations.

4 Experimental Setup

4.1 Data

Evaluation was done on two datasets. The bench-
mark SPMRL dataset was transformed by discard-
ing all inserted sub-tokens not present in the in-
put super-tokens (i.e. inserted articles). We re-
vert alterations due to morphological analysis (de-
inflection to base forms), and identify the seg-
mentation point of all clitic pronouns, prepositions
etc., marking them in the super-tokens.5 Figure
1 illustrates the procedure, which was manually
checked and automatically verified to reconstitute
correctly back into the input data.

A second test set of 5,000 super-tokens (7,100
sub-tokens) was constructed from another domain
to give a realistic idea of performance outside the
training domain. While SPMRL data is taken
from newswire material with highly standard or-
thography, this dataset was taken from Hebrew
Wikipedia NER data made available by Al-Rfou
et al. (2015). Since that dataset was not seg-
mented into subtokens, manual segmentation of
the first 5,000 tokens was carried out, which repre-
sent shuffled sentences from a wide range of top-
ics. This data set is referred to below as ‘Wiki5K’.
Both datasets are provided along with the code for
this paper via GitHub6 as new test sets for future

5For comparability with previous results, we use the exact
dataset and splits used by More and Tsarfaty (2016), despite a
known mid-document split issue that was corrected in version
2 of the Hebrew Treebank data. We thank the authors for
providing the data and for help reproducing their setup.

6https://github.com/amir-zeldes/
RFTokenizer

evaluations of Hebrew segmentation.

4.2 Lexicon extension
A major problem in Hebrew word segmentation
is dealing with OOV items, and especially those
due not to regular morphological processes, but to
foreign names. If a foreign name begins with a
letter that can be construed as a prefix, and neither
the full name nor the substring after the prefix is
attested in the lexicon, the system must resort to
purely contextual information for disambiguation.
As a result, having a very complete list of possible
foreign names is crucial.

The lexicon mentioned above has very exten-
sive coverage of native items as well as many for-
eign items, and after tag-wise conversion to Uni-
versal POS tags, contains over 767,000 items, in-
cluding multiple entries for the same string with
different tags. However its coverage of foreign
names is still partial. In order to give the sys-
tem access to a broader range of foreign names,
we expanded the lexicon with proper name data
from three sources:

• WikiData persons with a Hebrew label, ex-
cluding names whose English labels contain
determiners, prepositions or pronouns

• WikiData cities with a Hebrew label, again
excluding items with determiners, preposi-
tions or pronouns in English labels

• All named entities from the Wikipedia NER
data found later than the initial 5K tokens
used for the Wiki5K data set

These data sources were then white-space tok-
enized, and all items which could spuriously be
interpreted as a Hebrew article/preposition + noun
were removed. For example, a name ‘Leal’ 〈l’l〉
is excluded, since it can interfere with segment-
ing the sequence 〈l.’l〉 la’el ‘to God’. This pro-
cess added over 15,000 items, or ≈2% of lexi-
con volume, all labeled PROPN. In Section 7 per-
formance with and without this extension is com-
pared.

4.3 Evaluation Setup
Since comparable segmentation systems, includ-
ing the previous state of the art, do insert recon-
structed articles and carry out base form transfor-
mations (i.e. they aim to produce the gold format
in Figure 1), we do not report or compare results to

105

Input: שכר לעובדים ‘pay for (the) workers’
SPMRL gold:
 ’NN… ‘pay שכר שכר 21
 ’PREP… ‘for ל ל 22
 ’DEF… ‘(the) ה ה 23
 ’NN… ‘workers עובד עובדים 24

Transformed:
 ’pay‘ שכר
 ’for|workers‘ ל|עובדים

Input: עליו ‘on him’
SPMRL gold:
 ’-IN… ‘on על עלי 29
 ’S_PRN… ‘he הוא הוא 30

Transformed:
 ’on|him‘ עלי|ו

Figure 1: Transformation of SPMRL style data to pure segmentation information. Left: inserted article is deleted;
right: a clitic pronoun form is restored.

previously published scores. All systems were re-
run on both datasets, and no errors were counted
where these resulted from data alterations. Specif-
ically, other systems are never penalized for re-
constructing or omitting inserted units such as ar-
ticles, and when constructing clitics or alternate
base forms of nouns or verbs, only the presence
or absence of a split was checked, not whether
inferred noun or verb lemmas are correct. This
leads to higher scores than previously reported, but
makes results comparable across systems on the
pure segmentation task.

5 Results

Table 2 shows the results of several systems on
both datasets.7 The column ‘% perf’ indicates the
proportion of perfectly segmented super-tokens,
while the next three columns indicate precision,
recall and F-score for boundary detection, not in-
cluding the trivial final position characters.

The first baseline strategy of not segmenting
anything is given in the first row, and unsurpris-
ingly gets many cases right, but performs badly
overall. A more intelligent baseline is provided
by UDPipe (Straka et al. 2016; retrained on the
SPMRL data), which, for super-tokens in mor-
phologically rich languages such as Hebrew, im-
plements a ‘most common segmentation’ baseline

7An anonymous reviewer suggested that it would also be
interesting to add an unsupervised pure segmentation system
such as Morfessor (Creutz and Lagus, 2002) to evaluate on
this task. This would certainly be an interesting comparison,
but due to the brief response period it was not possible to
add this experiment before publication. It can however be
expected that results would be substantially worse than yap,
given the centrality of the lexicon representation to this task,
which can be seen in detail in the ablation tests in Section 7.

% perf P R F
SPMRL
baseline 69.65 – – –
UDPipe 89.65 93.52 68.82 79.29
yap 94.25 86.33 96.33 91.05
RF 98.19 97.59 96.57 97.08
DNN 97.27 95.90 95.01 95.45
Wiki5K
baseline 67.61 – – –
UDPipe 87.39 92.03 64.88 76.11
yap 92.66 85.55 92.34 88.81
RF 97.63 97.41 95.31 96.35
DNN 95.72 94.95 92.22 93.56

Table 2: System performance on the SPMRL and
Wiki5K datasets.

(i.e. each super-token is given its most common
segmentation from training data, forgoing seg-
mentation for OOV items).8 Results for yap repre-
sent pure segmentation performance from the pre-
vious state of the art (More and Tsarfaty, 2016).

The best two approaches in the present paper
are represented next: the Extra Trees Random For-
est variant,9 called RFTokenizer, is labeled RF and
the DNN-based system is labeled DNN. Surpris-
ingly, while the DNN is a close runner up, the best
performance is achieved by the RFTokenizer, de-

8UDPipe also implements an RNN tokenizer to seg-
ment punctuation spelled together with super-tokens; how-
ever since the evaluation dataset already separates such punc-
tuation symbols, this component can be ignored here.

9Extra Trees outperformed Gradient Boosting and Ran-
dom Forest in hyperparameter selection tuned on the dev
set. Using a grid search led to the choice of 250 estimators
(tuned in increments of 10), with unlimited features and de-
fault scikit-learn values for all other parameters.

106

spite not having access to word embeddings. Its
high performance on the SPMRL dataset makes
it difficult to converge to a better solution using
the DNN, though it is conceivable that substan-
tially more data, a better feature representation
and/or more hyperparameter tuning could equal or
surpass the RFTokenizer’s performance. Coupled
with a lower cost in system resources and external
dependencies, and the ability to forgo large model
files to store word embeddings, we consider the
RFTokenizer solution to be better given the cur-
rent training data size.

Performance on the out of domain dataset is en-
couragingly nearly as good as on SPMRL, sug-
gesting our features are robust. This is especially
clear compared to UDPipe and yap, which de-
grade more substantially. A key advantage of the
present approach is its comparatively high pre-
cision. While other approaches have good re-
call, and yap approaches RFTokenizer on recall for
SPMRL, RFTokenizer’s reduction in spurious seg-
mentations boosts its F-score substantially. To see
why, we examine some errors in the next section,
and perform feature ablations in the following one.

6 Error Analysis

Looking at the SPMRL data, RFTokenizer makes
relatively few errors, the large majority of which
belong to two classes: morphologically ambigu-
ous cases with known vocabulary, as in (8), and
OOV items, as in (9). In (8), the sequence 〈qch〉
could be either the noun katse ‘edge’ (single super-
token and sub-token), or a possessed noun kits.a
‘end of FEM-SG’ with a final clitic pronoun pos-
sessor (two sub-tokens). The super-token coinci-
dentally begins a sentence “The end of a year ...”,
meaning that the preceding unit is the relatively
uninformative period, leaving little local context
for disambiguating the nouns, both of which could
be followed by šel ‘of’.

(8) שנה של
Gold:

קצה
Pred:

〈qc.h šl šnh〉 〈qch šel šnh〉
[kits.a šel šana] [katse šel šana]
end.SG-F of year edge of year
“The end of a year” “An edge of a year”

A typical case of an OOV error can be seen in (9).
In this example, the lexicon is missing the name
〈w’r’lh〉 ‘Varela’, but does contain a name 〈’r’lh〉
‘Arela’. As a result, given the context of a preced-

ing name ‘Maria’, the tokenizer opts to recognize
a shorter proper name and assigns the letter ‘w’ to
be the word ‘and’.

(9) . ואראלה |מריה
Gold: Pred:
〈mryh w’r’lh .〉 〈mryh w.’r’lh .〉
[mariya varela] [mariya ve.arela]
‘Maria Varela.’ ‘Maria and Arela.’

To understand the reasons for RFTokenizer’s
higher precision compared to other tools, it is use-
ful to consider errors which RFTokenizer succeeds
in avoiding, as in (10)-(11) (only a single bold-
faced word is discussed in detail for space rea-
sons; broader translations are given for context,
keeping Hebrew word order). In (10), RF and yap
both split w ‘and’ from the OOV item 〈bwrmwr〉
‘Barmore’ correctly. The next possible boundary,
‘b.w’, is locally unlikely, as a spelling ‘bw’ makes
a reading [bo] or [bu] likely, which is incompatible
with the segmentation. However, yap considers
global parsing likelihood, and the verb ‘run into’
takes the preposition b ‘in’. It segments the ‘b’
in the OOV item, a decision which RFTokenizer
avoids based on low local probabilities.

(10) “ran into Campbell and Barmore”
RF: yap:
〈w.bwrmwr〉 〈w.b.wrmwr〉

(11) “meanwhile continues the player, who re-
turned to practice last week, to-train”
RF: yap:
〈lht’mn〉 〈l.ht’m.n〉

In (11), RF leaves the medium frequency verb ‘to
train’ unsegmented. By contrast, yap considers the
complex sentence structure and long distance to
the fronted verb ‘continues’, and prefers a locally
very improbable segmentation into the preposition
l ‘to’, a noun ht’m ‘congruence’ and a 3rd per-
son feminine plural possessive n: ‘to their congru-
ence’. Such an analysis is not likely to be guessed
by a native speaker shown this word in isolation,
but becomes likelier in the context of evaluating
possible parse lattices with limited training data.

We speculate that lower reliance on complete
parses makes RFTokenizer more robust to errors,
since data for character-wise decisions is densely
attested. In some cases, as in (10), it is possible
to segment individual characters based on similar-
ity to previously seen contexts, without requiring

107

super-tokens to be segmentable using the lexicon.
This is especially important for partially correct
results, which affect recall, but not necessarily the
percentage of perfectly segmented super-tokens.

In Wiki5K we find more errors, degrading per-
formance ≈0.7%. Domain differences in this data
lead not only to OOV items (esp. foreign names),
but also distributional and spelling differences.
In (12), heuristic segmentation based on a sin-
gle character position backfires, and the tokenizer
over-zealously segments. This is due to neither the
place ‘Hartberg’, nor a hypothetical ‘Retberg’ be-
ing found in the lexicon, and the immediate con-
text being uninformative surrounding commas.

(12) , הרטברג ,
Gold: Pred:
〈hrt.brg〉 〈h.rt.brg〉
[hartberg] [ha.retberg]
‘Hartberg’ ‘the Retberg’

7 Ablation tests

Table 3 gives an overview of the impact on per-
formance when specific features are removed: the
entire lexicon, lexicon expansion, letter identity,
‘vowel’ features from Section 3.1, and both of the
latter. Performance is high even in ablation sce-
narios, though we keep in mind that baselines for
the task are high (e.g. ‘most frequent lookup’, the
UDPipe strategy, achieves close to 90%).

The results show the centrality of the lexicon:
removing lexicon lookup features degrades per-
formance by about 3.5% perfect accuracy, or 5.5
F-score points. All other ablations impact perfor-
mance by less than 1% or 1.5 F-score points. Ex-
panding the lexicon using Wikipedia data offers
a contribution of 0.3–0.4 points, confirming the
original lexicon’s incompleteness.10

Looking more closely at the other features, it is
surprising that identity of the letters is not crucial,
as long as we have access to dictionary lookup us-
ing the letters. Nevertheless, removing letter iden-
tity impacts especially boundary recall, perhaps

10An anonymous reviewer has asked whether the same re-
sources from the NER dataset have been or could be made
available to the competing systems. Unfortunately it was
not possible to re-train yap using this data, since the lexicon
used by that system has a much more complex structure com-
pared to the simple PROPN tags used in our approach (i.e. we
would need to codify much richer morphological information
for the added words). However the ablations show that even
without the expanded lexicon, RFTokenizer outperforms yap
by a large margin. For UDPipe no lexicon is used, so that this
issue does not arise.

% perf P R F
SPMRL
FINAL 98.19 97.59 96.57 97.08
-expansion 98.01 97.25 96.35 96.80
-vowels 97.99 97.55 95.97 96.75
-letters 97.77 96.98 95.73 96.35
-letr-vowl 97.57 97.56 94.44 95.97
-lexicon 94.79 92.08 91.46 91.77
Wiki5K
FINAL 97.63 97.41 95.31 96.35
-expansion 97.33 96.64 95.31 95.97
-vowels 97.51 97.56 94.87 96.19
-letters 97.27 96.89 94.71 95.79
-letr-vowl 96.72 97.17 92.77 94.92
-lexicon 94.72 92.53 91.51 92.01

Table 3: Effects of removing features on performance,
ordered by descending F-score impact on SPMRL.

because some letters receive identical lookup val-
ues (e.g. single letter prepositions such as b ‘in’, l
‘to’) but have different segmentation likelihoods.

The ‘vowel’ features, though ostensibly redun-
dant with letter identity, help a little, causing 0.33
SPMRL F-score point degradation if removed. A
cursory inspection of differences with and with-
out vowel features indicates that adding them al-
lows for stronger generalizations in segmenting af-
fixes, especially clitic pronouns (e.g. if a noun is
attested with a ‘vocalic’ clitic like h ‘hers’, it gen-
eralizes better to unseen cases with w ‘his’). In
some cases, the features help identify phonotacti-
cally likely splits in a ‘vowel’ rich environment,
as in (13) with the sequence 〈hyy〉 which is seg-
mented correctly in the +vowels setting.

(13) Nהייתכ
+Vowels: -Vowels:
〈h.yytkn〉 〈hyytkn〉
[ha.yitaxen]
QUEST.possible
‘is it possible?’

Removing both letter and vowel features essen-
tially reduces the system to using only the sur-
rounding POS labels. However since classification
is character-wise and a variety of common situa-
tions can nevertheless be memorized, performance
does not break down drastically. The impact on
Wiki5k is stronger, possibly because the necessary
memorization of familiar contexts is less effective
out of domain.

108

8 Discussion

This paper presented a character-wise approach to
Hebrew segmentation, relying on a combination
of shallow surface features and windowed lexi-
con lookup features, encoded as categorical vari-
ables concatenating possible POS tags for each
window. Although the approach does not corre-
spond to a manually created finite state morphol-
ogy or a parsing-based approach, it can be conjec-
tured that the sequence of possible POS tag com-
binations at each character position in a sequence
of words gives a similar type of information about
possible transitions at each potential boundary.

The character-wise approach turned out to be
comparatively robust, possibly thanks to the dense
training data available, when compared to the
smaller order of magnitude if data is interpreted
with each super-token, or even each sentence
forming a single observation. Nevertheless, there
are multiple limitations to the current approach.

Firstly, RFTokenizer does not reconstruct unex-
pressed articles. Although this is an important task
in Hebrew NLP, it can be argued that definiteness
annotation can be performed as part of morpholog-
ical analysis after basic segmentation has been car-
ried out. An advantage of this approach is that the
segmented data corresponds perfectly to the input
string, reducing processing efforts needed to keep
track of the mapping of raw and tokenized data.

Secondly, there is still room for improvement,
and it seems surprising that the DNN approach
with embeddings could not outperform the RF
approach. More training data is likely to make
DNN/RNN approaches more effective, similarly
to recent advances in tokenization for languages
such as Chinese (cf. Cai and Zhao 2016, though
we recognize Hebrew segmentation is much more
ambiguous, and embeddings are likely more use-
ful for ideographic scripts).11 We are currently ex-
perimenting with word representations optimized
to the segmentation task, including using embed-
dings or Brown clusters grouping super-tokens
with different distributions. Finally, the frequency

11During the review period of this paper, a paper by Shao
et al. (2018) appeared which nearly matches the performance
of yap on Hebrew segmentation using an RNN approach.
Achieving an F-score of 91.01 compared to yap’s score of
91.05, but on a dataset with slightly different splits, this sys-
tem gives a good baseline for a tuned RNN-based system.
However comparing to RFTokenizer’s score of 97.08, it is
clear that while RNNs can also do well on the current task,
there is still a substantial gap compared to the windowed,
lexicon-based binary classification approach take here.

data obtained from Linzen (2009) is relatively
small (only 20K forms), and not error-free due to
automatic processing, meaning that extending this
data source may yield improvements as well.

Acknowledgments

This work benefited from research on morpholog-
ical segmentation for Coptic, funded by the Na-
tional Endowment for the Humanities (NEH) and
the German Research Foundation (DFG) (grants
HG-229371 and HAA-261271). Thanks are also
due to Shuly Wintner, Nathan Schneider and the
anonymous reviewers for valuable comments on
earlier versions of this paper, as well as to Amir
More and Reut Tsarfaty for their help in reproduc-
ing the experimental setup for comparing yap and
other systems with RFTokenizer.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorFlow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation,
pages 265–283, Savannah, GA.

Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and
Hamdy Mubarak. 2016. Farasa: A fast and furi-
ous segmenter for Arabic. In Proceedings of the
NAACL 2016: Demonstrations, pages 11–16, San
Diego, CA.

Meni Adler and Michael Elhadad. 2006. An unsuper-
vised morpheme-based HMM for Hebrew morpho-
logical disambiguation. In Proceedings of the 21st
International Conference on Computational Lin-
guistics and 44th Annual Meeting of the ACL, pages
665–672, Sydney.

Rami Al-Rfou, Vivek Kulkarni, Bryan Perozzi, and
Steven Skiena. 2015. Polyglot-NER: Massive mul-
tilingual named entity recognition. In Proceedings
of the 2015 SIAM International Conference on Data
Mining, Vancouver, Canada.

Deng Cai and Hai Zhao. 2016. Neural word segmen-
tation learning for Chinese. In Proceedings of ACL
2016, pages 409–420, Berlin.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016.
A joint model of orthography and morphological
segmentation. In Proceedings of NAACL-HLT 2016,
pages 664–669, San Diego, CA.

109

Mathias Creutz and Krista Lagus. 2002. Unsuper-
vised discovery of morphemes. In Proceedings of
the Workshop on Morphological and Phonological
Learning at ACL 2002, pages 21–30, Philadelphia,
PA.

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine Learn-
ing, 63(1):3–42.

Nizar Habash and Fatiha Sadat. 2006. Arabic prepro-
cessing schemes for statistical machine translation.
In Proceedings of NAACL 2006, pages 49–52, New
York.

Chia-Ming Lee and Chien-Kang Huang. 2013.
Context-based Chinese word segmentation us-
ing SVM machine-learning algorithm without
dictionary support. In Sixth International Joint
Conference on Natural Language Processing, pages
614–622, Nagoya, Japan.

Tal Linzen. 2009. Corpus of blog postings collected
from the Israblog website. Technical report, Tel
Aviv University, Tel Aviv.

Will Monroe, Spence Green, and Christopher D. Man-
ning. 2014. Word segmentation of informal Ara-
bic with domain adaptation. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics, pages 206–211, Baltimore,
MD.

Amir More and Reut Tsarfaty. 2016. Data-driven
morphological analysis and disambiguation for
morphologically-rich languages and universal de-
pendencies. In Proceedings of COLING 2016, pages
337–348, Osaka, Japan.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12:2825–2830.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings of
LREC 2012, pages 2089–2096, Istanbul, Turkey.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the SPMRL 2014 shared task
on parsing morphologically-rich languages. In First
Joint Workshop on Statistical Parsing of Morpho-
logically Rich Languages and Syntactic Analysis of
Non-Canonical Languages, pages 103–109, Dublin,
Ireland.

Danny Shacham and Shuly Wintner. 2007. Mor-
phological disambiguation of Hebrew: A case
study in classifier combination. In Proceedings of
EMNLP/CoNLL 2007, pages 439–447, Prague.

Yan Shao, Christian Hardmeier, and Joakim Nivre.
2018. Universal word segmentation: Implementa-
tion and interpretation. Transactions of the Associa-
tion for Computational Linguistics, 6:421–435.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Alt-
man, and Noa Nativ. 2001. Building a tree-bank
of Modern Hebrew text. Traitment Automatique des
Langues, 42:347–380.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings of
LREC 2016, pages 4290–4297, Portorož, Slovenia.

Shlomo Yona and Shuly Wintner. 2005. A finite-state
morphological grammar of Hebrew. In Proceedings
of ACL-05 Workshop on Computational Approaches
to Semitic Languages, pages 9–16, Ann Arbor, MI.

110

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 111–116
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Phonetic Vector Representations for Sound Sequence Alignment

Pavel Sofroniev and Çağrı Çöltekin
Department of Linguistics

University of Tübingen
pavel.sofroniev@student.uni-tuebingen.de, ccoltekin@sfs.uni-tuebingen.de

Abstract

This study explores a number of data-driven
vector representations of the IPA-encoded
sound segments for the purpose of sound
sequence alignment. We test the alter-
native representations based on the align-
ment accuracy in the context of computa-
tional historical linguistics. We show that
the data-driven methods consistently do bet-
ter than linguistically-motivated articulatory-
acoustic features. The similarity scores ob-
tained using the data-driven representations
in a monolingual context, however, performs
worse than the state-of-the-art distance (or sim-
ilarity) scoring methods proposed in earlier
studies of computational historical linguistics.
We also show that adapting representations to
the task at hand improves the results, yielding
alignment accuracy comparable to the state of
the art methods.

1 Introduction
Most studies in computational linguistics or nat-
ural language processing treat the phonetic seg-
ments as categorical units, which prevents analyz-
ing or exploiting the similarities or differences be-
tween these units. Alignment of sound sequences,
a crucial step in a number of different fields of in-
quiry, is one of the tasks that suffers if the segments
are treated as distinct symbols with no notion of
similarity. As a result, alignment algorithms com-
monly employed in practice (e.g., Needleman and
Wunsch, 1970) use a scoring function based on
similarity of the individual units.

The tasks that require or benefit from aligning
sequences are prevalent in computational linguis-
tics, as well as relatively unrelated fields such as
bioinformatics. In this study, we focus on align-
ing phonetically transcribed parallel word lists in
the context of computational historical linguistics,
where alignment of sound sequences is interesting

either on its own (demonstrating differences be-
tween language varieties) or as a necessary step in
a larger application, for example, for inferring the
cognacy of these words or finding synchronic or
diachronic sound correspondences.

The use of similarities between the sound seg-
ments has been common in computational studies
of historical linguistics (Covington, 1996, 1998;
Kondrak, 2000; Kondrak and Hirst, 2002; Kon-
drak, 2003; List, 2012; Jäger, 2013; Jäger and
Sofroniev, 2016). These studies rely on scoring
functions most of which are based on the linguis-
tic knowledge about the sound changes that typi-
cally occur across languages. Another trend shared
by all of the earlier studies is the use of a re-
duced alphabet for representing the sound seg-
ments. Even though the standard way to encode
sound sequences is the International Phonetic Al-
phabet (IPA), using a smaller set of symbols, such
as ASJP (Brown et al., 2013; Wichmann et al.,
2016), seem to help creating scoring functions that
are more useful for historical linguistics.

In the present study, we explore a number of
methods that learn vector representations for IPA
tokens from multi-lingual word-lists, either using
the words in a monolingual context or making use
of the fact that words represent the same concept
in different languages. We use a standard similar-
ity metric over vectors (cosine similarity) for de-
termining the similarities between the segments,
and, in turn, use these similarities for aligning IPA-
transcribed sequences.

Besides providing a more principled method for
measuring distances, compared to only distance in-
formation, vector representations are more useful
for further analysis, and may yield better results in
other computational tasks relying on supervised or
unsupervised machine learning techniques. Vec-
tor representations for phonetic, phonological or
orthographic units have been used successfully in

111

https://doi.org/10.18653/v1/P17

earlier research, e.g., for word segmentation (Ma
et al., 2016), transfer learning of named entity
recognition (Mortensen et al., 2016) and morpho-
logical inflection (Silfverberg et al., 2018).

We compare our methods to a one-hot-encoding
baseline (which is equivalent to symbolic repre-
sentations), linguistically-motivated vectors, and
alignments produced using state-of-the-art scoring
methods. We compare the alignment performance
of these methods on a manually-annotated gold-
standard corpus, using the same alignment algo-
rithm and the same training data where applicable.

2 Methods

Our aim is to learn and use vector representa-
tions for the purposes of sound sequence align-
ment. Once we have vector representations, we
align the two sequences with Needleman-Wunsch
algorithm using the cosine similarity between the
phonetic vectors as the similarity function.

2.1 Baseline Representations

One-hot encoding is a common method for rep-
resenting categorical data. Under one-hot encod-
ing, given a vocabulary of N distinct segments,
each segment would be represented as a distinct bi-
nary vector of size N , such that exactly one of its
dimensions has value 1 and all other dimensions
have value 0. The method does not yield useful
distance measures as each segment is equidistant
from all the others. We use one-hot encoding as a
proxy for a purely symbolic baseline.

PHOIBLE Online is an ongoing project aiming
to compile a comprehensive database of the world
languages’ phonological inventories (Moran et al.,
2014). The project also maintains a table of phono-
logical features, effectively mapping each segment
encountered in the database to a unique ternary
feature vector. Feature values are assigned based
on Hayes (2009) and Moisik and Esling (2011),
and indicate either the presence, absence, or non-
applicability of an articulatory-acoustic feature for
each IPA symbol. PHOIBLE feature vectors serve
as a linguistically-informed baseline.

2.2 Data-driven Vector Representations

Our proposed methods include three data-driven
methods to learn vector representations for IPA-
encoded sound segments.

phon2vec embeddings are the well-known
word2vec method (Mikolov et al., 2013) applied
to IPA-encoded phonetic segments. The method
learns dense vector representations that maximize
the similarity of segments that appear in similar
contexts. As in original word2vec models, the
context is treated as a bag of words, ignoring the
relative position of each context element.

Position sensitive neural network embeddings
(NN embeddings) are obtained using a simple
feed-forward neural network architecture. Similar
to word2vec skip-gram method, the neural network
tries to predict the context of a word from the word
itself. The hidden layer representations are, then,
used as the representations for the word. Unlike
word2vec, however, the context is not treated as a
bag of phonetic segments. The position of the ele-
ments in the context is significant.

RNN embeddings are obtained using a
sequence-to-sequence recurrent neural network
(Cho et al., 2014). Given a pair of sequences, the
network encodes the first sequence into a vector
which is then decoded into an output sequence.
The first layer of the network is an embeddings
layer which converts the input categories to dense
vector representations with a smaller number of
dimensions. The network is trained to ‘translate’
words (as sequences of IPA tokens) between the
languages in the training set, while, in the process,
learning useful representations for IPA tokens.
Once the network is trained, we are interested in
the representations build for each IPA-token by
the embedding layer.

Unlike the other data-driven methods described
above, the RNN embeddings require, and make
use of, multi-lingual nature of the data. However,
crucially, the method does not require any explicit
alignment of the sequences in advance.

2.3 State-of-the-art Scoring Functions
We compare the alignment performance of our
methods to two state-of-the-art scoring functions.
The first one, the sound-class-based phonetic
alignment (SCA, List, 2012) employs a set of
28 sound classes. It operates on IPA sequences
by converting the segments into their respective
sound classes, aligning the sound class tokens, and
then converting these back into IPA. The scoring
function is hand-crafted to reflect the perceived
probabilities of sound change transforming a seg-
ment of one class into a segment of another.

112

We also compare our results with the alignments
obtained using the method proposed by Jäger
(2013), which uses the ASJP database (Wichmann
et al., 2016) to calculate the pairwise mutual in-
formation (PMI) scores for each pair of ASJP seg-
ments. The method starts with an initial alignment,
and re-aligns the corpus iteratively for obtaining
the final PMI-based scores. The method is data-
driven, but heavily optimized for the task. Since
it does not work with IPA-encoded sequences, we
first convert the IPA sequences to ASJP alphabet,
and convert them back to IPA after alignment.1

3 Experiments and Results

3.1 Data
In order to evaluate the performance of the meth-
ods put forward in the previous section, we use
the Benchmark Database for Phonetic Alignments
(BDPA, List and Prokić, 2014). The database con-
tains 7198 aligned pairs of IPA sequences collected
from 12 source datasets, covering languages and
dialects from 6 language families (detailed infor-
mation about the data set is provided in the Ap-
pendix). The database also features the small set
of 82 selected pairs used by Covington (1996) to
evaluate his method, encoded in IPA.

Our training data is sourced from
NorthEuraLex, a comprehensive lexicostatis-
tical database that provides IPA-encoded lexical
data for languages of, primarily but not exclu-
sively, Northern Eurasia (Dellert and Jäger, 2017).
At the time of writing the database covers 1016
concepts from 107 languages, resulting in 121 614
IPA transcriptions.

3.2 Experimental Setup
Obtaining vector representations with the
phon2vec and neural network methods involves
settings the models’ hyperparameters and training
on a data set of IPA sequences (or pairs thereof).

We tokenize the input sequences using an open
source Python package developed during this
study.2 The phon2vec and NN embeddings are
trained on the set of all tokenised transcriptions in
the training set. For training the RNN, we need
cognates, pairs of words in different languages that
share a common root. As our training set does

1 The IPA to ASJP conversion is lossy. However, the
alignments are not affected since the source IPA symbols are
known during ASJP to IPA conversion.

2https://pypi.python.org/pypi/ipatok.

not include cognacy information, the RNN embed-
dings are trained on the set of tokenised transcrip-
tions of the word pairs constituting probable cog-
nates — pairs in which the words belong to differ-
ent languages, are linked to the same concept, and
have normalised Levenshtein distance lower than
0.5. We have also experimented with thresholds
of 0.4 and 0.6, but setting the cutoff at 0.5 yields
better-performing embeddings.

For each method, we run the respective model
with the Cartesian product of common values for
each hyperparameter, practically performing a ran-
dom search of the hyperparameter space. The val-
ues we have experimented with, as well as the best-
performing combinations thereof, are summarized
in the Appendix. Note that the models are opti-
mized for the respective prediction task they per-
form, not for good alignment performance.

The implementation is realized in the Python
programming language, and makes use of a num-
ber of libraries, including NumPy (Walt et al.,
2011), SciPy (Jones et al., 2001), scikit-learn (Pe-
dregosa et al., 2011), Gensim (Řehůřek and Sojka,
2010), and Keras (Chollet et al., 2015). The source
code used for the experiments reported here is pub-
licly available.3

3.3 Evaluation
In order to quantify the methods’ performance, we
employ an intuitive evaluation scheme similar to
the one used by Kondrak and Hirst (2002): if, for
a given word pair, m is the number of alternative
gold-standard alignments and n is the number of
correctly predicted alignments, the score for that
pair would be n

m . In the common word pair case of
a single gold-standard alignment and a single pre-
dicted alignment, the latter would yield 1 point if
it is correct and 0 points otherwise; partially cor-
rect alignment do not yield points. The percentage
scores are obtained by dividing the points by the
total number of pairs.

3.4 Results and Discussion
The alignment performance of our baselines, pro-
posed methods, as well as PMI and SCA on the
BDPA data sets is summarized in Table 1.

The first point we would like to draw attention
to is that the one-hot encoding scores are consis-
tently lower than those in the other columns. This
is expected because, unlike the other methods, one-

3 https://github.com/pavelsof/ipavec.

113

one-hot phoible phon2vec nn rnn pmi sca

Andean 85.66 87.31 97.25 99.34 99.50 95.21 99.67
Bai 52.55 62.77 61.25 74.72 75.52 – 83.45
Bulgarian 60.54 80.54 77.98 82.55 86.70 81.70 89.34
Dutch 14.16 25.65 26.00 32.50 32.50 36.67 42.20
French 42.94 62.92 68.94 74.30 77.04 71.98 80.90
Germanic 39.93 51.78 54.59 71.83 72.55 75.32 83.48
Japanese 53.56 65.04 73.74 62.71 71.08 68.26 82.19
Norwegian 59.39 78.87 73.69 83.53 89.06 78.11 91.77
Ob-Ugrian 59.58 77.87 73.35 78.04 82.55 82.09 86.04
Romance 40.48 71.28 63.16 76.37 77.55 84.51 95.62
Sinitic 27.34 28.57 30.75 72.46 74.04 – 98.95
Slavic 76.96 90.73 84.22 89.89 96.81 89.36 94.15

Global 51.83 66.64 66.99 75.88 78.45 77.36 84.84
Covington 60.61 82.42 80.18 82.52 82.52 87.80 90.24

Table 1: Scores, as percentage of total alignment pairs. Global scores does not include Covington. PMI method
does not handle tonal languages, and its global score is based on the non-tonal language groups.

hot encoding cannot represent the degree of pho-
netic similarity between IPA segments. Viewing
the one-hot encoding scores as a baseline, we con-
clude that the other methods’ distance measures do
indeed contribute to sequence alignment.

The PHOIBLE feature vectors are roughly on
par with the phon2vec embeddings, yielding bet-
ter results than the NN embeddings on two of
the datasets (Japanese and Slavic), and are other-
wise outperformed by the NN and the RNN em-
beddings, as well as PMI and SCA. Part of the
low performance of the PHOIBLE’s vectors can
be due to the fact that PHOIBLE does not pro-
vide feature vectors for all IPA segments in the
BDPA datasets. However, the similar performance
between PHOIBLE vectors and phon2vec and,
clearly better performance achieved by the NN em-
beddings indicates that we can learn (more) useful
linguistic generalizations in a data-driven manner.

Of the data-driven methods, phon2vec yields the
lowest scores, being outperformed by both neu-
ral network models in all datasets except Japanese.
Given that both the phon2vec and the NN embed-
dings are trained on the same data, the consistent
performance difference between phon2vec and NN
embeddings points to usefulness of to the sequen-
tial order of IPA segments. The better performance
of the RNN embeddings over other data driven
methods is not surprising, as they capture useful
information from the multi-lingual data set. Fur-
thermore, the performance of RNN embeddings is
similar to the PMI method, yielding better results
in many data sets.

For all but the Slavic dataset, SCA yields higher
scores than other methods compared in this study.
The score differences exhibit considerable vari-

ance — from less than 1 percent point for the An-
dean dataset up to 26 percent points for the Sinitic
dataset. A possible explanation for this variance
is the fact that not all IPA segments found in
the benchmark datasets are found in the training
data. For example, NorthEuraLex includes a single
tonal language, Mandarin Chinese, and the models
cannot produce meaningful embeddings for most
of the tones encountered in the Sinitic and Bai
datasets. Arguably, a larger training dataset fea-
turing a richer set of IPA segments would produce
better-performing embeddings.

4 Conclusion
In this study we have proposed, implemented, and
evaluated three methods for obtaining vector rep-
resentations of IPA segments for the purposes of
pairwise IPA sequence alignment. Our method
outperforms a linguistically-informed baseline, as
well as a trivial one-hot representation, per-
forms comparably to a state-of-the-art data driven
method. However, the performances of data driven
methods, including ours, seem to be behind a
linguistically-informed system, SCA. Neverthe-
less, the results of the data-driven methods are not
too far off the mark, and we believe that they could
be significantly improved by using larger and more
diverse training data, and better tuning of the data-
driven methods. This constitutes one direction for
future experiments; another possibility is to train
and use embeddings specific to a particular lan-
guage family or macro-area. Further investigation
is also needed with respect to comparing and eval-
uating the methods, especially in the context of a
larger application, such as cognacy identification
or phylogenetic inference.

114

References
Bryan Allen. 2007. Bai Dialect Survey. SIL Interna-

tional.

Jørn Almberg and Kristian Skarbø. 2011. Nordavinden
og sola. En norsk dialektprøvedatabase på nettet.

Cecil H. Brown, Eric W. Holman, and Søren Wich-
mann. 2013. Sound Correspondences in the World’s
Languages. Language, 89(1):4–29.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation.
arXiv:1406.1078 [cs, stat].

François Chollet et al. 2015. Keras.

Michael A. Covington. 1996. An Algorithm to Align
Words for Historical Comparison. Computational
Linguistics, 22(4):481–496.

Michael A. Covington. 1998. Alignment of Multiple
Languages for Historical Comparison. In Proceed-
ings of the 17th International Conference on Compu-
tational Linguistics - Volume 1, COLING ’98, pages
275–279, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Johannes Dellert and Gerhard Jäger, editors. 2017.
NorthEuraLex (version 0.9). Eberhard Karls Univer-
sität Tübingen, Tübingen.

Rick Derksen, editor. 2008. Etymological dictionary
of the Slavic inherited lexicon. Number 4 in Lei-
den Indo-European Etymological Dictionary Series.
Brill, Leiden and Boston.

Louis Gauchat, Jules Jeanjaquet, and Ernest Tappolet,
editors. 1925. Tableaux phonétiques des patois su-
isses romands. Attinger, Neuchâtel.

Harald Hammarström, Sebastian Bank, Robert Forkel,
and Martin Haspelmath, editors. 2018. Glottolog
3.2. Max Planck Institute for the Science of Human
History, Jena.

Bruce Hayes. 2009. Introductory Phonology. Black-
well.

Paul Heggarty. 2006. Sounds of the Andean languages.

Jīngyī Hóu, editor. 2004. Xiàndài Hànyǔ fāngyán
yīnkù. Shànghǎi Jiàoyù, Shànghǎi.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001.
SciPy: Open source scientific tools for Python.

Gerhard Jäger. 2013. Phylogenetic Inference from
Word Lists Using Weighted Alignment with Empiri-
cally Determined Weights. Language Dynamics and
Change, 3(2):245–291.

Gerhard Jäger and Pavel Sofroniev. 2016. Automatic
cognate classification with a support vector machine.
In Proceedings of the 13th Conference on Natural
Language Processing (KONVENS 2016), pages 128–
134.

Grzegorz Kondrak. 2000. A New Algorithm for the
Alignment of Phonetic Sequences. In Proceedings
of the 1st North American Chapter of the Association
for Computational Linguistics Conference, NAACL
2000, pages 288–295, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Grzegorz Kondrak. 2003. Phonetic alignment and sim-
ilarity. Computers and the Humanities, 37(3):273–
291.

Grzegorz Kondrak and Graeme Hirst. 2002. Algorithms
for language reconstruction, volume 63. University
of Toronto Toronto.

Johann-Mattis List. 2012. SCA: Phonetic Alignment
based on sound classes. New Directions in Logic,
Language and Computation, pages 32–51.

Johann-Mattis List and J Prokić. 2014. A benchmark
database of phonetic alignments in historical linguis-
tics and dialectology. In Proceedings of the Interna-
tional Conference on Language Resources and Eval-
uation (LREC), pages 288–294.

Jianqiang Ma, Çağrı Çöltekin, and Erhard Hinrichs.
2016. Learning phone embeddings for word seg-
mentation of child-directed speech. In Proceedings
Workshop on Cognitive Aspects of Computational
Language Learning, pages 53–63.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. arXiv:1301.3781 [cs].

Scott R. Moisik and John H. Esling. 2011. The ‘whole
larynx’ approach to laryngeal features. In Proceed-
ings of the International Congress of Phonetic Sci-
ences (ICPhS XVII), pages 1406–1409.

Steven Moran, Daniel McCloy, and Richard Wright, ed-
itors. 2014. PHOIBLE Online. Max Planck Institute
for Evolutionary Anthropology, Leipzig.

David R. Mortensen, Patrick Littell, Akash Bharad-
waj, Kartik Goyal, Chris Dyer, and Lori S. Levin.
2016. PanPhon: A resource for mapping IPA seg-
ments to articulatory feature vectors. In Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Pa-
pers, pages 3475–3484. ACL.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

115

D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Jelena Prokić, John Nerbonne, Vladimir Zhobov, Petya
Osenova, Kiril Simov, Thomas Zastrow, and Er-
hard Hinrichs. 2009. The computational analysis of
Bulgarian dialect pronunciation. Serdica journal of
computing, 3(3):269–298.

Colin Renfrew and Paul Heggarty. 2009. Languages
and origins in Europe.

Georges de Schutter, Boudewijn van den Berg, Ton
Goeman, and Thera de Jong. 2005. Morfologische
atlas van de Nederlandse dialecten.

Hattori Shirō. 1973. Japanese dialects. Diachronic,
areal and typological linguistics, pages 368–400.

Miikka P. Silfverberg, Lingshuang Mao, and Mans
Hulden. 2018. Sound Analogies with Phoneme Em-
beddings. In Proceedings of the Society for Compu-
tation in Linguistics (SCiL) 2018, pages 136–144.

Stefan van der Walt, S. Chris Colbert, and Gael Varo-
quaux. 2011. The NumPy array: A structure for effi-
cient numerical computation. Computing in Science
and Engineering, 13:22–30.

Feng Wang. 2006. Comparison of languages in contact.
The distillation method and the case of Bai. Institute
of Linguistics Academia Sinica, Taipei.

Søren Wichmann, Eric W. Holman, and Cecil H.
Brown, editors. 2016. The ASJP Database (version
17). Available at http://asjp.clld.org/.

M. Zhivlov. 2011. Annotated Swadesh wordlists for the
Ob-Ugrian group (Uralic family). The Global Lexi-
costatistical Database.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

116

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 117–124
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Sounds Wilde
Phonetically extended embeddings for author-stylized poetry generation

Alexey Tikhonov
Yandex

Karl-Liebknecht strasse 1, Berlin
altsoph@gmail.com

Ivan P. Yamshchikov
Max Planck Institute

for Mathematics in the Sciences
Inselstrasse 22, Leipzig

ivan@yamshchikov.info

Abstract

This paper addresses author-stylized text gen-
eration. Using a version of a language model
with extended phonetic and semantic embed-
dings for poetry generation we show that pho-
netics has comparable contribution to the over-
all model performance as the information on
the target author. Phonetic information is
shown to be important for English and Russian
language. Humans tend to attribute machine
generated texts to the target author.

1 Introduction

Generative models for natural languages and for
poetry specifically are discussed for more than
fifty years (Wheatley, 1965). Lamb et al. (2017)
provides a detailed overview of generative po-
etry techniques. This particular paper addresses
the issue of author stylized poetry (Tikhonov and
Yamshchikov, 2018a) and shows the importance
of phonetics for the author-stylized poetry genera-
tion.
The structure of the poem can vary across dif-

ferent languages starting with highly specific and
distinct structures of Chinese poems (Zhang et al.,
2017) and finishing with poems where formal
structure hardly exists, e.g. American poetry of
the twentieth century (say, the lyrics of Charles
Bukowski) or so-called white poems in Russian.
The structure and standards of poems can depend
on various factors primarily phonetic in thier na-
ture. In the broadest sense, rhymes in a classi-
cal western sonnet, a structure of a Persian ruba’i,
a sequence of tones in a Chinese quatrain or a
structure within rap bars could be expressed as
a set of phonetic rules based on a certain under-
standing of expressiveness and euphony shared
across a given culture or, sometimes, an artistic
community. Some cultures and styles also have
particular semantic limitations or ’standards’, for

example, ’centrality’ of certain topics in classi-
cal Japanese poetry, see (Maynard, 1994). We
do not make attempts to address high-level se-
mantic structure, however one can add some kind
of pseudo-semantic rules to the model discussed
further, say via some mechanism in line with
(Ghazvininejad et al., 2016) or (Yi et al., 2017).
The importance of phonetics in poetical texts was
broadly discussed among Russian futuristic poets,
see (Kruchenykh, 1923). Several Russian linguis-
tic circles and art groups (particularly OPOJAZ)
in the first quarter of 20th century were actively
discussing the concept of the abstruse language,
see (Shklovsky, 1919), stressing also that the form
of a poem, and especially its acoustic structure,
is a number one priority for the future of litera-
ture. In their recent paper (Blasi et al., 2016) have
challenged the broadly accepted idea that sound
andmeaning are not interdependent: unrelated lan-
guages very often use (or avoid) the same sounds
for specific referents. In (He et al., 2016) and
(Ghannay et al., 2016) it was show that acoustic
word embeddings improve algorithm performance
on a number of NLP tasks. In line with these ideas,
one of the key features of themodel that we discuss
below is its concatenated embedding that contains
information on the phonetics of everyword prepro-
cessed by a bi-directional Long Short-Term Mem-
ory (LSTM) network alongside with its vectorized
semantic representation.
In (Tikhonov and Yamshchikov, 2018a) a model

for generation of texts resembling the writing style
of a particular author within the training data set
was proposed. In this paper we quantify the stylis-
tic similarity of the generated texts and show the
importance of extension of the word embeddings
with phonetic information for the overall perfor-
mance of the model. The proposed model might
also be applicable to prose, but diverse phonetic
structure of the poetry discussed above makes it

117

https://doi.org/10.18653/v1/P17

better suited for the purposes of this paper. Also,
since one would like to incorporated human judge-
ment of the generated text and measure how well
a human reader can attribute generated text to the
target author, poetry seems preferable to prose for
its stylistic expressiveness.
The contribution of this paper is three-fold:

(1) we propose an LSTM with extended phonetic
and semantic embeddings and quantify the quality
of the obtained stylized poems both subjectively
through a survey and objectively with BLEU met-
rics; (2) we show that phonetic information plays
key role in a author-stylized poetry generation (3)
we demonstrate that the proposed approach works
in a multilingual setting, providing examples in
English and in Russian.

2 Related work

In (Lipton et al., 2015), (Kiddon et al., 2016), (Le-
bret et al., 2016), (Radford et al., 2017), (Tang
et al., 2016), (Hu et al., 2017) a number of RNN-
based generative or generative adversarial mod-
els for controlled text generation are developed.
These papers took content and semantics of the
output into consideration, yet did not workwith the
style of the generated texts. In (Li et al., 2016) the
authors focused on the speaker consistency in a di-
alogue. In (Sutskever et al., 2011) and in (Graves,
2013) it is demonstrated that a character-based re-
current neural network with gated connections or
LSTM networks respectively can generate texts
that resemble news or Wikipedia articles. Chi-
nese classical poetry due to its diverse and deeply
studied structure is addressed in (He et al., 2012),
(Yi et al., 2017), (Yan, 2016), (Yan et al., 2016),
or (Zhang et al., 2017). In (Ghazvininejad et al.,
2016) an algorithm generates a poem in line with a
user-defined topic in (Potash et al., 2015) stylized
rap lyrics are generated with LSTM trained on a
rap poetry corpus.
There is a diverse understanding of literary style

that lately became obvious due to the growing at-
tention to the problems of automated style transfer.
For a brief overview of the state-of-the-art style
transfer problem see (Tikhonov and Yamshchikov,
2018b). Style is sometimes regarded as a senti-
ment of a text (see (Shen et al., 2017) or (Li et al.,
2018)), it’s politeness (Sennrich et al., 2016) or
style of the time (see (Hughes et al., 2012)). In (Fu
et al., 2017) authors generalize these ideas mea-
suring the success of a particular style aspect with

a specifically trained classifier. In (Guu et al.,
2017) it is shown that an existent human-written
source used to control the saliency of the output
can significantly improve the quality of the result-
ing texts. Generative models on the other hand
often do not have such input and have to gener-
ate stylized texts from scratch, like in (Ficler and
Goldberg, 2017).

3 Model

We use an LSTM-based language model that pre-
dicts the wn+1 word based on w1, ..., wn previ-
ous inputs and some other parameters of the mod-
eled sequence. A schematic picture of the model is
shown in Figure 1, document information projec-
tions obtained as a matrix multiplication of docu-
ment embedding on a projection matrix the dimen-
sionality of which differs according to the target
dimensionality of a projection are highlighted with
blue arrows. An LSTMwith 1152-dimensional in-
put and 512-dimensional state.

Figure 1: The scheme of the language model used.
Document information projections are highlighted with
blue arrows. The projections on a state space of the cor-
responding dimension is achieved with simple matrix
multiplication of document embeddings.

Figure 2 shows a concatenated word represen-
tation of the model. The representation includes
a 512-dimensional projection of a concatenated
author and document embeddings at every step
and two 128-dimensional vectors corresponding
to finals states of two bidirectional LSTMs. The
first LSTM works with a char-representation of
the word and the second one uses phonemes of
the International Phonetic Alphabet1, employing
an heuristics to transcribe words into phonemes.
A somewhat similar idea, but with convolutional
neural networks rather than with LSTMs, was pro-

1http://www.internationalphoneticalphabet.org

118

N. of Size of N. of Size
documents vocab. authors

English 110000 165000 19000 150 Mb
Russian 330000 400000 1700 140 Mb

Table 1: Parameters of the training datasets.

N. of N. of
words words

Shakespeare 10 218 Pushkin 226 001
Carroll 19 632 Esenin 73 070
Marley 22 504 Letov 29 766
MUSE 7 031 Zemfira 23 099

Table 2: Number of words in the training datasets for
human-peer tested lyrics.

posed in (Jozefowicz et al., 2016).

Figure 2: Concatenated word representation.

4 Datasets

Two proprietary datasets of English and Russian
poetry were used for training. All punctuation
was deleted, every character was transferred to a
lower case. No other preprocessing was made.
The datasets sizes can be found in Table 2. This
allowed to have approximately 330 000 verses in
train dataset and another 10 000 verses forming a
test dataset for Russian poetry. For English poetry
train data consisted of 360 000 verses with approx-
imately 40 000 verses forming the test data.
The model was trained for English (William

Shakespeare, Edgar Allan Poe, Lewis Carroll, Os-
car Wilde and Bob Marley as well as lyrics of
the American band Nirvana and UK band Muse)
and Russian (Alexander Pushkin, Sergey Esenin,

Joseph Brodsky, Egor Letov and Zemfira Ra-
mazanova).
The model produces results of comparable qual-

ity for both languages, so in order to make this pa-
per shorter, we further address generative poems in
English only and provide the experimental results
for Russian in the Appendix. We want to empha-
size that we do not see any excessive difficulties
in implementation of the proposed model for other
languages for which one can form a training corpus
and provide a phonetically transcribed vocabulary.
Table 3 shows some generated stylized poetry

examples. The model captures syntactic character-
istics of the author (note the double negation in the
first and the last line of Neuro-marley) alongside
with the vocabulary (’burden’, ’darkness’, ’fears’
could be subjectively associated with gothic lyrics
of Poe, whereas ’sunshine’, ’fun’, ’fighting every
rule’ could be associated with positive yet rebel-
lious reggae music). Author-specific vocabulary
can technically imply specific phonetics that char-
acterizes a given author, however this implication
is not self evident and generally speaking does not
have to hold. As we demonstrate later, phonetics
does, indeed, contribute to the author stylization
significantly.

5 Experiments

In (Tikhonov and Yamshchikov, 2018a) the de-
tailed description of the experiments is provided
alongside with a new metric for automated styliza-
tion quality estimation— sample cross entropy. In
this submission we specifically address the results
that deal with the phonetics of the generated texts.

5.1 BLEU

BLEU is a metric estimating the correspondence
between a machine’s output and that of a human
and is usually mentioned in the context of machine
translation. We suggest to adopt it for the task of
stylized text generation in the following way: a
random starting line is sampled out of the human-
written poems and initializes the generation. Gen-
erative model ’finishes’ the poem generating thee
ending lines of the quatrain. Then one calculates
BLEU between three actual lines that finished the
human-written quatrain starting with a given first
line and lines generated by the model when initial-
ized with the same human-written line.
Table 4 shows BLEU calculated on the valida-

tion dataset for the plain vanilla LSTM, LSTM

119

Neuro-Poe Neuro-Marley
her beautiful eyes were bright don t you know you ain t no fool
this day is a burden of tears you r gonna make some fun
the darkness of the night but she s fighting every rule
our dreams of hope and fears ain t no sunshine when she s gone

Table 3: Examples of the generated stylized quatrains. The punctuation is omitted since it was omitted in the
training dataset.

with author information support but without bidi-
rectional LSTMs for phonemes and characters in-
cluded in the embeddings and the full model. The
uniform random and weighted random give base-
lines to compare the model to.

Model G(Ai) BLEU
Uniform Random 0.35%
Weighted Random 24.7%
Vanilla LSTM 29.0%
Author LSTM 29.3% (+1% to vanilla LSTM)
Full model 29.5% (+1.7% to vanilla LSTM)

Table 4: BLEU for uniform and weighted random ran-
dom sampling, vanilla LSTM, LSTM with author em-
beddings but without phonetics, and for the full model.
Phonetics is estimated to be almost as important for the
task of stylization as the information on the target au-
thor.

Table 4 shows that extended phonetic embed-
dings play significant role in the overall quality
of the generated stylized output. It is important
to mention that phonetics in an implicit charac-
teristic of an author and the training dataset (in
line with the definition of style in (Tikhonov and
Yamshchikov, 2018b)), humans do not have qual-
itative insights into phonetic of Wilde or Cobain,
yet the information on it turns out to be important
for the style attribution.

5.2 Survey data
Two quatrains from William Shakespeare, Lewis
Carroll, Bob Marley and MUSE band were sam-
pled. They were accompanied by two quatrains
generated by the model conditioned on those four
authors respectively. One hundred and forty flu-
ent English-speakers were asked to read all 16 qua-
trains in randomized order and choose one option
out of five offered for each quatrain, i.e. the au-
thor of this verse is William Shakespeare, Lewis
Carroll, Bob Marley, MUSE or an Artificial Neu-
ral Network. The summary of the obtained results
is shown in Table 5. Analogous results but for Rus-
sian language could be seen in Appendix in Table
8 alongside with more detailed description of the

methodology. It is important to note that the gener-
ated pieces for tests were human-filtered for mis-
takes, such as demonstrated in Table 6, whereas
the automated metrics mentioned above were esti-
mated on thewhole sample of generated texts with-
out any human-filtering.
Looking at Table 5 one can see the model has

achieved good results in author stylization. Indeed
the participants recognized Shakespeare more than
46% of the times (almost 2.5 times more often than
compared with a random choice) and did slightly
worse in their recognition of Bob Marley (40%
of cases) and MUSE (39% of cases, still 2 times
higher than a random choice). This shows that
the human-written quatrains were, indeed, recog-
nizable and the participants were fluent enough in
the target language to attribute given texts to the
correct author. At the same time, people were
’tricked’ into believing that the text generated by
the model was actually written by a target author
in 37% of cases for Neuro-Shakespeare, 47% for
Neuro-Marley, and 34% for Neuro-MUSE, respec-
tively. Somehow, Lewis Carroll turned out to be
less recognizable and was recognized in the survey
only in 20% of cases (corresponds to a purely ran-
dom guess). The subjective underperformance of
the model on this author can therefore be explained
with the difficulty experienced by the participants
in determining his authorship.
Combining the results in Table 4 with the results

of the survey shown in Table 5 one could conclude
that phonetic structure of lyrics has impact on the
correct author attribution of the stylized content.
This impact is usually not acknowledged by a hu-
man reader but is highlighted with the proposed
experiment.

6 Conclusion

In this paper we have addressed a problem of
author-stylized text generation. It has been shown
that the extending word embeddings with phonetic
information has a comparable impact on the BLEU

120

Model G(Ai) or author Shakespeare Carroll Marley MUSE LSTM
Neuro-Shakespeare 0.37∗ 0.04 0.05 0.14 0.3∗∗

Shakespeare 0.46∗ 0.05 0.04 0.07 0.3∗∗

Neuro-Carroll 0.02 0.07 0.26∗∗ 0.18 0.41∗

Carroll 0.05 0.2∗∗ 0.14 0.11 0.32∗

Neuro-Marley 0.02 0.01 0.47∗ 0.2 0.29∗∗

Marley 0.15 0.05 0.4∗ 0.1 0.24∗∗

Neuro-MUSE 0.09 0 0.12 0.34∗∗ 0.39∗

MUSE 0.03 0.05 0.28∗∗ 0.39∗ 0.2

Table 5: Results of a survey with 140 respondents. Shares of each out of 5 different answers given by people when
reading an exempt of a poetic text by the author stated in the first column. The two biggest values in each row are
marked with * and ** and a bold typeface.

of the generative model as the information on the
authors of the text. It was also shown that, when
faced with an author with a recognizable style (an
author who is recognized approximately two times
more frequently than at random), humans mistak-
enly recognize the output of the proposed genera-
tivemodel for the target author as often as they cor-
rectly attribute original texts to the author in ques-
tion. The experiments were carried out in English
and in Russian and there are no obvious obstacles
for the application of the same approach to other
languages.

References
E Blasi, Damián, Søren Wichmann, Harald Ham-

marström, F. Stadler, Peter, and H. Christiansen,
Morten. 2016. Sound – meaning association bi-
ases evidenced across thousands of languages. Pro-
ceedings of the National Academy of Sciences,
113(39):10818 – 10823.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. In Proceedings of the Workshop on Stylistic
Variation, pages 94 – 104.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,
and Rui Yan. 2017. Style transfer in text: Explo-
ration and evaluation. In arXiv preprint:1711.06861.

Sahar Ghannay, Yannick Estève, Nathalie Camelin, and
Deléglise Paul. 2016. Evaluation of acoustic word
embeddings. In Proceedings of the 1st Workshop on
Evaluating Vector-Space Representations for NLP
2016, pages 62–66.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and
Kevin Knight. 2016. Generating topical poetry.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1183–1191. Association for Computational Linguis-
tics.

Alex Graves. 2013. Generating sequences with recur-

rent neural networks. In arXiv preprint:1308.0850.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2017. Generating sentences by
editing prototypes. In arXiv preprint:1709.08878.

Jing He, Ming Zhou, and Long Jiang. 2012. Generat-
ing chinese classical poems with statistical machine
translation models. In AAAI.

Wanjia He, Weiran Wang, and Karen Livescu. 2016.
Multi-view recurrent neural acoustic word embed-
dings. In arXiv preprint:1611.04496.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In International Confer-
ence on Machine Learning, pages 1587–1596.

James M. Hughes, Nicholas J. Foti, David C. Krakauer,
and Daniel N. Rockmore. 2012. Quantitative pat-
terns of stylistic influence in the evolution of litera-
ture. Proceedings of the National Academy of Sci-
ences, 109(20):7682–7686.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster,
Noam Shazeer, and Yonghui Wu. 2016. Explor-
ing the limits of language modeling. In arXiv
preprint:1602.02410.

Chloe Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neu-
ral checklist models. Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 329–339.

Aleksei Kruchenykh. 1923. Phonetics of theater.
M.:41, Moscow.

Carolyn Lamb, G. Brown, Daniel, and L. Clarke,
Charles. 2017. A taxonomy of generative poetry
techniques. Journal of Mathematics and the Arts,
11(3):159–179.

Remi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. InProceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1203–1213.

121

Jiwei Li, Michel Galley, Chris Brockett, Georgios P.
Spithourakis, Jianfeng Gao, and William B. Dolan.
2016. A persona-based neural conversation model.
CoRR, abs/1603.06155.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: A simple approach to
sentiment and style transfer. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, volume 1, pages 1865–
1874.

Zachary C. Lipton, Sharad Vikram, and Julian
McAuley. 2015. Capturing meaning in product re-
views with character-level generative text models.
In arXiv preprint:1511.03683.

Senko K. Maynard. 1994. The centrality of thematic
relations in japanese text. Functions of language,
1(2):229–260.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2015. Ghostwriter: Using an lstm for automatic rap
lyric generation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1919–1924. Association for Com-
putational Linguistics.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. In arXiv preprint:1704.01444.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 35–40.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. 31st Conference on Neural In-
formation Processing Systems, pages 6833–6844.

Boris Shklovsky. 1919. Poetics: on the theory of poetic
language. 18 State typography, Petrograd.

Ilya Sutskever, James Martens, and Geoffrey Hin-
ton. 2011. Generating text with recurrent neu-
ral networks. In Proceedings of the 28th Inter-
national Conference on Machine Learning, pages
1017–1024.

Jian Tang, Yifan Yang, Sam Carton, Ming Zhang, and
QiaozhuMei. 2016. Context-aware natural language
generation with recurrent neural networks. In arXiv
preprint:1611.09900.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018a.
Guess who? multilingual approach for the auto-
mated generation of author-stylized poetry. In arXiv
preprint:1807.07147.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018b.
What is wrong with style transfer for texts? In arXiv
preprint:1808.04365.

Jon Wheatley. 1965. The computer as poet. Journal of
Mathematics and the Arts, 72(1):105.

Rui Yan. 2016. i, poet: Automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence (IJCAI-16), pages 2238–2244.

Rui Yan, Cheng-Te Li, Xiaohua Hu, and Ming Zhang.
2016. Chinese couplet generation with neural net-
work structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2347 – 2357.

Xiaoyuan Yi, Ruoyu Li, andMaosong Sun. 2017. Gen-
erating chinese classical poems with rnn encoder-
decoder. In Chinese Computational Linguistics and
Natural Language Processing Based on Naturally
Annotated Big Data, pages 211–223.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
AndrewAbel, Shiyue Zhang, and Andi Zhang. 2017.
Flexible and creative chinese poetry generation us-
ing neural memory. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, volume 1, pages 1364–1373.

A Examples of output

Table 6 lists some illustrative mistakes of the
model both for English and for Russian language.
Reading the raw output we could see several types
of recurring characteristic errors that are typical for
LSTM-based text generation. They can be broadly
classified into several different types:

• If the target author is underrepresented in the
training dataset, model tends to make more
mistakes, mostly, syntactic ones;

• Since generation is done in a word-by-word
manner, model can deviate significantlywhen
sampling a low-frequency word;

• Pronouns tend to cluster together, possibly
due to the problem of anaphoras in the train-
ing dataset;

• The line can end abruptly, this problem also
seems to occur more frequently for the au-
thors that are underrepresented in the training
dataset.

Table 7 lists some subjectively cherry-picked es-
pecially successful examples of the system outputs
both for English and for Russian language. Since
text is generated line by line and verses are ob-
tained through random rhyme or rhythm filtering
several types of serendipitous events occur. They
can be broadly classified into four different types:

122

Problem English Russain
Neuro−MUSE : Neuro− Zemfira :

broken every step inside on our faces ты слышишь я слышу
syntax that i would stop my self going crazy шаги мои в душу дрожи
’rare’ word Neuro− Shakespeare : Neuro− Letov :
brakes o ho de profundis she says i am on her иду гляжу в окно гляжу
the line мне вслед на небо

Neuro− Shakespeare : Neuro− Zemfira :
pronouns thou here shalt be and thine тебе ли ты ль за
’entangle’ who will have to my grave
sentences Neuro−Muse : Neuro−Brodsky :
don’t end at night i lay waiting for a двух четырех десять лет за углом

Neuro− Shakespeare : Neuro− Lenov :
nonsense do many a fair honour best of make or lose о о о о и о

Table 6: Examples of several recurring types of mistakes that occur within generated lyrics.

• Wording of the verse that fits into the style of
the target author;

• Pseudo-plot that is perceived by the reader
due to a coincidental cross-reference between
two lines;

• Pseudo-metaphor that is perceived by the
reader due to a coincidental cross-reference
between two lines;

• Sentiment and emotional ambience that cor-
respond to the subjective perception of the
target author.

B Survey design

The surveys were designed identically for English
and Russian languages. We have recruited the re-
spondents via social media, the only prerequisite
was fluency in the target language. Respondents
were asked to determine an authorship for 16 dif-
ferent 4-line verses. The verses for human-written

text were chosen randomly out of the data for the
given author. The generated verses were obtained
through line-by-line automated rhyme and rhythm
heuristic filtering. Since LSTMs are not perfect
in text generation and tend to have clear problems
illustrated in Table 6 we additionally filtered gen-
erative texts leaving the verses that do not contain
obvious mistakes described above. Each of the 16
questions consisted of a text (in lower case with
a stripped-off punctuation) and a multiple choice
options listing five authors, namely, four human
authors and an artificial neural network. Respon-
dents were informed that they are to distinguish
human- andmachine-written texts. The correct an-
swers were not shown to the respondents. Table 5
shows the results of the survey for English texts
and Table 8 for Russian ones. Higher values in ev-
ery row correspond to the options that were more
popular among the respondents, when they were
presented with the text written by the author listed
in the first column of the table.

123

Serendipity English Russain
Neuro− Shakespeare : Neuro− Pushkin :

peculiar a sense i may not comprehend во славу вакха или тьмы
wording of whom i had not to defend мы гордо пировали

Neuro−Marley : Neuro− Esenin :
apophenic oh lord i know how long i d burn ты под солнцем стоишь и в порфире
plot take it and push it it s your turn как в шелку беззаботно горишь

Neuro− Carroll : Neuro− Zemfira :
apophenic your laugh is bright with eyes that gleam ветер в голове
metaphor that might have seen a sudden dream с красной тенью шепчется

Neuro−Muse : Neuro− Letov :
peculiar i am the man of this universe только в ушах отражается даль
sentiment i remember i still am a curse только белая смерть превращается в ад

Table 7: Cherry-picked examples of generated lyrics after either rhyme or rhythm filtering illustrating typical
serendipities.

Model G(Ai) or author Pushkin Esenin Letov Zemfira LSTM
Neuro-Pushkin 0.31∗∗ 0.22 0.02 0.0 0.44∗

Pushkin 0.62∗ 0.11 0.03 0.01 0.23∗∗

Neuro-Esenin 0.02 0.61∗ 0.08 0.0 0.29∗∗

Esenin 0.06 0.56∗ 0.07 0.02 0.29∗∗

Neuro-Letov 0.0 0.02 0.40∗∗ 0.08 0.51∗

Letov 0.0 0.01 0.61∗ 0.02 0.35∗∗

Neuro-Zemfira 0.0 0.06 0.13 0.4∗∗ 0.41∗

Zemfira 0.0 0.02 0.08 0.58∗ 0.31∗∗

Table 8: Results of a survey with 178 respondents. Shares of each out of 5 different answers given by people when
reading an exempt of a poetic text by the author stated in the first column. The two biggest values in each row are
marked with * and ** and a bold typeface.

124

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 125–130
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

On hapax legomena and morphological productivity

Janet B. Pierrehumbert
Dept. of Engineering Science

University of Oxford
janet.pierrehumbert@

oerc.ox.ac.uk

Ramon Granell
Dept. of Engineering Science

University of Oxford
ramon.granell@
oerc.ox.ac.uk

Abstract

Quantifying and predicting morphological
productivity is a long-standing challenge in
corpus linguistics and psycholinguistics. The
same challenge reappears in natural language
processing in the context of handling words
that were not seen in the training set (out-of-
vocabulary, or OOV, words). Prior research
showed that a good indicator of the produc-
tivity of a morpheme is the number of words
involving it that occur exactly once (the ha-
pax legomena). A technical connection was
adduced between this result and Good-Turing
smoothing, which assigns probability mass to
unseen events on the basis of the simplifying
assumption that word frequencies are station-
ary. In a large-scale study of 133 affixes in
Wikipedia, we develop evidence that success
in fact depends on tapping the frequency range
in which the assumptions of Good-Turing are
violated.

1 Introduction

The productivity of a morpheme is understood as
the extent to which a language uses it actively in
novel combinations. This vexed concept has mul-
tiple interpretations, of which two will concern
us here. One views productivity as the cogni-
tive propensity to create a new word involving a
morpheme. The other infers productivity from the
likelihood that new word types with a morpheme
will be found when a corpus is expanded. The two
can differ because the likelihood of finding a word
depends not only on its creation, but also on the
extent to which the word is learned and reused
by others, and ultimately noted by an observer.
One might suppose that a morpheme found in
many different combinations would be more flex-
ible in entering into novel ones, as in the rationale
for Witten-Bell smoothing, (Jurafsky and Mar-
tin, 2000); if so, the type count of the morpheme

would be a good index of productivity. However,
the type count correlates poorly with human in-
tuitions about productivity and with the number
of OOV words found in test sets (Baayen and
Lieber, 1991; Baayen and Renouf, 1996; Anshen
and Aronoff, 1999). Working with corpora that are
small by current standards, corpus linguists in the
1990s observed that the number of hapax legom-
ena (or hapaxes) that contain a given morpheme is
a much better predictor (Baayen and Lieber, 1991;
Baayen and Renouf, 1996). This finding is argued
to follow from assumptions about the cognitive
system that make Good-Turing smoothing appli-
cable, which we explain in the following section.

This paper systematically explores hapax
counts as an indicator of productivity for a set
of 133 morphemes that meet objective inclusion
criteria for a much larger corpus than was used
previously. This is the August 2013 download
of Wikipedia that has 1.24 billion word tokens.
We address several questions: Is the measure suc-
cessful when exercised at a larger scale? Are the
simplifying assumptions put forward to justify the
measure valid? What does the behaviour of the
measure tell us about the lexical system? We ad-
dress these questions with numerical experiments.
We define “pseudohapax” sets as sets of words
in the full corpus that would be expected to oc-
cur exactly once in five nominal corpora having
sizes used in classic studies. We explore how
well the pseudohapax sets predict the distribu-
tion of morphemes amongst extremely rare words.
We also downsample the corpus to create hapax
sets from subcorpora matching the nominal cor-
pus sizes. This approach allows us to separate the
influence of several factors: sparse sampling, vari-
ation across morphological families in the shape
of the rank-frequency distribution, and the actual
frequencies of words that appear as hapaxes in cor-
pora of classic size.

125

https://doi.org/10.18653/v1/P17

2 Hapax Legomena and smoothing

Hapax counts are advanced as an indicator of
productivity in Baayen & Lieber (1991). The
article describes as “large” the 18-million word
Cobuild corpus (Renouf, 1987) on which the study
was based. Hay and Baayen (2002) used the
same corpus. The indicator has been widely
used for more than 25 years (Baayen and Re-
nouf, 1996; Chitashvili and Baayen, 1993; Plag
et al., 1999; Popescu and Altmann, 2008; Kenny,
2014; Aronoff and Lindsay, 2014; Stump, 2017,
in press). Several different measures can be de-
fined from the hapax count. Of particular interest
is the hapax percentage P∗ (the percentage of all
hapaxes that contain the morpheme). Using P∗,
the number of unseen word types with any given
morpheme is estimated as proportional to its rep-
resentation amongst the hapaxes, and this supports
predictions about the distributions of morphemes
in OOV sets much bigger than the hapax sets.

A justification for the hapax-based measures is
proposed in Baayen & Renouf (1996) and Hay
and Baayen (2002). They assume that the text
meets the assumptions for Good-Turing smooth-
ing: each word is produced with a constant prob-
ability, or put differently, the word frequencies are
stationary and the text results from a Poisson pro-
cess (Church and Gale, 1991). They also assume
that the hapaxes are so rare that they are very
likely to have been created on the spot. Integrat-
ing these assumptions, the idea is that the proba-
bility of creating a rare word form like zeitgeist+y
or post+Sumerian is constant and based on the
mental representation of the parts. The hapax set
is by definition a subset of the word types with
a morpheme, but nonetheless supports better pre-
dictions. The authors suggest the hapax measure
works well because it eliminates complex words
that are not decomposed during lexical access, and
therefore do not contribute to productivity. Our
numerical experiments were designed to include
only words that are decomposable.

It is well-known that word frequencies fluctuate
with the topic of discussion. Such deviations from
a Poisson process provide the foundation for mod-
ern document retrieval algorithms (Sparck Jones,
1972; Church and Gale, 1995). The effects can be
as large as orders of magnitude in frequency, and
impact all parts of speech, although the impact on
proper nouns is generally greatest (Church, 2000;
Altmann et al., 2009). Different corpora can thus

yield different P∗ values for the same affix, pro-
viding the grist for post-hoc interpretation as in
Plagg et al. (1999). In interpreting our results, we
will also be concerned with the possibility of vari-
ability across speakers, which is of similar magni-
tude (Altmann et al., 2011).

3 Materials

In selecting our materials, one goal was to com-
pare all morphemes that met objective inclusion
criteria (as opposed to using subjective judgment
to make a selection). The inclusion criteria were
designed to identify morphemes that are reason-
ably familiar and that are reliably identifiable
within complex words with a minimum of false
positives. We considered words to be potentially
decomposable into Prefix+Stem or Stem+Suffix if
removing the affix yielded a stem that also occurs
independently as a word of higher frequency. This
criterion is needed to eliminate many spurious de-
compositions, such as season = sea+son, as well
as words that are probably not decomposed into
their parts in lexical processing (Hay, 2001). To
select the target affixes, we began by considering
all 184,499 words in Wikipedia that occur at least
100 times. Initial and final substrings of three or
more letters were considered as potential affixes.
The selected affixes occurred at least 50 times in
the candidate list, and we also required that re-
moving them reliably yield a valid stem. 68 pre-
fixes and 65 suffixes met the criteria. The total
set excludes many productive morphemes that co-
incidentally occur in many simplex words. It in-
cludes many true prefixes and suffixes, including
combinations such as +ingly, +ization, +ers. Jus-
tification for treating these as units can be found in
Stump (2017; in press). It also includes words that
are used productively in compounding; the distinc-
tion between derivational morphology and com-
pounding is a fuzzy one (Bauer, 2005). Detailed
inclusion criteria and descriptive statistics, and a
complete word list, are in the supplement (posted
on the first author’s web site).

Our outcome measure for productivity is the
type frequencies for each morpheme family in the
“far tail” of the distribution, defined as the set of
words occurring 2 to 11 times. As is common in
work on very large corpora, forms occurring only
once are not considered because of problematic
text normalization artifacts. The upper cutoff of
11 was selected to provide a large test set of words

126

Prefix Example Types
non+ non-threat 11360
anti+ anti-badware 4933
sub+ subcritical 3520M

O
ST

post+ post-vulgate 2854
north+ northlands 428
fore+ forebrain 410
south+ southback 400L

E
A

ST

second+ second-degree 365
Suffix Example Types
+ers adopters 6881
+man beckman 6639
+based rock-based 6169M

O
ST

+like garlic-like 5518
+ful needful 430
+water floodwater 399
+american austral-american 335L

E
A

ST

+shire dorsetshire 246

Table 1: Prefixes and suffixes having the most and
least types in the far tail. Total types in the dataset.

with low frequencies (under 0.01 per million) that
would be novel to many or most readers. The test
set provides a much stronger mirror of underlying
productivity than modest extensions of small cor-
pora could. The far tail contains 129,714 complex
word types that are relevant, in that they begin or
end in one of the target affixes, and can be parsed
into the affix plus a stem. Table 1 shows the most
and least productive morphemes, as indicated by
their counts in the far tail.

4 Frequency bands

We frame the calculations by considering nominal
corpus sizes of 0.25%, 0.5%, 1.0%, 2.0%, 4.0% of
the actual corpus size. Compared to classic corpus
sizes, these range from rather small (3M words) to
rather large (50M words). For each size, we take
the “pseudohapaxes” to be words whose expected
frequency in the nominal corpus would be 1.0, tak-
ing rounding into account. For example, for the
1.0% condition, the band is centered on words oc-
curring 100 times. The 4.0% condition provides
the largest possible pseudohapax set that has no
overlap with the far tail (the test set).

The number of pseudohapaxes grows with the
nominal corpus size. To evaluate the importance
of sample size versus the absolute location in
the frequency range, we also define down-bands,
which have the same number of word types as a

Size PBand PTypes DB HTypes
0.25% [200,600] 5734 8 8196
0.5% [100,300] 8463 5 11769
1.0% [50, 150] 12709 2 16550
2.0% [25,75] 19051 1 22886
4.0% [12, 37] 29131 0 30650

Table 2: Banding scheme for five conditions, ex-
pressed as a percentage of the total corpus size. Fre-
quency band for the pseudohapaxes (PBand), total
number of pseudohapax types containing any of the
prefixes or suffixes (PTypes), number of down-bands
available before reaching the far tail (DB). Average
number of hapaxes (HTypes).

pseudohapax band but are simply shifted down-
wards in the frequency range by an integer multi-
ple of the size of that band. Table 2 summarizes
the banding scheme.

For the 4.0% condition, there is no down-band,
because the pseudohapax band falls just above the
far tail. It is also important to look at the set of
words with higher frequencies than the pseudoha-
paxes. In this ”up-band” we include all words up
to the most frequent; the size of the up-band is al-
ways within 15% of the size of the pseudohapax
set. It is never possible to define more than one
up-band from each set of pseudohapaxes.

A real hapax set corresponding to one of our
nominal sizes would have only a sparse sample of
the pseudohapaxes, but would also include words
of higher and lower frequency. For each of the
five pseudohapax bands, we simulate a real hapax
set by taking a random sample of sentences in the
corpus and collating the hapaxes. For each corpus
size, 10 different subcorpora were created. If the
hapax set happened to include words from the far
tail, these were removed from the far tail for test-
ing.

5 Evaluating predictions

We use ordinary least squares regression (OLS)
to predict the logarithm of type count for each
morpheme in the tail as a function of the loga-
rithm of type count in a pseudohapax band, treat-
ing prefixes and suffixes separately. To ensure that
the observations are robust, we use a hold-one-out
method. Each prefix (or suffix) is held out and the
remaining prefixes (or suffixes) are used to pre-
dict its value. We make the same calculation for
all conditions, all down-bands and up-bands, and
all hapax sets. Predicted R2 values are adjusted

127

as described in Draper et al. (1998), yielding the
measure R̄2

pred.
Table 3 summarizes the regression parameters.

The slope is close to 1.0 for all fits (and closes in
on 1.0 as the nominal corpus size increases), while
the intercept varies. This means that the number of
types in the far tail is approximately proportional
to the number of types in the pseudohapax or ha-
pax set, with the proportion decreasing as the nom-
inal corpus size increases.

Figure 1 shows the results for R̄2
pred. For all

conditions, the prediction from the pseudohapax
band is better than the prediction from the up-
band. Attempting predictions from words with
frequencies over 600 (leftmost points in the figure)
yields poor R̄2

pred values of 0.4 and below. The
pseudohapax bands for the 2.0%, and 4.0% condi-
tions provide very good predictions with R̄2

pred >
0.85. This outcome is not chiefly due to the large
size of these two pseudohapax sets. Predictions
are nearly as good from the down-bands falling in
the same frequency range. Figure 1 also shows re-
sults for the same calculation for the hapax sets;
the reported R̄2

pred averages over the results for
the 10 subcorpora of each size. For the small-
est corpora, the prediction from the hapax set is
better than the prediction from the corresponding
pseudohapax set. The hapax set is dominated by
rare words, because lexical rank-frequency distri-
butions are heavy-tailed. The median word fre-
quency for the 0.25% case is 88 (or 0.07 per mil-
lion). As we go towards larger corpora, the differ-
ence between the hapax value and the pseudoha-
pax value dwindles.

6 Interpretation

No matter whether the sample is obtained as a ha-
pax set or a pseudohapax set, success in predict-
ing word types in the far tail depends on having
a sample that is dominated by rare words. Psy-
cholinguists view words with frequencies of 1 to
3 per million as low-frequency words, as in Car-
reiras et al. (2006), but a median of 0.07 per mil-
lion was needed to achieve R̄2

pred > 0.8. Why did
this outcome occur? Figure 2 sheds light on this
question. It shows a frequency-rank distribution
on a log-log scale for the 5 most productive, and
the 5 least productive, suffixes as measured by the
count of word types in the far tail. This is a rota-
tion of a Zipfian rank-frequency distribution, with
a separate sub-lexicon for each morpheme.

Figure 1: R̄2
pred for using type counts of the affixes

in the indicated band to predict type counts in the far
tail. The pseudohapax set for each condition is indi-
cated with an enlarged plotting character. The hapax
set for each condition is indicated with a filled plotting
character.

If a frequency spectrum obeyed a power law (as
proposed by Zipf) it would appear as a straight
line on a log-log plot. All curves are concave
downwards, as typically observed (Baayen, 2001).
There are marked differences in how the spectra
roll off. Words with frequencies above 600 (0.5
per million) provide little information about pro-
ductivity, and two of the most productive suffixes
(+like, +related) still have not pulled out of the
bottom group by 600. The slope around 100 is,
however, very indicative of the slope around 10.

With a frequency of 88, the median hapax in
the 0.25% case has a rank of 187,474 in the rank-
frequency distribution for the entire Wikipedia vo-
cabulary (not shown). This number can be inter-
preted in the light of results on adult vocabular-
ies. Based on a large crowdsourcing experiment,
Brysbaert et al. (2016) estimate that a 60-year-
old at the 95th percentile of vocabulary knowledge
knows 56,400 lemmas, or 95,880 words including
inflected forms. Thus, it seems that unlikely that
even such a person knows all of the hapaxes. Brys-
baert et al. (2016) however omit proper names. So
it is also relevant to consider “alphabetic words”,
which are words spelled with alphabetic charac-
ters regardless of their morphological status. Brys-

128

Slope Intercept
Size Mean Min Max Mean Min Max

0.25% 0.92 0.78 +based 1.05 over+ 3.32 2.96 over+ 3.70 +based
0.5% 1.03 0.90, +based 1.15 wiki+ 2.53 2.15 wiki+ 2.92 +based
1.0% 1.05 0.93 +based 1.15 side+ 2.06 1.69 side+ 2.47 +based
2.0% 1.03 0.95 +like 1.10 second+ 1.73 1.50 second+ 1.99 +like

Ps
eu

do
ha

pa
xe

s

4.0% 1.01 0.96 +based 1.06 home+ 1.41 1.22 home+ 1.60 +based
0.25% 1.05 0.95 +like 1.16 self+ 2.49 2.14 home+ 2.78 non+
0.5% 1.06 0.96 +like 1.15 side+ 2.06 1.68 side+ 2.42 +like
1.0% 1.04 0.96 +like 1.11 news+ 1.78 1.49 news+ 2.11 +like
2.0% 1.03 0.96 +based 1.11 non+ 1.45 1.09 non+ 1.76 +basedH

ap
ax

es

4.0% 1.01 0.96 +based 1.06 head+ 1.20 0.99 +ful 1.43 +based

Table 3: Summary of regression parameters. For minimum and maximum values, the indicated affix is the one
that was held out.

Figure 2: Frequency-rank distributions (on a log-log
scale) for the most and least productive suffixes. Far
tail to the right of the solid line at 11. 0.25% up-band
to the left of the dashed line at 600. A comparable plot
for prefixes is similar.

baert et al. (2016) apply the model fits in Gerlach
& Altmann (2013) to estimate the number of dis-
tinct alphabetic words that a person has encoun-
tered, as a function of the total hours spent read-
ing in their lifetime. For the Wikipedia editors,
who had a median age of 25 in 2010 (Glott et al.,
2010), reading 8 hours a day from age 5 yields a
median estimated exposure to 146,000 alphabetic
word types, which is still fewer than the median
hapax rank. In short, the success of a hapax set
as a predictor for words in the far tail depends on
having words that are too rare to be known by ev-
eryone, and are therefore not constant in frequency
across speakers.

We now consider the assumption that each
word in the 0.25% hapax set was independently
(and repeatedly) created with some probability.

While this may be true for some words, it ap-
pears highly implausible for others. This fre-
quency range includes many words that are not
fully transparent and that recur many times within
individual articles on specialized topics. Technical
terms like interaural (audiology), piquette (oenol-
ogy), demand-side (economics) are prototypical
examples of words with non-stationary probabili-
ties (Church and Gale, 1995; Curran and Osborne,
2002). For proper names, the suffix +ville is 17
times as productive as the suffix +shire. Given
that Wikipedia asks all articles to be supported by
secondary sources, few if any proper names would
have been created on the spot.

We have seen that the hapaxes in a random sam-
ple of merely 3M words succeeded well in predict-
ing the morphological profile in the tail of a cor-
pus 400 times larger. The success seems to have
occurred because the hapaxes provided a good
slice of rare words that are not known to every-
one, and that were not necessarily created on the
spot. Pseudohapax sets that obtained a slice of
similarly rare words worked just as well. Why
are such rare words better indicators of produc-
tivity than more frequent words, even when these
have been -filtered to be decomposable, as in this
study? Possibly, rare words have a higher impact
in ongoing learning of morphology because they
are unexpected and salient. An alternative pos-
sibility brings in a social component. Different
groups of editors in Wikipedia work on different
topics. They may extend the morphological pat-
terns that typify their field and distinguish it from
other fields. In future research, we will evaluate
such possibilities.

129

References
Eduardo G Altmann, Janet B Pierrehumbert, and Adil-

son E Motter. 2009. Beyond word frequency:
Bursts, lulls, and scaling in the temporal distribu-
tions of words. PLOS one, 4(11):e7678.

Eduardo G Altmann, Janet B Pierrehumbert, and Adil-
son E Motter. 2011. Niche as a determinant of word
fate in online groups. PloS one, 6(5):e19009.

Frank Anshen and Mark Aronoff. 1999). Using dictio-
naries to study the mental lexicon. Brain and Lan-
guage, 68:16– 26.

Mark Aronoff and Mark Lindsay. 2014. Productivity,
blocking and lexicalization. The Oxford handbook
of derivational morphology, pages 67–83.

Harald Baayen and Rochelle Lieber. 1991. Produc-
tivity and english derivation: A corpus-based study.
Linguistics, 29(5):801–844.

R Harald Baayen. 2001. Word frequency distributions,
volume 18. Springer Science & Business Media.

R Harald Baayen and Antoinette Renouf. 1996. Chron-
icling the Times: Productive lexical innovations in
an English newspaper. Language, pages 69–96.

Laurie Bauer. 2005. The borderline between deriva-
tion and compounding. In Morphology and its de-
marcations: Selected papers from the 11th Morphol-
ogy meeting, Vienna, February 2004, volume 264,
page 97. John Benjamins Publishing.

Marc Brysbaert, Michaël Stevens, Paweł Mandera, and
Emmanuel Keuleers. 2016. How many words do we
know? practical estimates of vocabulary size depen-
dent on word definition, the degree of language input
and the participant?s age. Frontiers in psychology,
7.

Manuel Carreiras, Andrea Mechelli, and Cathy J Price.
2006. Effect of word and syllable frequency on ac-
tivation during lexical decision and reading aloud.
Human Brain Mapping, 27(12):963–972.

Revas J Chitashvili and R Harald Baayen. 1993. Word
frequency distributions of texts and corpora as large
number of rare event distributions. In Quantitative
text analysis, pages 54–135. Wissenschaftlicher Ver-
lag.

Kenneth W Church. 2000. Empirical estimates of
adaptation: the chance of two noriegas is closer to
p/2 than p 2. In Proceedings of the 18th conference
on Computational linguistics-Volume 1, pages 180–
186. Association for Computational Linguistics.

Kenneth W Church and William A Gale. 1991. A com-
parison of the enhanced Good-Turing and deleted
estimation methods for estimating probabilities of
English bigrams. Computer Speech & Language,
5(1):19–54.

Kenneth W Church and William A Gale. 1995. Pois-
son mixtures. Natural Language Engineering,
1(2):163–190.

James R Curran and Miles Osborne. 2002. A very
very large corpus doesn’t always yield reliable es-
timates. In Proceedings of the 6th conference on
Natural Language Learning-Volume 20, pages 1–6.
Association for Computational Linguistics.

Norman R Draper and Harry Smith. 1998. Applied re-
gression analysis. Wiley series in probability and
statistics: Texts and references section. Wiley, New
York, NY.

Martin Gerlach and Eduardo G Altmann. 2013.
Stochastic model for the vocabulary growth in natu-
ral languages. Physical Review X, 3(2):021006.

Ruediger Glott, Philipp Schmidt, and Rishab Ghosh.
2010. Wikipedia survey ? overview of results.
United Nations University.

Jennifer Hay. 2001. Lexical frequency in morphol-
ogy: Is everything relative? Linguistics, 39(6; ISSU
376):1041–1070.

Jennifer Hay and Harald Baayen. 2002. Parsing and
productivity. In Yearbook of Morphology 2001,
pages 203–235. Springer.

Daniel Jurafsky and James H Martin. 2000. Speech and
Language Processing. Prentice-Hall, Upper Saddle
River, NJ.

Dorothy Kenny. 2014. Lexis and Creativity in Transla-
tion: A corpus-based approach. Routledge.

Ingo Plag, Christiane Dalton-Puffer, and Harald
Baayen. 1999. Morphological productivity across
speech and writing. English Language & Linguis-
tics, 3(2):209–228.

Ioan-Iovitz Popescu and Gabriel Altmann. 2008. Ha-
pax legomena and language typology. Journal of
Quantitative Linguistics, 15(4):370–378.

Antoinette Renouf. 1987. Corpus development. In
John M. Sinclair, editor, Looking up: An account of
the COBUILD Project in lexical computing, pages
1–40. William Collins Sons and Co. Ltd. London,
England.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of Documentation, 28(1):11–21.

Gregory Stump. 2017. Rule conflation in an
inferential-realizational theory of morphotactics.
Acta Linguistica Academica, 64(1):79?124.

Gregory Stump. in press. Some sources of apparent
gaps in derivational paradigms. Morphology.

130

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 131–139
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

A Morphological Analyzer for Shipibo-Konibo

Ronald Cardenas
Charles University in Prague

Faculty of Mathematics and Physics
Inst. of Formal and Applied Linguistics
ronald.cardenas@matfyz.cz

Daniel Zeman
Charles University in Prague

Faculty of Mathematics and Physics
Inst. of Formal and Applied Linguistics

zeman@ufal.mff.cuni.cz

Abstract

We present a fairly complete morphological
analyzer for Shipibo-Konibo, a low-resourced
native language spoken in the Amazonian re-
gion of Peru. We resort to the robustness of
finite-state systems in order to model the com-
plex morphosyntax of the language. Evalua-
tion over raw corpora shows promising cover-
age of grammatical phenomena, limited only
by the scarce lexicon. We make this tool freely
available so as to aid the production of anno-
tated corpora and impulse further research in
native languages of Peru.

1 Introduction

Linguistic and language technology research on
Peruvian native languages have experienced a re-
vival in the last few years. The academic effort
was accompanied by an ambitious long term ini-
tiative driven by the Peruvian government. This
initiative has the objective of systematically doc-
umenting as many native languages as possible
for preservation purposes (Acosta et al., 2013).
So far, writing systems and standardization have
been proposed for 19 language families and 47
languages.

In this paper, we focus on Shipibo-Konibo
(henceforth, SK), also known in the literature as
Shipibo or Shipibo-Conibo. SK is a member of
the Panoan language family. This family is a well-
established linguistic group of the South Ameri-
can Lowlands, alonside Arawak, Tupian, Cariban,
and others. Currently, circa 28 Panoan languages
are spoken in Western Amazonia in the regions be-
tween Peru, Bolivia, and Brazil. Nowadays, Ship-
ibo is spoken by nearly 30,000 people mainly lo-
cated in Peruvian lands.

The morphosyntax of SK in extensively ana-
lyzed by Valenzuela (2003). However, several
phenomena such as discourse coherence marking

and ditransitive constructions still require deeper
understanding, as pointed out by Biondi (2012).

We present the first finite-state morphological
analyzer for SK, capable of performing POS tag-
ging as well as morpheme segmentation and cate-
gorization. In order to impulse the development of
downstream applications and corpora annotation,
the tool is freely available1 under the GPL license.

2 Related Work

The development of freely available basic lan-
guage tools has proven to be of utmost impor-
tance for the development of downstream appli-
cations for native languages with low resources.
Finite-state morphology systems constitute one
type of such basic tools. Besides downstream
applications, they are essential for the construc-
tion of annotated corpora, and consequently, for
development of other tools. Such is the case
of Quechua, a native language spoken in South
America, for which the robust system developed
by (Rios, 2010) paved the way to the proposal of a
standard written system for the language (Acosta
et al., 2013) and impulsed work in parsing, ma-
chine translation (Rios, 2016), and speech recog-
nition (Zevallos and Camacho, 2018).

Initial research regarding SK has centered
in the development of manual annotation tools
(Mercado-Gonzales et al., 2018), lexical database
creation (Valencia et al., 2018), Spanish-SK par-
allel corpora creation and initial machine trans-
lation experiments (Galarreta et al., 2017). Re-
lated to our line of research, work by Pereira-
Noriega et al. (2017) addresses lemmatization
but not morphological categorization. Alva and
Oncevay-Marcos (2017) presents initial experi-
ments on spell-checking using proximity of mor-
phemes and syllable patterns extracted from anno-

1http://hdl.handle.net/11234/1-2857

131

https://doi.org/10.18653/v1/P17

tated corpora.
In this work, we take into account the morpho-

tactics of all word categories and possible mor-
pheme variations attested by Valenzuela (2003).
We explored and included as many exceptions as
found in the limited annotated corpora to which
we got access. Hence, the tool presented is robust
enough to leverage current efforts in the creation
of basic language technologies for SK.

3 Shipibo-Konibo Morphosyntax

In terms of a syntactic profile, SK is a (mainly)
post-positional and agglutinating language with
highly synthetic verbal morphology, and a basic
but quite flexible agent-object-verb (AOV) word
order in transitive constructions and subject-verb
(SV) order in intransitive ones, as summarized by
(Fleck, 2013).

SK usually exhibits a biunique relationship be-
tween form and function, and in most cases mor-
pheme boundaries are easily identifiable. It is
common to have unmarked nominal and adjectival
roots, and few instances of stem changes and sup-
pletion are documented by (Valenzuela, 2003). In
addition, the verb may carry one or more deictic-
directive, adverb type suffixes, in what can be de-
scribed as a polysynthetic tendency.

In addition, SK presents a rare instance of syn-
tactic ergativity in an otherwise morphologically
ergative but syntactically accusative language.

We proceed to comment about the most salient
morpho-syntactic features relevant to the morpho-
tactics argumentation in section 4.2. The examples
presented in this section were taken from Valen-
zuela (2003).

3.1 Expression of Argument

Verb arguments are expressed through free lexi-
cal case-marked nominals, with no co-referential
pronominal marking on the verb or auxiliary. That
is, verbs and auxiliaries are not marked to agree
with 1st, 2nd, or 3rd person of the subject or agent.
Instead, verbs are marked to indicate that the ac-
tion was carried out by the same participant of the
previous clause or by another one. We explain this
phenomena in section 3.4.

Omission of required subject and object is nor-
mally understood as zero third person singular
form. There are no systematic morpho-syntactic
means of distinguishing direct from indirect ob-
jects, or primary versus secondary objects.

3.2 Case Marking
Grammatical cases are always marked as suffixes,
except for a couple of exceptions. SK exhibits
a fairly rigid ergative-absolutive case-marking
system. The ergative case is always marked,
whereas the absolutive case is only marked on
non-emphatic pronouns. All other grammatical
cases are marked, except the vocative case. The
vocative case is constructed by shifting the stress
of a noun to the last syllable.

3.3 Participant Agreement
Certain adverbs, phrases, and clauses are seman-
tically oriented towards one core participant or
controller and receive a marking in accordance
with the syntactic function this participant plays,
namely subject (S) of a intransitive verb, agent (A)
of a transitive verb, or object (O) of a transitive
construction. This feature can be analyzed as a
type of split-ergativity which might be exclusive
to Panoan languages. The following example il-
lustrates this phenomena for the adjunct bochiki:
high up in S, O, and A orientation (ONOM refers
to onomatopeic words).

(1) S orientation
Bochiki-ra e-a oxa-i
up:S-Ev 1-Abs sleep-Inc
“I sleep high up (e.g., in a higher area inside
the house).”

(2) O orientation
E-n-ra yami kentı́ bochiki a-ke
1-Erg-Ev metal pot:Abs up:O do.T-Cmpl
“I placed the metal pot high up.” (only the pot
is high up)

(3) A orientation
E-n-ra yami kentı́ bochiki-xon
1-Erg-Ev metal pot:Abs up-A
tan tan a-ke.
ONOM ONOM do.T-Cmpl
“I hit the metal pot (being) high up.” (I am
high up with the pot)

3.4 Clause-Chaining and Switch-Reference
System

Chained clauses present only one clause with fully
finite verb inflection while the rest of them carry
same- or switch-reference marking. Reference-
marked clauses are strictly verb-final, carry no ob-
vious nominalizing morphology and may precede,
follow, or be embedded in their matrix clause.

132

Same-reference markers encode transitivity sta-
tus of the matrix verb, co-referentiality or non co-
referentiality of participant, and relative temporal
or logical order of the two events. This is be-
cause most same-subject markers are identical to
the participant agreement morphemes and hence
correlate with the subject (S) or agent (A) function
played by their controller in the matrix clause. The
following example shows three chained clauses.
Notice that the matrix verb is chew, and the subor-
dinated clause’s verbs carry the marker xon to in-
dicate that the action was performed by the same
agent prior to the action described in the main
clause (PSSA: previous event, same subject, A ori-
entation).
[[Jawen tapon bi-xon] kobin-a-xon]

Pos3 root:Abs get-PSSA boil-do.T-PSSA
naka-kati-kan-ai.
chew-Pst4-Pl-Inc
“After getting its (i.e., a plant’s) root and boiling

it, they chewed it.”
Same- or switch- reference marking may also

be used to encode different types of discourse
(dis)continuity.

3.5 Pronouns and Split-Ergativity

The personal pronoun system in SK is composed
of 6 basic forms corresponding to the combina-
tions of three person (1,2,3) and two number (sin-
gular and plural) distinctions. SK does not differ-
entiate gender or inclusive vs exclusive first person
plural. There are no honorific pronouns either.

The ergative-absolutive alignment is used in
all types of constructions, except for reflexive
pronoun constructions. Reflexive pronouns are
marked with the suffix -n when referring to both
A and S arguments, but remain unmarked when
referring to an O argument. Hence, reflexive pro-
nouns constructions clearly present a nominative-
accusative alignment.

3.5.1 Clitics
All clitics in SK are enclitics, i.e. they always
function as suffixes, but most of them encode
clause level features in which case they are at-
tached to the last element of the phrase or clause
they are modifying. SK clitics are categorized into
case markers, less-fixed clitics and second position
clitics, as proposed by Valenzuela (2003).

Case markers are attached to noun phrases pre-
ceding mood and evidentiality markers in its last
constituent word.

Second position clitics are attached to the main
clause in the sentence, and they encode evidential-
ity (+Ev:ra; +Hsy:ronki, ki; e.g. it is said that ...),
reported speech (e.g. he says/said that ...), inter-
rogative focus (+Int:ki,rin; +Em:bi), and dubita-
tive voice.

Less-fixed clitics mark the specific element they
are attached to, instead of the whole clause. These
are endo-clitics, i.e. they can take any position
other than the last morpheme slot in a construc-
tion. In this category we can find adverbial, adjec-
tival, and dubitative suffixes.

4 Morphological Analyzer

The analyzer was implemented using the Foma
(Hulden, 2009) toolkit, following the extensive
morphological description provided by Valenzuela
(2003). Besides segmenting and tagging all mor-
phemes in a word form, the analyzer also catego-
rizes the root and the final token in order to ac-
count for any sequence of derivational processes.
The analysis is of the form

[POS] root[POS.root] morpheme[+Tag] ...
and it is illustrated with an example in Table 1.

The complete list of abbreviations and symbols
used for morphological tagging can be found in
the Appendix A of (Valenzuela, 2003). Language
specific POS tagset was mapped to the Universal
Dependencies (Nivre et al., 2016) v2 POS tagset.2

In the remaining of this section we provide a
thorough explanation of the production rules for
the main POS categories and the comment on the
limitations of the analyzer.

4.1 The Lexicon

The lexicon was obtained from manually anno-
tated corpus and a digitalized thesaurus kindly
provided by the Artificial Intelligence Research
Lab of the Pontifical Catholic University of Peru
(GIPIAA-PUCP). The annotated corpus was built
from folk tales documents and it consists of 12,250
tokens and 2,915 types. The thesaurus provides
dictionary entries for 6,750 types.

The extensive work of (Valenzuela, 2003) pro-
vides a systematic encoding of morpho-syntactic
information for SK. Similar guidelines were fol-
lowed to design the encoding for Quechua (Rios,
2016), another agglutinative, ergative-absolutive

2http://universaldependencies.org/u/
pos/

133

Token Translation Analysis
Isábora the birds [NOUN] isá[NRoot] bo[+Pl] ra[+Ev]
noyai are flying [VERB] noy[VRoot.I] ai[+Inc]

Table 1: Example of analysis produced.

UPOS Thesaurus Annotated corpus
NOUN 2557 719
VERB 2284 578
ADJ 601 107
ADV 223 112
PROPN - 112
PRON 24 36
NUM - 6
SCONJ - 2
CCONJ - 3
AUX - 2
DET - 28
ADP 46 19
INTJ - 15
PART - 9

Table 2: Number of roots per POS, for each lexicon
source.

native language widely spoken in Peru and South
America.

The annotated corpus, however, was not anno-
tated following this encoding, and further man-
ual annotation was required. With the help of
a digitalized dictionary and an affix thesaurus
we manually resolved the mappings and corre-
spondences using the—now widely accepted—
morphosyntactic encoding.

The following example illustrates the annota-
tion. The first row shows the raw segmentation
of the tokens; the second row, the original anno-
tation (Clit stands for clitic, VS stands for verbal
suffix); the third row, the new annotation follow-
ing the morphosyntactic tagset proposed by Valen-
zuela (2003).

Shoko-res oxa-[a]i / pi-ai.
a.little.bit-Clit sleep-VS eat-VS
a.little.bit-just sleep-Inc eat-Inc
‘I’m gonna sleep / eat just a little bit.’

Table 2 presents the number of roots per UD
POS category for each lexicon source, for a total
of 8,658 roots.

4.2 Morphotactics

Although SK presents a predominantly suffixed
morphology, there exists a closed list of prefixes,
almost all being body part derivatives shortened
from the original noun (e.g. ’head’ mapo→ ma).
These prefixes can be added to nouns, verbs, and
adjectives to provide a locative signal.

4.2.1 Nouns
Nominal roots can occur in a bare form without
any additional morphology or carry the following
morphemes.

• Body part prefix (+Pref), to indicate location
in the body.

• Plural marker (+Pl:bo), meaning more than
one. Dual number distinction is not made in
nouns, but in verbs.

• N-marker and other case markers. The suf-
fix -n can mark the ergative (+Erg), geni-
tive (+Gen), and interessive (+Intrss, to de-
note interest), and instrumental (+Inst) cases.
Other marked cases in SK include abso-
lutive (+Abs:a), dative (+Dat:ki), locative
(+Loc:me,ke), allative (+All:n,nko), ablative
(+Abl:a), and chezative (+Chez:iba). The
allative case always follows a locative case
marker, both of them presenting several allo-
morphs.

• Participant agreement marker (+S:x), to indi-
cate the subject of a transitive verb.

• Distributive marker (+Distr:tibi), produces
quantifier phrases, e.g. day+Distr > every
day.

• Adjectival markers , such as diminutive
(+Dim:shoko), deprecatory (+Deprec:isi),
legitimate (+Good:kon, +Bad:koma),
proprietive (+Prop:ya) and privative
(+Priv:oma,nto).

• Adverbial markers.

• Postpositional markers.

134

• Second position clitics, exclusively the focus
emphasizer (+Foc:kan).

It is worth mentioning that only the first plural
morpheme has precedence over the others suffixes,
and clitics are required to be last. Plural, cases,
and adverbial markers can occur multiple times.
There is no gender marking in SK. Instead, the
words for woman (ainbo) and man (benbo) are
used as noun modifiers. Consider the example

Tı́ta-shoko-bicho-ra oxa-ai
mom:Abs-Dim-Adv-Ev sleep-Inc
‘Mommy sleeps alone.’
The diminutive shoko is denoting affection in-

stead of size. Notice that the adverbial suffix bicho
would have to be constructed as a separate adjunct
in English and it is attached to the noun, not the
verb.

Derived Nominals Verbal roots can be nominal-
ized by adding the suffix -ti or past participle suf-
fixes a, ai. Zero nominalization is only possible
over a closed set of verbs, e.g. shinan- ‘to think, to
remember / mind, thinking’.

On the other hand, adverbial expressions and
adjectives may function as nominals and take the
corresponding morphology directly without re-
quiring any overt derivation.

4.2.2 Adjectives and Quantifiers
Adjectival roots can optionally bear the following
morphemes.

• Negative (+Neg:ma), to encode the opposite
feature of an adjective.

• Diminutive (+Dim:shoko), deprecatory
(+Deprec:isi), intensifier (+Intens:yora).

• Adverbial markers.

• Interrogative clitics (+Int:ki,rin; +Em:bi).

Derived Adjectives Nominal roots can be ad-
jectivized when adding proprietive (+Prop:ya) or
privative (+Priv:oma,nto) markers, e.g. bene-ya
[husband+Prop]→ married (woman).

In regards to verbs, participial tense-marked
verbs can function as adjectives. Transitive verbs
and a closed set of intransitive verbs can take an
agentive suffix (+Agtz:mis,yosma,kas) to express
one who always does that action.

As with nominalization, adverbs take zero mor-
phology to function as adjectives.

4.2.3 Verbs
Verbal morphology presents by far the most com-
plex morphotactics in SK, allowing up to 3 pre-
fixes and 18 suffixes following a relatively strict
order of precedence, as follows.

• Prefixes related to body parts, providing loca-
tive information about the action.

• Plural marker (+Pl:kan).

• Up to 2 valency-changing suffixes, depend-
ing whether we are increasing or decreasing
transitivity, whether the root is transitive or
intransitive, or whether the root is bisyllabic
or not.

• Interrogative intensifier (+Intens:shaman), to
bring focus on the action in a question.

• Desiderative marker (+Des:kas), to indicate
that the clause is desiderative (e.g. I want to
V).

• Negative marker (+Neg:yama).

• Deictive-directive markers are identical or
similar to motion verbs and encode a
movement-action sequence, e.g. V-ina→ ’go
up the river and V’.

• Adverbial suffixes, depending whether the
verb is marked as plural or not. Here in this
slot we find the suffix bekon that indicates
dual action.

• Habitual marker (+Hab:pao), to encode that
the action is done as a habit.

• Tense markers.

• Adjectival (+Dim:shoko; +Deprec:isi; +In-
tens:yora) and adverbial suffixes.

• Preventive marker (+Prev:na), to express
warning, a situation to be prevented.

• Final markers, including participial and ref-
erence markers depending whether the verb
is finite or non-finite in the clause. Reference
markers encode agreement with the agent or
subject of the clause (S vs A agreement),
whether it is even the same agent and the
point in time the action was carried out.

• All second position clitics.

135

Verbal roots must always bear either a tense
marker or at least one final marker. All other suf-
fixes are optional. The following example illus-
trates how the deictive-directive marker can en-
code a whole subordinated clause.

Sani betan Tume bewa-kan-inat-pacho-ai
Sani and Tume sing-Pl-go.up.the.river-Adv-Inc
‘Sani and Tume always sing while going up the

river.’

Derived Verbs Nominal roots are turned into
transitive verbs by adding the causativizer
+Caus:n. The auxiliary marker +Aux:ak can be
added to nominal, adjectival, and adverbial roots
to form transitive verbs.

4.2.4 Pronouns
Personal pronouns can bear the following suffixes.

• Ergative (+Erg:n) and absolutive (+Abs:a)
case marker. This last one is only used on
singular forms and first person plural.

• Chezative (+Chez:iba), dative (+Dat:ki), and
comitative (+Com:be) case markers.

• Post-positional suffixes.

• Interrogative and evidential clitics.

The ergative case construction also renders pos-
sessive modifiers, with the exception of the first
and third singular form, which have a different
form with no marking. Possessive pronouns are
formed by adding the nominalizer +Nmlz:a to pos-
sessive modifiers.

Emphatic pronouns present the marker +S:x
when agreeing with the S argument and no marker
when agreeing with the A argument. Special atten-
tion was taken for the third person singular pro-
noun ja-, which presents a tripartite distribution:
ja-n-bi-x for S, ja-n-bi for A, ja-bi for O.

Interrogative pronouns who, what, where can be
marked for ergative, absolutive, genitive, cheza-
tive, and comitative cases. The participant agree-
ment suffix for these pronouns presents a tripar-
tite distribution: +S:x, +O:o, +A:xon for S, O,
A agreement, respectively. The following exam-
ple illustrates the behavior of pronoun jawerano:
where.

(4) S orientation
Jawerano-a-x-ki mi-a jo-a
where:Abl-S-Int 2-Abs come-Pp2
‘From where did you come?’

(5) O orientation
Jawerano-a-ki mi-n paranta be-a
where:Abl-O-Int 2-Erg banana:Abs bring-
Pp2
‘From where did you bring banana?’

(6) A orientation
Jawerano-xon-ki epa-n pi-ai
where-A-Int uncle-Erg eat-Pp1
‘Where is uncle eating?’

Interrogative pronouns how, how much, how
many are marked only for participant agreement
using an ergative-absolutive distribution (+S:x,
+A:xon). In addition, all interrogative pronouns
can take interrogative, focus, and emphasis clitics.

Demonstrative roots can function both as pro-
nouns and determiners. In the first case, they bear
all proper pronoun morphology. In the second
case, they can only bear the Plural nominal marker
+Pl:bo.

4.2.5 Adverbs
Adverbs can be suffixed with evidential clitics.
However, whenever an adverb is modifying an ad-
jective, it takes participant agreement morphology
(+S:x,ax,i; +A:xon) in order to agree with the syn-
tactic function of the noun the adjective is modify-
ing.

Adverbial roots can also function as suffixes and
be attached to nouns, verbs, adjectives, and even
other adverbial roots.

Derived Adverbs Adverbs can be derived from
demonstrative roots by adding locative case mark-
ers depending of the proximity of the entity be-
ing referred to. Adjectival roots function as ad-
verbs by receiving the +Advz:n morpheme. Nouns
and quantifier roots take the locative case marker
+Loc:ki in order to form adverbs.

4.3 Postpositions

There are only 20 postpositional roots in SK, all of
them can take second position clitics. In the same
fashion as adverbial roots, postpositional roots can
also function as suffixes. Adverbial roots can
function as postpositions by taking the locative
marker sequence +Loc: ain-ko.

4.3.1 Conjunctions
All conjunction roots take participant agreement
markers (+S:x, +A:xon), except coordinating con-
junctions betan (and) and itan (and, or). These

136

markers encode inter or intra-clausal participant
agreement, often used as discourse discontinuity
flags.

Subordinating conjunctions can take the follow-
ing morphemes.

• Locative, ablative, and similitive (+Siml:ska)
case markers.

• Completive aspect markers, also found as
participials in verbs at the final slot.

• Reference agreement mark +P:ke, to encode
discourse continuity.

• Second position clitics.

In the following example, we analyze the be-
havior of the conjunction root ja.

(7) Ja-tian jawen bene ka-a ik-á
that-Temp Pos3 husband:Abs go-Pp2 be-Pp2

iki jato onan-ma-i ...
AUX 3p:Abs know-Caus-SSSI ...

‘By that moment her husband had gone to
teach them (i.e. the Shipibo men) ...’

(8) Jo-xon jis-á-ronki ik-á iki
come-PSSA notice-Pp2-Hsy be-Pp2 AUX

Inka Ainbo wini wini-i.
Inka woman:Abs cry cry-SSSI

‘When (he) returned, he saw the Inka Woman
crying and crying.’

(9) Ja-tian jawen bene-n raté-xon
3-Temp Pos3 husband-Erg scare:Mid-PSSA

yokat-a iki: “Jawe-kopı́-ki mi-a wini-ai?”
ask-Pp2 AUX why-Int 2-Abs cry-Inc

“Then her husband got scared and asked
(her): ‘Why are you crying?’”

While the first instance of jatian in (9) coin-
cides with the introduction in subject function of
the male Inka and hence with a change of subject,
the second instance in (11) does not. In fact, the
subjects in (10) and (11) have the same referent,
but jatian is used to indicate a switch from narra-
tive to direct quote in the chain. Note that in (11)
the subject ‘her husband’ is overtly stated so that
the hearer does not misinterpret jatian as indicat-
ing a change in subject.

4.4 Limitations

The analyzer processes token by token without
considering context, restricting it from discard-
ing hypothesis based on fairly rigid constructions,
e.g. future tense with auxiliary verbs, modal verbs,
nominal compounds, among others.

There exist a group of morphemes that present
multiple possible functions in the same position
of the construction template. Hence, they can be
mapped to more than one morphological tag. Con-
sider the case suffix -n in the following example.
The square brackets indicate that even though -n
is attached to nonti, it acts as a phrase suffix that
modifies the whole phrase (you canoe).

E-n [mi-n nonti]-n yomera-i ka-ai
1-Erg 2-Gen canoe-Ins get.fish-SSSS go-Inc
“I am going to fish with your canoe.”
In this case, the analyzer outputs all possi-

ble tag combinations, such as +Erg:ergativo,
+Inst:intrumental, +Gen:genitive, +In-
trss:interessive, and +All:allative. Other suffixes
with this kind of behavior are completive aspect
suffixes and past tense suffixes in verbs. Disam-
biguation of these morphemes requires knowledge
of the syntactic function of the word in the clause.
Such sentence level disambiguation is out of the
scope of the analyzer.

5 Evaluation

We evaluate the robustness of our analyzer by test-
ing the coverage of word forms. A coverage per
type of 94.99% was achieved for the training data
(annotated corpus + thesaurus). A closer look into
the remaining non-recognized types revealed that
in all cases they contain an already covered root
or affix but with different diacritization. This is to
be expected since the only diacritization rules ex-
istent for SHK were proposed recently by Valen-
zuela (2003) and the text the annotated data was
based in was written way before the proposal of
the diacritization rules.

Table 3 shows type and token coverage over raw
text not used during development. These corpora
span several domains such as the bible, educa-
tional material, legal domain, and folk tales. This
last domain—same as the domain of the annotated
corpus—has the highest coverage.

As expected, the lowest coverage is obtained
over the legal domain, a specialized domain with
complex grammatical constructions and special-
ized vocabulary. For example, legal documents

137

Number of Words Coverage (%)
Subset Tokens Types Tokens Types
Bible - New Testament 210,828 20,504 79.11 49.49
Elementary School Books 31,127 4,395 76.59 45.12
Kindergarten Text Material 15,912 2,581 76.90 55.29
Constitution of Peru 12,319 2,645 70.83 40.57
Folk tales 10,934 2,737 94.38 85.42
Total 281,120 28,133 78.93 47.12

Table 3: Coverage on corpora from different domains of raw corpora.

Error type Count
Alternative spelling 43
Proper nouns 20
Common nouns 4
Other OOV 25
Foreign word 8

Table 4: Error analysis of the 100 most frequent unan-
alyzed word types in raw corpora.

must be precise about semantic roles of the partici-
pants, information partially encoded through mor-
phology in SK.

In contrast, educational material for kinder-
garten level presents the second highest cover-
age, quite possibly because only basic grammat-
ical constructions are used at this level of educa-
tion.

Error Analysis: We further analyze the unrec-
ognized words in the raw corpora. We manu-
ally categorize the 100 most frequent unrecog-
nized word types, as shown in Table 4. It can be
noted that the most common error is due to alter-
native spelling of the final word form, mostly due
to the absence—or presence—of diacritics or due
to the presence of an unknown allomorph. Most of
the errors of this kind can be traced back to tokens
in the Bible domain. The Bible was translated to
SK in the 17th century and it has remained almost
intact since then. Hence, some constructions are
considered nowadays ungrammatical (e.g. a verb
must always carry either a participant agreement
suffix or a tense suffix) or some suffixes are obso-
lete (e.g. the n-form +Erg:sen; the infinitive form
+Inf:ati).

Furthermore, the high presence of OOV words
other than nouns or proper nouns is an indicative
that the root lexicon upon the analyzer is based is
still limited and far more entries are needed.

6 Conclusion and Future Work

We presented a robust and fairly complete (in mor-
photactics, not in lexicon) finite-state morpholog-
ical analyzer for Shipibo-Konibo, a low-resourced
native language from Peru. The analyzer is ca-
pable of performing morphological segmentation
and categorization, as well as part-of-speech tag-
ging of the root and the whole final token.

Experiments over corpora from different do-
mains show promising coverage given the lim-
ited root lexicon available. We performed a thor-
ough analysis of errors over unrecognized words,
finding that our analyzer cannot recognize cer-
tain obsolete constructions and spellings found in
Biblical text, which was written centuries ago.
However, for modern day Shipibo-Konibo in non-
specialized domains (e.g. legal domain) the tool
is quite robust and covers production rules for all
word categories.

The work presented in this paper is part of a
greater effort to provide the research community
with basic language tools that would aid in the
construction of treebanks. Future paths considered
include the mapping of morphological tags into
morphological features defined in Universal De-
pendencies 3, sentence-level tag disambiguation
and parsing, among others.

Acknowledgments

The work was partially supported by the grant
15-10472S of the Czech Science Foundation
(GAČR). The authors would like to thank GR-
PIAA Research Lab at the Pontifical Catholic Uni-
versity of Peru for kindly providing the annotated
corpus, dictionaries, and raw corpora used in the
experiments of this paper.

3http://universaldependencies.org/u/
feat/index.html

138

References
Sullón Acosta, Karina Natalia, Edinson Huaman-

cayo Curi, Mabel Mori Clement, and Vidal Carba-
jal Solis. 2013. Documento nacional de lenguas
originarias del Perú.

Carlo Alva and Arturo Oncevay-Marcos. 2017. Spell-
checking based on syllabification and character-
level graphs for a peruvian agglutinative language.
In Proceedings of the First Workshop on Subword
and Character Level Models in NLP, pages 109–
116.

Roberto Zariquiey Biondi. 2012. Ditransitive con-
structions in Kashibo-Kakataibo and the non-
distinguishable objects analysis. Studies in Lan-
guage. International Journal sponsored by the Foun-
dation “Foundations of Language”, 36(4):882–905.

David William Fleck. 2013. Panoan languages and
linguistics. (Anthropological papers of the American
Museum of Natural History, no. 99). American Mu-
seum of Natural History.

Ana-Paula Galarreta, Andrés Melgar, and Arturo
Oncevay-Marcos. 2017. Corpus creation and ini-
tial SMT experiments between Spanish and Shipibo-
Konibo. In Proceedings of RANLP.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the 12th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Demonstrations Session, pages
29–32. Association for Computational Linguistics.

Rodolfo Mercado-Gonzales, José Pereira-Noriega,
Marco Antonio Sobrevilla Cabezudo, and Arturo
Oncevay-Marcos. 2018. Chanot: An intelligent an-
notation tool for indigenous and highly agglutinative
languages in Peru. In LREC.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659–1666, Por-
torož, Slovenia. European Language Resources As-
sociation.

José Pereira-Noriega, Rodolfo Mercado-Gonzales,
Andrés Melgar, Marco Sobrevilla-Cabezudo, and
Arturo Oncevay-Marcos. 2017. Ship-lemmatagger:
Building an NLP toolkit for a peruvian native lan-
guage. In International Conference on Text, Speech,
and Dialogue, pages 473–481. Springer.

Annette Rios. 2010. Applying finite-state techniques
to a native American language: Quechua. Institut
für Computerlinguistik, Universität Zürich.

Annette Rios. 2016. A basic language technology
toolkit for Quechua.

Diego Maguiño Valencia, Arturo Oncevay-Marcos,
and Marco Antonio Sobrevilla Cabezudo. 2018.
Wordnet-shp: Towards the building of a lexical
database for a peruvian minority language. In
LREC.

Pilar Valenzuela. 2003. Transitivity in shipibo-konibo
grammar. Ph.D. thesis, University of Oregon.

Rodolfo Zevallos and Luis Camacho. 2018. Sim-
inchik: A speech corpus for preservation of south-
ern Quechua. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Paris, France. European
Language Resources Association (ELRA).

139

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 140–150
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

An Arabic Morphological Analyzer and Generator with Copious Features

Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani, and Nizar Habash
Computational Approaches to Modeling Languages Lab

New York University Abu Dhabi
{dima.taji, salamkhalifa, oobeid, fadhl.eryani, nizar.habash}@nyu.edu

Abstract

We introduce CALIMAStar, a very rich Ara-
bic morphological analyzer and generator that
provides functional and form-based morpho-
logical features as well as built-in tokeniza-
tion, phonological representation, lexical ra-
tionality and much more. This tool includes
a fast engine that can be easily integrated into
other systems, as well as an easy-to-use API
and a web interface. CALIMAStar also sup-
ports morphological reinflection. We evaluate
CALIMAStar against four commonly used an-
alyzers for Arabic in terms of speed and mor-
phological content.

1 Introduction

Work on Modern Standard Arabic (MSA) mor-
phological modeling has been ongoing for the
past thirty years resulting in many resources with
high degrees of accuracy for analysis, genera-
tion, and tokenization (Beesley et al., 1989; Al-
Sughaiyer and Al-Kharashi, 2004; Habash, 2010;
Pasha et al., 2014; Abdelali et al., 2016). These
previous efforts addressed many of the important
challenges of Arabic morphology such as its high
degree of ambiguity resulting from optional dia-
critization and templatic morphemes. However,
while there are several commonly used systems for
Arabic morphology, we observe that there are still
some unresolved challenges.

First, some aspects of Arabic’s rich morphology
are not fully or consistently modeled. Examples
include the discrepancy between form and func-
tion (in gender, number, case and state) as well as
the rationality feature. The commonly used Penn
Arabic Treebank (PATB) (Maamouri et al., 2004)
and Buckwalter Arabic Morphological Analyzer
(BAMA) (Buckwalter, 2002) do not model nom-
inal functional features or rationality. Some previ-
ous attempts did not cover all these phenomena or
focused on limited data sets (Smrž, 2007; Alkuh-
lani and Habash, 2011).

Second, the different existing tools do not all
provide the same kind of information, which of-
ten led researchers to improvise extensions to ac-
commodate their downstream task needs. One
example is the phonological representation map-
pings that Biadsy et al. (2009) devised on top of
the MADA disambiguation system (Habash et al.,
2009) instead of using Elixir-FM (Smrž, 2007),
which already included phonology. This is par-
tially because Elixir-FM was not connected to a
disambiguation system. Another example is the
work by Habash et al. (2009) to provide genera-
tion capability on top of the BAMA (Buckwalter,
2002) algorithm and databases because BAMA,
which was used to annotate the PATB, was analy-
sis focused, unlike the finite-state solutions to Ara-
bic morphology (Beesley et al., 1989).

Third, many of the existing tools have differ-
ent use requirements (operating system, program-
ming language, etc.), and some have no easy-to-
use APIs.

In this paper, we introduce CALIMAStar,1

a very rich Arabic morphological analyzer and
generator that includes functional features, built-
in tokenization, phonological representation, and
numerous other features. CALIMAStar comes
with a fast engine that can be easily integrated
into other systems, and an easy-to-use web in-
terface. CALIMAStar also supports morpholog-
ical reinflection. While in this paper we focus
on MSA only for the database discussion, the en-
gine itself is independent of the variant choice.
CALIMAStar will be made publicly available as
part of a large suite of tools to support research on
Arabic natural language processing (NLP).2

1In Arabic, �éÒÊ¿ /kalima/ means ‘word’. We follow and
extend the naming convention from Habash et al. (2012) who
developed CALIMAEGY, and Khalifa et al. (2017) who de-
veloped CALIMAGLF. The Star designation in CALIMAStar

is intended to eventually represent all Arabic variants (MSA
and dialects), and all possible features.

2http://resources.camel-lab.com/.

140

https://doi.org/10.18653/v1/P17

2 Related Work

In this section, we discuss previous work on
Arabic morphological analysis and generation in
terms of (a) algorithms and representations, (b)
morphological knowledge, and (c) morphological
disambiguation and tokenization. Table 1 com-
pares the features supported by CALIMAStar and
a number of analyzers discussed below.

2.1 Algorithms and Representations

There are a number of dimensions over which so-
lutions to Arabic morphology modeling have var-
ied (Beesley et al., 1989; Beesley, 1996; Habash
and Rambow, 2006; Smrž, 2007; Altantawy et al.,
2010, 2011). One important aspect is the de-
gree of explicitness of representing morphological
rules and their interactions. Some approaches use
very abstract and linguistically rich representa-
tions and rules to derive surface forms of the words
(Beesley et al., 1989; Beesley, 1996; Habash and
Rambow, 2006; Smrž, 2007). Other approaches
pre-compile representations of the different com-
ponents needed by the system: BAMA (Buck-
walter, 2002), SAMA (Graff et al., 2009), and
ALMORGEANA (ALMOR for short) (Habash,
2007) are examples of such systems. They use
a six-table representation consisting of three lex-
ical tables (for prefixes, suffixes, and stems), and
three compatibility tables (prefix-suffix, prefix-
stem, and stem-suffix). Altantawy et al. (2011)
described a method to bridge between these two
types of solutions. The type of representation
used naturally needs to synchronize with the ap-
propriate algorithms for analysis and generation.
CALIMAStar is of the second category (tabulated
pre-compiled solutions), and it builds on the popu-
larly used BAMA, SAMA, and ALMOR morpho-
logical analyzers.

2.2 Morphological Knowledge

Previous efforts show a wide range for the depth
that morphological analyzers can produce. Some
efforts include very shallow analyses such as
in the Temple Translator’s Workstation Project
(Vanni and Zajac, 1996) which only provided En-
glish glossing. Others include a range of form-
based features, functional features, and morpheme
forms, in addition to lexical features (Buckwalter,
2002; Smrž, 2007; Boudlal et al., 2010; Alkuhlani
and Habash, 2011; Boudchiche et al., 2017).

Alkuhlani and Habash (2011) extended part of
the PATB to include functional gender and num-
ber, and rationality, but did not cover the entire
database used by BAMA or SAMA. ElixirFM
(Smrž, 2007) includes functional gender and num-
ber, as well as full case and state modeling, but
not rationality. ElixirFM, MAGEAD (Altantawy
et al., 2010; Habash and Rambow, 2006) and
AlKhalil Morpho Sys (Boudlal et al., 2010; Boud-
chiche et al., 2017) include roots, with varying de-
grees of accuracy. ElixirFM includes phonological
forms; but ALMOR does not. However, Biadsy
et al. (2009) presented orthography-to-phonology
rules that can be used on automatically diacritized
text to generate pronunciation dictionaries.

Our goal is to make all these features be built-in
as part of our CALIMAStar databases, and to fill
in any gaps that were left by other efforts.

2.3 Analysis, Disambiguation and
Tokenization

We distinguish between analysis and disambigua-
tion: analysis refers to identifying all of the differ-
ent readings (analyses) of a word out of context;
while disambiguation is about identifying the spe-
cific analysis in context. Tokenization is the pro-
cess of segmenting a word into different units for
downstream applications. There are many possi-
ble tokenization schemes and techniques to apply
them (Habash and Sadat, 2006). The tokenized
form of a word varies depending on the specific
analysis of the word. Systems such as MADA
(Habash et al., 2009), AMIRA (Diab et al., 2004),
and MADAMIRA (Pasha et al., 2014) handle dis-
ambiguation and tokenization differently. Both
MADA and MADAMIRA disambiguate the anal-
yses that are produced by a morphological ana-
lyzer. The chosen analyses are then used to to-
kenize the words using morphological regenera-
tion. AMIRA, on the other hand, has a different
two step process in which a toeknization compo-
nent is followed by part-of-speech (POS) tagging.

The FARASA system (Abdelali et al., 2016)
relies on probabilistic models of stems, prefixes,
and suffixes, instead of using context informa-
tion to produce high tokenization accuracy. YA-
MAMA (Khalifa et al., 2016) is a MADAMIRA-
like (analysis/disambiguation) system that disam-
biguates using a maximum likelihood model in-
spired by FARASA.

CALIMAStar is primarily an out-of-context

141

BAMA SAMA ALMOR MAGEAD ElixirFM AlKhalil CALIMAStar

Functional Gender and Number 7 7 7 partial partial partial 3

Case and State Modeling partial partial partial 3 3 partial 3

Rationality 7 7 7 7 7 7 3

Roots and Patterns 7 7 7 3 3 3 3

Phonological Representation 7 7 7 3 3 7 3

Number of Tokenization Schemes 1 1 1 1 1 1 4
Number of POS Tag Sets 1 1 2 1 1 1 4
Out-of-Context Probabilities 7 7 7 7 7 7 3

Functionalities Analysis Analysis Analysis Analysis Resolution Analysis Analysis
Generation Inflection Generation

Derivation Reinfletion
Lookup

Table 1: A comparison of the different features in a number of morphological tools. A 3 denotes a feature
that is present in the system, while an 7 denotes a feature that is not. ElixirFM uses different terminology
to denote the analysis, generation, and reinflection functionalities.

analysis and generation system. Its database in-
cludes pre-compiled out-of-context probabilities
for POS and lemmas. In Section 6, we report on
how well these probability features do in terms of
disambiguation. CALIMAStar also produces tok-
enizations in different schemes from features that
are pre-compiled in its database.

3 Baseline Arabic Morphology:
Algorithm and Database

In this section, we describe the basic database
and algorithm used in a number of morphological
analyzers, all following the work of Buckwalter
(2002), including our system CALIMAStar.

3.1 Database Structure

The database we use has six tables. Three are lex-
icon tables for prefixes, suffixes, and stems. Each
lexicon table entry has three columns: a lookup
form, a compatibility category to control behavior
and agreement, and a list of feature-value pairs.
The lookup form is an orthographically normal-
ized surface form, which can appear with multi-
ple categories and feature-value pairs. The other
three tables are compatibility tables: prefix-suffix,
prefix-stem, and stem-suffix. These tables are used
to ensure that any analysis that is produced by the
system contains a prefix, a stem, and a suffix that
are compatible with each other. This means, for
example, that a nominal prefix will not be com-
bined with a verbal stem. The compatibility tables
are based on the compatibility categories appear-
ing in the lexicon tables.

The differences among the many analyzers
based on this model are mostly in features. BAMA
and SAMA have four features: the diacritized sur-

face form, the lemma, the Buckwalter POS tag,
and the English gloss (Buckwalter, 2002; Graff
et al., 2009). ALMOR automatically extends
these features with 17 others: MADA POS tag
(Pasha et al., 2014), four possible proclitics, per-
son, aspect, voice, mood, gender, number, state,
case, enclitic, rationality, stem, and stem cate-
gory. The ALMOR database also includes feature
definitions specifying the values each feature can
take, and default feature values for every POS tag.
CALIMAStar extends on the ALMOR database
feature list as will be discussed in Section 4.

3.2 Analysis Algorithm
The analyzer follows the algorithm description in
Buckwalter (2002). The input of the algorithm
is a word. The output is all the possible out-of-
context analyses for this word. We match the input
word using an orthographically normalized form
of it that is consistent with the look up forms in
the database. Orthographic normalization is nec-
essary because, according to Habash (2010), the
most common spelling errors in Arabic involve
Hamzated Alifs and Alif-Maqsura/Ya confusion,
affecting 11% of all words (or 4.5 errors per sen-
tence) in the PATB. We normalize by removing
diacritics, converting Hamzated Alif occurrences

@ Â, @
 Ǎ,

�
@ Ā,3 to bare Alif @ A, Alif-Maqsura ø ý to

Ya ø
 y, and Ta-Marbuta �è h̄ to Ha è h.
The word is then segmented into all possible

prefix-stem-suffix triplets. The segment validity is
restricted by the minimum length of stem and the
maximum lengths of the prefix and suffix which
are inferred from the database, in addition to the

3Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).

142

existence of all segments in their respective lex-
icon tables. Each segmentation triplet is tested
for compatibility using the three-way compatibil-
ity tables in the database. For each valid triplet
combination, the features from the prefix, stem
and suffix are merged to produce a single feature-
set for the word. The merging process involves
four operations depending on the feature: (i) con-
catenation of the Buckwalter POS tag; (ii) con-
catenation and rewriting of the final diacritized
form; (iii) value overwrite for the remaining fea-
tures, where, first, the suffix features overwrite the
stem features, and then the prefix features over-
write all features; and (iv) producing the source
feature by the analyzer depending on whether the
analysis is from the lexicon, a backoff, or a default
analysis of punctuation, digits, or foreign words.
The result of this process is a unique set of out-of-
context analyses for the input word. The first two
operations above are used in BAMA and SAMA;
and all are used in ALMOR. When no valid anal-
ysis is found, a backoff solution suspends the re-
quirement for having a valid stem from the stem
table. However, the prefixes and suffixes must still
be compatible. We discuss the CALIMAStar al-
gorithm extensions beyond ALMOR in Section 5.

3.3 Generation Algorithm

The generation algorithm follows the description
of the generation component in ALMOR (Habash,
2007). It minimally expects a lemma and POS as
input. The other features are handled in one of
two ways. All inflectional features, such as per-
son, gender and number, are considered obliga-
tory, and as such, all their values are generated
if no value was specified. Clitics, on the other
hand, are considered optional, and are only gen-
erated when specified.

For the input lemma and POS, we retrieve
all stems in the database. For each stem, the
stem categories are then used to retrieve all stem-
compatible prefixes and suffixes. Only compatible
prefixes and suffixes (as per the prefix-suffix com-
patibility tables) are used, with the stem, to gener-
ate inflected words and corresponding full analy-
ses. The same merging process used in the analy-
sis component is used here also. The input feature-
list is used in filtering which prefixes and suffixes
to consider. For clitics, this is done before merg-
ing, but for inflectional features, this is done after
merging.

4 CALIMAStar Database

In this section we detail our specific CALIMAStar

database extensions to the basic ALMOR database
structure presented in Section 3.

4.1 Gender and Number Functional Features

Smrž (2007) and Alkuhlani and Habash (2011)
pointed out the common discrepancy between the
form of some Arabic words and their function. A
prime example is the very common broken plu-
ral4 — almost 55% of all plurals look like singu-
lar words, but are functionally plural (Alkuhlani
and Habash, 2011). For example, l�
' @Qå�� šrAŷH
‘sections, slices, slivers’ is the broken plural of
the feminine singular word �ém�'
Qå�� šryHh̄ ‘section,
slice, sliver’. ALMOR considers this (functionally
feminine and plural) noun, masculine and singu-
lar because it has the form of a masculine singu-
lar noun. Alkuhlani and Habash (2011) modeled
functional gender and number on a portion of the
PATB, which is based on BAMA/SAMA. Smrž
(2007) and Boudlal et al. (2010) modeled func-
tional gender and number for part of their data.

Our contribution in CALIMAStar is that we ex-
tended all lexical databases, which are based on
SAMA and ALMOR, with functional gender and
number. We built on the work and guidelines by
Alkuhlani and Habash (2011). While Alkuhlani
and Habash (2011) only annotated the inflected
words that appear in the PATB, we wanted to an-
notate our entire database. To do this properly,
we inflected the 31,610 nominal lemmas5 in the
database for gender and number, making sure that
each database stem is used at least once. Our
dataset contained 77,023 inflected words, which
were manually annotated by two annotators for
functional gender and number. This effort took
130 hours to complete.

In our database, we renamed ALMOR’s gen and
num features as form_gen and form_num, and used
gen and num as the names for the functional gen-
der and number features, respectively. To opera-
tionalize the use of the functional gender and num-
ber features in the database, we assigned them the
value - when the corresponding functional feature
matches the form feature for all inflected forms of
the stem. This value is then overwritten by the

4The ‘broken’ part of the name refers to the change in the
template associated with forming these plurals.

5Verbs are regular and have no discrepancy between form
and function gender and number.

143

form feature value coming from the suffix when
producing an analysis. If the functional features
does not match the form feature, then the func-
tional feature is assigned an explicit value in the
database, which can be masculine (m), or femi-
nine (f) for gender, and singular (s), plural (p), or
dual (d) for number. These explicit values in the
stem are not overwritten by the suffix correspond-
ing feature values.

4.2 State and Case Features

We follow the functional classification of the Ara-
bic state feature into definite, indefinite, or con-
struct values as described and implemented by
Smrž (2007). Our contribution here is applying
this classification to the latest SAMA/ALMOR
database which we use in CALIMAStar.

The ALMOR handling of state has two prob-
lems. First, the definite state is only assigned
by the definite article proclitic +È@ Al+. This
is linguistically incorrect, as there are nouns
that can be definite without the definite arti-
cle (e.g., directly addressed vocatives such as
@ñ�PX@ XBð

@ AK
 yA ÂwlAd AdrswA ‘O children,

study’); and the definite article can appear with
construct state adjectives in what is called false
idafa (e.g., �éÓA�®Ë @ ÉK
ñ¢Ë@ AlTwyl AlqAmh̄ ‘The tall
of stature’). Second, a number of nominal suf-
fixes are ambiguous but that ambiguity is not rep-
resented. For example, the suffix +u indicating
nominative case can appear with both definite and
construct states, but ALMOR only assigns it the
construct value. In CALIMAStar we address both
of these issues: (i) we do not allow the definite ar-
ticle to assign a state value and relegate state spec-
ification to the suffixes completely; and (ii) we en-
sure all ambiguous suffix lexicon entries are dupli-
cated and assigned explicit state analyses.

Case is properly handled for the most part in
ALMOR, except for a few cases where it interacts
with state, such as diptotes. Diptotes are nomi-
nals whose genitive case marker is the same as
their accusative case marker when they are in an
indefinite state (Habash, 2010). An example of a
diptote is l�
' @Qå�� šrAŷH ‘sections, slices, slivers’.
When it is indefinite, the genitive diacritized form
of this word is �l�
'� @ �Qå��� šarAŷiHa. The state feature
extension that produces a definite analysis for the
word without a definite article morpheme required
an extension of the case feature to produce the def-
inite genitive diacritized form l

�
�
'� @ �Qå��� šarAŷiHi.

4.3 Rationality

Rationality (or +Human) is a lexical feature in
Arabic that affects noun-adjective and subject-
verb agreement. Nouns that are exclusive to
humans, such as 	­ 	£ñÓ mwĎf ‘employee’ are
considered rational, while others, such as �ém�'
Qå��
šryHh̄ ‘slice’ are considered irrational. Rational
nouns take adjectives and verbs that agree with
them in gender and number. Irrational nouns, on
the other hand, agree with their verbs and adjec-
tives when they are singular, however they take the
singular feminine form of a verb or adjective when
they are plural, regardless of what the gender of
the noun is. The plural word l�
' @Qå�� šrAŷH ‘slices’
is irrational and as such would take the adjective�éªJ
 	̄P rfyςh̄ ‘thin [feminine singular]’ instead of
�HAªJ
 	̄P rfyςAt ‘thin [feminine plural]’.

Alkuhlani and Habash (2011) manually anno-
tated a part of PATB for rationality. ALMOR and
MAGEAD include a rationality feature, but it was
automatically populated and not fully checked.
Our contribution in CALIMAStar is fully annotat-
ing the SAMA/ALMOR database for rationality.
We build on the work of Alkuhlani and Habash
(2011), and use their manual annotation guide-
lines. We manually annotated all the noun and
proper noun lemmas in the database (18,120 en-
tries). This effort took approximately 60 hours.

4.4 Roots and Patterns

Arabic templatic morphology, or the use of roots
and patterns, has been modeled successfully in a
number of systems (Beesley et al., 1989; Smrž,
2007). MAGEAD (Habash and Rambow, 2006;
Altantawy et al., 2010) made extensive use of the
ElixirFM database. However, roots and patterns
are not part of the SAMA/ALMOR database that
we base our work on.

Our contribution is to fully specify the roots
and patterns in the CALIMAStar database. This
manual effort started from the MAGEAD and
ElixirFM lemma root information when available.
The roots are linked to the lemmas directly and
specified in the lexicon stem entries. The pat-
terns we include are concrete patterns (Habash and
Rambow, 2006) that are generated automatically
by subtracting the root from the diacritized stem.

4.5 Phonological Representation

The phonological form has been shown to be par-
ticularly useful for NLP applications, such as Ara-

144

bic speech recognition (Biadsy et al., 2009). In
MSA, most Arabic letters have a one-to-one map-
ping to phonemes. However, there are some ex-
ceptions. The Arabic definite article +È@ Al+ as-
similates to the first consonant in the nominal
it modifies if this consonant is one of the so-
called Sun Letters (Habash, 2010). For instance,
the phonology of the noun �l�
'� @ �Qå���Ë @ AlšarAŷiHa

is / a sh sh a r aa 2 i 7 a /,6 as opposed to
*/ a l sh a r aa 2 i 7 a /, because the letter �� š is a
Sun Letter. Another exception is the silent Alif in
the suffix @ð+ +uwA, which indicates a masculine
plural conjugation in verbs. The phonology of the
masculine plural verb @ñ�J.

��J
�
» katabuwA ‘they wrote’

is / k a t a b uu /, as opposed to */ k a t a b uu aa /.
This feature does not exist in SAMA or AL-

MOR. We extended our database entries with their
respective phonological representation through an
automatic process comparable to Biadsy et al.
(2009). The definite article assimilation is han-
dled through rewrite rules because it involves an
interaction between a stem and a prefix.

4.6 Tokenization Schemes
Tokenization is important for NLP tasks such
as machine translation because it reduces word
sparsity (Habash and Sadat, 2006; Zalmout and
Habash, 2017b). Many tokenization schemes with
different granularities and normalization rules ex-
ist, and the selection of tokenization scheme de-
pends on the task on hand.

In MADAMIRA, tokenization happens after
analysis and disambiguation through an expensive
regeneration process. Our contribution is the in-
sight that since a particular tokenization is com-
pletely dependent on the analysis, we can spec-
ify the tokenization details in the database entry.
This is a tradeoff of a bigger database (space) with
a faster tokenization (time). We specifically add
four tokenization schemes D1, D2, D3 and ATB
(Habash, 2010), in both normalized and unnormal-
ized forms. We refer to the normalized schemes as
tokenization, and to the unnormalized schemes as
segmentation. A normalized ATB tokenization for
the word AëñJ. �J» ktbwhA ‘they wrote it’ is Aë+ @ñJ. �J»
ktbwA+hA ‘they_wrote +it’, whereas an unnor-
malized ATB tokenization (segmentation) for the
same word would be Aë+ñJ. �J» ktbw+hA. In the lex-

6The phonological representation we use follows the
CAMEL Arabic Phonetic Inventory (CAPHI) (Habash et al.,
2018), which is inspired by Arpabet (Shoup, 1980).

icon, the entry for the suffix in this analysis has a
different feature for each of these schemes.

We extended our database with the tokenization
features in a semi-automated process. For each
scheme, we manually determined the list of affixes
that would be detached. For each of these affixes,
we generated the tokenized form. Stems do not
have any parts to detach, but some stems have to
be normalized for some tokenization schemes. We
used our CALIMAStar generator to automatically
get the normalized forms of these stems. The re-
sulting tokenizations of a word are the concatena-
tion of the tokenizations of the prefix, stem, and
suffix of the word’s analysis.

4.7 Multiple POS Tag Sets

There are many Arabic POS tag sets used by
different researchers and in different tools, e.g.,
Buckwalter (Buckwalter, 2002), MADA (Pasha
et al., 2014), Columbia Arabic Treebank (CATiB)
(Habash and Roth, 2009), CATiBex (Marton et al.,
2013), Universal Dependencies (UD) (Nivre et al.,
2016), and Kulick (Kulick et al., 2006). It is de-
sirable to link these POS tag sets to each other.
CALIMAStar currently supports four POS tag
sets: the Buckwalter POS tag set, and the MADA
POS tag set, both of which are part of the AL-
MOR database, as well as the CATiB and UD POS
tag sets. We chose to start our extension with the
CATiB and UD POS tag sets for their importance
to the work on Arabic dependency parsing. This
goal steered us to output the CATiB and UD POS
tags following the ATB tokenization, which is the
commonly used tokenization format in treebank-
ing and parsing. This extension was an automatic
mapping from both the Buckwalter and MADA
POS tag sets. We plan to add more POS tag sets to
our database in the future.

4.8 Lemma and POS Probability

Inspired by Khalifa et al. (2016) who used lemma
and POS tag probabilities for out-of-context dis-
ambiguation, we added three different probability
scores for lemma, POS (MADA POS) and joint
lemma-POS, for each stem entry in the database.
The scores were generated from the train set (Diab
et al., 2013) of the PATB. We used the SRILM
toolkit (Stolcke, 2002) to generate the scores with
no smoothing. In Section 6, we show that these
scores can be used to select the correct POS tag
and lemma out of context with a high accuracy.

145

(a) The analysis output of the word Õæ
Ê�ÊË llslym grouped by
lemma and POS.

(b) The generation output for the nominal lemma �Hñ�J.
�
º 	J �«

ςanokabuwt ‘spider’ as plural with the preposition
�
¼ ka ‘as’.

Figure 1: A screen capture of the CALIMAStar analyzer and generator interfaces.

5 CALIMAStar Engine

The CALIMAStar engine is a new implementa-
tion of the analysis and generation algorithms de-
scribed in Section 3 with some extensions. It uses
the database described in Section 4.

CALIMAStar API The CALIMAStar engine is
implemented in Python. We provide a command-
line tool interface as well as an API. CALIMAStar

is a part of a collection of Arabic NLP tools we
plan to release.

Analysis and Generation Extensions All of the
algorithmic extensions in the CALIMAStar engine
are minor, and intended to accommodate the addi-
tional features in the database. Examples include
the special handling of functional gender and num-
ber as discussed in Section 4.1, the concatenation
of prefix, stem and suffix features for added POS
tags and tokenization schemes. The concatena-
tion of the CAPHI string and the pattern requires
rewrite rules because of prefix-stem interactions.

Reinflection Inspired by the SIGMORPHON
2016 Shared Task on morphological reinflection
(Cotterell et al., 2016), we provide a reinflec-
tion functionality in the CALIMAStar API, which
makes use of the existing analysis and generation
components. The input to the CALIMAStar re-
inflector is an already inflected word and a de-
sired set of feature-value changes. The system an-
alyzes the word, adjusts its features given the input

feature-value pairs, and generates the reinflected
form(s). The reinflector is also used as a backoff
mode for the generator when the input lemma is
not recognized.

Web Interface We created a web interface for
the CALIMAStar analyzer and generator – see
Figures 1 (a) and (b), respectively. The analyzer
interface expects an input word and a selected
backoff mode. Options for backoff include no
backoff, proper-noun backoff, or any POS back-
off. The generator interface minimally expects
a lemma and POS for input; feature values can
be specified as needed. The generator interface
changes which features are allowed to select val-
ues for depending on the input POS. For example,
in Figure 1 (b), the verbal features, person, voice,
mood and aspect, are disabled because the input
POS is a noun. There are two output modes for
both analyzer and generator interfaces. The first
output mode is a user-friendly display of words
grouped by lemma, POS tag, root and English
gloss. For each inflected word, the interface shows
its diacritization, phonology, clitics, and inflec-
tional features, in a human-readable form. This
output mode is what Figures 1 (a) and (b) show.
The second mode presents the output in a feature-
value pair format more suitable for debugging and
programming interfaces.

The engine and web interface are linked from
http://resources.camel-lab.com/.

146

6 Evaluation

In this section we validate our system and evalu-
ate it against other systems in terms of speed and
coverage.

6.1 Internal Validation

We ran a number of tests to validate our database
extensions. All these tests were run on the PATB
dev set (Diab et al., 2013) from PATB parts 1, 2
and 3, except where indicated.

Analysis This test aimed to validate that we are
producing all the analyses that are produced by
ALMOR. We ran the tokens in the dataset through
ALMOR and CALIMAStar, and verified that ev-
ery analysis produced by ALMOR is also pro-
duced by CALIMAStar. CALIMAStar produced
more analyses on average than ALMOR. And nat-
urally, the CALIMAStar analyses were richer than
the ALMOR analyses.

Generation Since we do not have a manually
annotated version of this data set with all of
our extensions, we relied on automatic match-
ing of CALIMAStar analyses against the ALMOR
analyses used to train and evaluate MADAMIRA
(Pasha et al., 2014).7 This matching allowed us
to extend the ALMOR analyses with functional
gender and number features. We used the lemma
and extended features as input to the CALIMAStar

generation component. CALIMAStar produced
the full diacritized word in all cases.

Reinflection Validating the reinflection compo-
nent required us to have a source inflected word,
and a target inflected word. We grouped the ex-
tended ALMOR analyses from the Generation test
above by lemma and POS tag, and generated all
possible pairs of words that share a lemma and
POS tag. For each pair, we used the features of the
first word to reinflect the second word, and vice
versa. Our system produced the correct diacritized
word in all cases.

Functional Gender and Number Analysis
This test aimed to validate that the database exten-
sion for functional gender and number was con-
sistent with the manual annotation. For this test,
we analyzed every word that was manually anno-
tated for functional gender and number, and con-

7The ALMOR analyses were themselves automatically
matched against the gold PATB annotations in a similar man-
ner to Habash and Rambow (2005).

firmed that the analyzer is producing an analysis
with the expected functional feature values. Our
system produced the expected values in all cases.

Tokenization We tested our D3 tokenization ex-
tensions, as it is the most complex tokeniza-
tion scheme in our database. We ran our test
set in MADAMIRA to produce the D3 tokeniza-
tion. We then compared the tokenization pro-
duced by MADAMIRA to the tokenization pro-
duced by CALIMAStar for the analysis that is
equivalent to MADAMIRA’s top analysis (mod-
ulo our extensions). We matched MADAMIRA’s
diacritized tokenization in 99.5% of the cases,
and we matched the undiacritized tokenization in
99.9% of the cases. The only undiacritized mis-
matches are the result of MADAMIRA tokeniza-
tion errors in words such as �IJ
m�'. bHyθ ‘with/by
+ where; whereby’, which MADAMIRA tok-
enizes as �IJ
m�'. +H. b+ bHyθ instead of �IJ
k +H.
b+ Hyθ. This validation test also brought to light
some minor cases which we intend to fix in future
releases of the database.

Lemma and POS Probability We carried out
preliminary experiments on the use of the dif-
ferent probability scores (Section 4.8) for out-of-
context POS and lemma selection. We found that
the top-one choice among the CALIMAStar anal-
yses ranked using the joint lemma-POS score pre-
formed the highest with 92%, 90% and 88% accu-
racy in terms of POS, lemma, and POS+lemma,
respectively. The results are comparable to the
maximum likelihood disambiguation baseline re-
ported by Zalmout and Habash (2017a), which
supports the use of morphological analyzers as a
backbone for the different NLP task.

6.2 Comparison with other Systems

We compare CALIMAStar to four other morpho-
logical analyzers: AraMorph,8 SAMA 3.1 (Graff
et al., 2009), ALMOR and MADAMIRA,9 in
terms of coverage (out-of-vocabulary (OOV) rate
and analyses per word) and speed performance
(words, analyses, and features per second). We
ran the experiments on one million words from the
Arabic Gigaword corpus (Parker et al., 2011). The
results of the comparison are in Table 2.

8We used the AraMorph 1.2.1 version, and imple-
mentation of BAMA 1.2 that was optimized by Jon De-
hdari from SourceForge https://sourceforge.net/
projects/aramorph/files/aramorph/1.2.1/.

9We ran MADAMIRA in ‘analyze only’ mode.

147

System Coverage Speed
Engine Database Features # OOV% Analysis

Word
Word
Second

Analysis
Second

Feature
Second

AraMorph AraMorph 4 1.7 2.1 43.5K 93K 372K
SAMA SAMA 4 1.4 10.2 2.3K 24K 96K

ALMOR ALMOR 22 1.4 10.7 1.1K 12K 269K
MADAMIRA ALMOR 22 1.6 10.7 6.8K 73K 1,742K
CALIMAStar ALMOR 22 1.3 10.7 8.2K 88K 1,938K
CALIMAStar CALIMAStar 40 1.3 18.9 5.4K 102K 4,094K

Table 2: A comparison of five systems, AraMorph, SAMA, ALMOR, MADAMIRA and CALIMAStar,
in terms of coverage (OOV and analyses per word) and speed (word, analyses, features per second).

The first three columns of Table 2 specify the
systems, the databases, and the number of fea-
tures in the databases. AraMorph was run on
the AraMorph database, and SAMA was run
on the SAMA database. Both of these con-
tain four features: the diacritization, Buckwalter
POS tag, lemma, and English gloss. ALMOR
and MADAMIRA both use the ALMOR database,
which produces 22 features: the same four fea-
tures of AraMorph/SAMA in addition to the
MADA POS tag, four proclitic features, person,
aspect, voice, mood, gender, number, state, case,
enclitic, rationality, source, stem, and stem cate-
gory. CALIMAStar was run on the CALIMAStar

database described in Section 4, which has 40 fea-
tures: the 22 ALMOR features in addition to func-
tional gender and number, CAPHI, root, pattern,
tokenization and segmentation in four schemes
(D1, D2, D3, and ATB), CATiB and UD POS tags,
and POS, lemma, and joint lemma-POS probabil-
ity scores. We also ran the CALIMAStar engine
with the ALMOR database as a comparison point.

Coverage The OOV rates of the different an-
alyzers are generally close to each other. The
differences stem from two sources. First,
AraMorph’s database is an older version of
SAMA/ALMOR/CALIMAStar with less lemmas
(∼38K vs ∼40K lemmas). And secondly, differ-
ent engines handle numbers, foreign words, and
digits in different ways, with the CALIMAStar en-
gine outperforming all others.

The number of analyses per word is strongly
connected to the database being used. AraMorph
has less coverage, in terms of affixes and stems,
and that is why it produces a smaller number of
analyses per word. ALMOR and MADAMIRA
both use the same database, thus producing the
same number of analyses per word. CALIMAStar

extends the suffix lexicon to fully cover the state
and case analyses resulting in the largest number
of analyses per word.

Speed The last three columns of Table 2 com-
pare the speed of the systems, in terms of words
per second, analyses per second, and features per
second. In terms of words per second, AraMorph
is the fastest system. Comparing the ALMOR,
MADAMIRA and CALIMAStar engines using
the same database (ALMOR), CALIMAStar is the
fastest of the three. However, using the larger
CALIMAStar database slows the CALIMAStar

engine down to second place in this three-way
comparison. That said, CALIMAStar produces
more analyses per seconds and features per second
than all the other systems.

7 Conclusion and Future Work

CALIMAStar is an Arabic analyzer and genera-
tor that supports a large number of morphologi-
cal features. It has as an API and a web interface,
and will be released publicly. Compared with four
commonly used Arabic analyzers, CALIMAStar

has better coverage and is very competitive speed-
wise.

In the future, we will extend our database in
terms of lexical entries, features, and dialects. We
will also integrate our system into existing disam-
biguators and parsers (Pasha et al., 2014; Shahrour
et al., 2016; Zalmout and Habash, 2017a). Fi-
nally, we plan on conducting task-based evalua-
tions where we can assess the added value of some
of the new features.

Acknowledgments We thank the annotators
who helped with gender, number and rationality
features: Linda Alamir-Salloum and Sara Hassan.

148

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 11–16, San Diego, California.

Imad A. Al-Sughaiyer and Ibrahim A. Al-Kharashi.
2004. Arabic morphological analysis techniques:
A comprehensive survey. Journal of the Ameri-
can Society for Information Science and Technology,
55(3):189–213.

Sarah Alkuhlani and Nizar Habash. 2011. A Corpus
for Modeling Morpho-Syntactic Agreement in Ara-
bic: Gender, Number and Rationality. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics (ACL’11), Portland,
Oregon, USA.

Mohamed Altantawy, Nizar Habash, and Owen Ram-
bow. 2011. Fast Yet Rich Morphological Analysis.
In Proceedings of the 9th International Workshop
on Finite-State Methods and Natural Language Pro-
cessing (FSMNLP 2011), Blois, France.

Mohamed Altantawy, Nizar Habash, Owen Rambow,
and Ibrahim Saleh. 2010. Morphological Analy-
sis and Generation of Arabic Nouns: A Morphemic
Functional Approach. In Proceedings of the seventh
International Conference on Language Resources
and Evaluation (LREC), Valletta, Malta.

Kenneth Beesley, Tim Buckwalter, and Stuart New-
ton. 1989. Two-Level Finite-State Analysis of Ara-
bic Morphology. In Proceedings of the Seminar on
Bilingual Computing in Arabic and English.

Kenneth R. Beesley. 1996. Arabic finite-state morpho-
logical analysis and generation. In Proceedings of
COLING-96, the 16th International Conference on
Computational Linguistics, Copenhagen.

Fadi Biadsy, Nizar Habash, and Julia Hirschberg. 2009.
Improving the Arabic Pronunciation Dictionary for
Phone and Word Recognition with Linguistically-
Based Pronunciation Rules. In Proceedings of Hu-
man Language Technologies: The 2009 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
397–405, Boulder, Colorado.

Mohamed Boudchiche, Azzeddine Mazroui, Mohamed
Ould Abdallahi Ould Bebah, Abdelhak Lakhouaja,
and Abderrahim Boudlal. 2017. AlKhalil Morpho
Sys 2: A robust Arabic morpho-syntactic analyzer.
Journal of King Saud University-Computer and In-
formation Sciences, 29(2):141–146.

Abderrahim Boudlal, Abdelhak Lakhouaja, Azzeddine
Mazroui, Abdelouafi Meziane, MOAO Bebah, and
M Shoul. 2010. Alkhalil Morpho Sys1: A mor-
phosyntactic analysis system for Arabic texts. In
International Arab conference on information tech-
nology, pages 1–6. Benghazi Libya.

Tim Buckwalter. 2002. Buckwalter Arabic Morpho-
logical Analyzer Version 1.0. Linguistic Data Con-

sortium, University of Pennsylvania, 2002. LDC
Catalog No.: LDC2002L49.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task on
morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
ogy, pages 10–22.

Mona Diab, Nizar Habash, Owen Rambow, and Ryan
Roth. 2013. LDC Arabic treebanks and associated
corpora: Data divisions manual. arXiv preprint
arXiv:1309.5652.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky.
2004. Automatic Tagging of Arabic Text: From
Raw Text to Base Phrase Chunks. In Proceed-
ings of the 5th Meeting of the North American
Chapter of the Association for Computational Lin-
guistics/Human Language Technologies Conference
(HLT-NAACL04), pages 149–152, Boston, MA.

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash. 2007. Arabic Morphological Repre-
sentations for Machine Translation. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods. Springer.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publish-
ers.

Nizar Habash, Fadhl Eryani, Salam Khalifa, Owen
Rambow, Dana Abdulrahim, Alexander Erdmann,
Reem Faraj, Wajdi Zaghouani, Houda Bouamor,
Nasser Zalmout, et al. 2018. Unified guidelines and
resources for Arabic dialect orthography. In Pro-
ceedings of the International Conference on Lan-
guage Resources and Evaluation (LREC).

Nizar Habash, Ramy Eskander, and Adbelati Hawwari.
2012. A Morphological Analyzer for Egyptian
Arabic. In NAACL-HLT 2012 Workshop on Com-
putational Morphology and Phonology (SIGMOR-
PHON2012), pages 1–9.

Nizar Habash and Owen Rambow. 2005. Arabic to-
kenization, part-of-speech tagging and morphologi-
cal disambiguation in one fell swoop. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 573–
580, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
A Morphological Analyzer and Generator for the
Arabic Dialects. In Proceedings of ACL, pages 681–
688, Sydney, Australia. Association for Computa-
tional Linguistics.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS

149

tagging, stemming and lemmatization. In Proceed-
ings of the Second International Conference on Ara-
bic Language Resources and Tools. The MEDAR
Consortium.

Nizar Habash and Ryan M Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages
221–224.

Nizar Habash and Fatiha Sadat. 2006. Arabic Pre-
processing Schemes for Statistical Machine Transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Companion Vol-
ume: Short Papers, pages 49–52, New York City,
USA.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods. Springer.

Salam Khalifa, Sara Hassan, and Nizar Habash. 2017.
A morphological analyzer for Gulf Arabic verbs.
In Proceedings of the Workshop for Arabic Natural
Language Processing 2017 (co-located with EACL
2017), Valencia, Spain.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2016. YAMAMA: Yet Another Multi-Dialect Ara-
bic Morphological Analyzer. In Proceedings of
the International Conference on Computational Lin-
guistics (COLING): System Demonstrations, pages
223–227.

Seth Kulick, Ryan Gabbard, and Mitch Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Improve-
ments. In Proceedings of the 5th Conference on
Treebanks and Linguistics Theories, pages 31–32.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus.
In NEMLAR Conference on Arabic Language Re-
sources and Tools, pages 102–109, Cairo, Egypt.

Yuval Marton, Nizar Habash, and Owen Rambow.
2013. Dependency parsing of Modern Standard
Arabic with lexical and inflectional features. Com-
putational Linguistics, 39(1):161–194.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Portorož, Slovenia.

Robert Parker, David Graff, Ke Chen, Junbo Kong, and
Kazuaki Maeda. 2011. Arabic Gigaword Fifth Edi-
tion. LDC catalog number No. LDC2011T11, ISBN
1-58563-595-2.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan M Roth.
2014. MADAMIRA: A Fast, Comprehensive Tool
for Morphological Analysis and Disambiguation of

Arabic. In Proceedings of the Language Resources
and Evaluation Conference (LREC), Reykjavik, Ice-
land.

Anas Shahrour, Salam Khalifa, Dima Taji, and Nizar
Habash. 2016. CamelParser: A system for Arabic
syntactic analysis and morphological disambigua-
tion. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: System Demonstrations, pages 228–232.

June E Shoup. 1980. Phonological aspects of speech
recognition. Trends in speech recognition, pages
125–138.

Otakar Smrž. 2007. ElixirFM — Implementation of
Functional Arabic Morphology. In Proceedings of
the 2007 Workshop on Computational Approaches
to Semitic Languages: Common Issues and Re-
sources, pages 1–8, Prague, Czech Republic.

Andreas Stolcke. 2002. SRILM an Extensible Lan-
guage Modeling Toolkit. In Proceedings of the In-
ternational Conference on Spoken Language Pro-
cessing.

Michelle Vanni and Rémi Zajac. 1996. The Temple
Translator’s Workstation Project. In Proceedings of
a workshop on held at Vienna, Virginia: May 6-8,
1996, pages 101–106.

Nasser Zalmout and Nizar Habash. 2017a. Don’t throw
those morphological analyzers away just yet: Neural
morphological disambiguation for Arabic. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 704–
713, Copenhagen, Denmark.

Nasser Zalmout and Nizar Habash. 2017b. Optimizing
tokenization choice for machine translation across
multiple target languages. The Prague Bulletin of
Mathematical Linguistics, 108(1):257–269.

150

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 151–160
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Sanskrit n-Retroflexion is Input-Output Tier-Based Strictly Local

Thomas Graf
Department of Linguistics
Stony Brook University

Stony Brook, NY 11794, USA
mail@thomasgraf.net

Connor Mayer
Department of Linguistics

University of California, Los Angeles
Los Angeles, CA 90046, USA
connormayer@ucla.edu

Abstract

Sanskrit /n/-retroflexion is one of the most
complex segmental processes in phonology.
While it is still star-free, it does not fit in any
of the subregular classes that are commonly
entertained in the literature. We show that
when construed as a phonotactic dependency,
the process fits into a class we call input-
output tier-based strictly local (IO-TSL), a
natural extension of the familiar class TSL.
IO-TSL increases the power of TSL’s tier pro-
jection function by making it an input-output
strictly local transduction. Assuming that /n/-
retroflexion represents the upper bound on
the complexity of segmental phonology, this
shows that all of segmental phonology can
be captured by combining the intuitive notion
of tiers with the independently motivated ma-
chinery of strictly local mappings.

1 Introduction

Subregular phonology seeks to identify proper
subclasses of the finite-state languages and trans-
ductions that are sufficiently powerful for nat-
ural language phenomena (see Heinz 2018 and
references therein). In addition to establishing
tighter bounds on cross-linguistic variation, many
of these subclasses are also efficiently learnable in
the limit from positive text (Heinz et al., 2012; Jar-
dine and McMullin, 2017).

Sanskrit /n/-retroflexion, also called nati, is
noteworthy because it has been known for a long
time to be subregular but to occupy a very high po-
sition in the subregular hierarchy when construed
as a phonotactic dependency (Graf, 2010; Jardine,
2016). Its singularly high complexity stems from
the combination of a locally specified target (/n/
immediately before a sonorant) with both a non-
local trigger (a preceding retroflex) and three in-
dependent blocking effects, one of which is it-
self subject to blocking. Established classes such

as strictly local (SL) and its extension tier-based
strictly local (TSL; Heinz et al., 2011) cover a
wide range of phonological phenomena, yet they
provably cannot enforce the phonotactic condi-
tions of nati.

However, as we show in this paper, nati can be
handled by a natural extension of TSL. In TSL,
a tier projection function masks out all segments
that do not belong to some specified subset of the
alphabet. This allows for simple non-local depen-
dencies to be regulated in a local fashion. More in-
volved patterns can be accommodated by increas-
ing the complexity of the tier projection. In order
to capture nati, the projection function has to con-
sider two factors when choosing whether or not to
project a symbol: I) the local context in the string,
and II) which symbols are already on the tier. This
makes it a special case of input-output strictly lo-
cal maps, which is why we call this extended ver-
sion of TSL input-output TSL (IO-TSL).

IO-TSL is a natural extension of TSL — it sub-
sumes it as a special case and expands on re-
cent proposals to make tier projection structure-
sensitive. De Santo and Graf (2017) propose input
strictly local maps to handle certain cases noted
as problematic for TSL in McMullin (2016), and
similar proposals are made in Baek (2017) and
Yang (2018) for phonology and Vu et al. (2018)
for syntax. Mayer and Major (2018), on the other
hand, suggest based on Graf (p.c.) that backness
harmony in Uyghur is TSL with output strictly lo-
cal tier projection; Graf and Shafiei (2018) apply
the same idea to syntax. Input-output strictly local
projection merely combines these two extensions.

The paper is laid out as follows. We first intro-
duce TSL (§2.1) and subsequently generalize it to
IO-TSL (§2.2), some properties of which are dis-
cussed in §2.3. The empirical facts of nati are pre-
sented in §3 based primarily on Ryan (2017), fol-
lowed by our IO-TSL analysis in §4.

151

https://doi.org/10.18653/v1/P17

2 Defining IO-TSL

2.1 TSL
Throughout the paper, we use ε to denote the
empty string, S∗ for the Kleene closure of S, and
S+ for S∗ without the empty string. We use Sk to
denote the proper subset of S∗ that only contains
strings of length k, and we write sk as a shorthand
for {s}k.

Let Σ be some fixed alphabet and s ∈ Σ∗.
The set fk(s) of k-factors of s consists of all the
length-k substrings of ok−1snk−1, where o,n /∈
Σ and k ≥ 1.

Definition 1. A stringset L ⊆ Σ∗ is strictly k-
local (SL-k) iff there is some G ⊆ (Σ∪ {o,n})k
such that L = {s ∈ Σ∗ | fk(s) ∩G = ∅}.

Intuitively, G defines a grammar of forbidden
substrings that no well-formed string may con-
tain. The class SL of strictly local stringsets is⋃

k≥1 SL-k.

Example 1. The string language (ab)+ is gener-
ated by the grammar G := {on,ob, aa, bb, an}
and thus is SL-2. For instance, aba is illicit
because f2(aba) ∩ G = {an} 6= ∅, whereas
f2(abab) ∩G = ∅.

For every T ⊆ Σ−{ε}, a simple tier projection
πT is a transduction that deletes all symbols not in
T :

πT (σu) :=





ε if σu = ε

σπT (u) if σ ∈ T
πT (u) otherwise

Definition 2. A stringset L ⊆ Σ∗ is tier-based
strictly k-local (TSL-k) iff there exists a T ⊆ Σ−
{ε} and an SL-k languageK ⊆ T ∗ such that L :=
{s ∈ Σ∗ | πT (s) ∈ K}. It is TSL iff it is TSL-k
for some k.

TSL languages are string languages that are SL
once one masks out all irrelevant symbols.

Example 2. Consider all strings over {a, b, c} that
contain exactly one b and exactly one c. This
language is TSL-3: let T := {b, c}, and K :=
{bc, cb}, which is an SL-3 language (the reader is
invited to write down the grammar for K). The
licit string aabac, for instance, is first projected to
bc, which is a member of K. The illicit aaba , on
the other hand, is projected to b /∈ K.

2.2 IO-TSL
The power of TSL can be increased by changing
the nature of the tier projection π. In particular,

it can be generalized to strictly local maps (Chan-
dlee, 2014). Due to space constraints, we immedi-
ately define input-output strictly local projections
without discussing the earlier work on subregular
mappings on which our idea builds. The interested
reader should consult Chandlee (2014, 2017) and
Chandlee and Heinz (2018).

An (i, j)-context c is a 4-tuple 〈σ, b, a, t〉 with
σ ∈ Σ, t a string over Σ ∪ {o} of length j − 1,
and a and b strings over Σ ∪ {o,n} of combined
length i−1. The context specifies that σ should be
projected whenever both of the following hold: it
occurs between the substrings b (look-back) and a
(look-ahead), and the tier constructed so far ends
in t. The value of i determines the size of the input
window, which includes the look-ahead and look-
back spans, as well as the symbol itself. The value
of j indicates how far back along the tier we can
look, including the current symbol. Given a set of
contexts c1, c2, . . . , cn, we call it an (i, j)-context
set C(i, j) iff for every cm (1 ≤ m ≤ n) there are
im ≤ i and jm ≤ j such that cm is an (im, jm)-
context.

Note that in a context set C(i, j), i and j re-
fer to the maximum input and output window sizes
considered by any (i, j)-context. The individ-
ual (i, j)-contexts may vary in size within these
bounds. This is merely a matter of notational con-
venience and does not affect generative capacity.

Definition 3. Let C be an (i, j)-context set. Then
the input-output strictly (i, j)-local (IOSL-(i, j))
tier projection πC maps every s ∈ Σ∗ to π′C(oi ?
sni,oj), where π′C(ub ? σav, wt) is

ε if σav = ε,
σπ′C(ubσ ? av, wtσ) if 〈σ, b, a, t〉 ∈ C,
π′C(ubσ ? av, wt) otherwise.

for σ ∈ Σ and a, b, t, u, v, w ∈ (Σ ∪ {o,n})∗.
The first argument to π′C is the input string, with

? as a diacritic to mark the position up to which
the string has been processed. The second argu-
ment contains the symbols that have already been
projected. A schematic diagram of the projection
function πC that arises from π′C is shown in Fig. 1.

Example 3. Let Σ := {a, b, c} and consider the
tier projection that always projects the first and
last symbol of the string, always projects a, never
projects c, and projects b only if the previous sym-
bol on the tier is a. This projection is IOSL-(2,2).
The context set contains all the contexts below,
and only those:

152

u b1 · · ·· · ·Input: bl σ a1 · · · ai−1−l v · · ·

w t1· · · · · ·Tier: tj−1

j

i

Figure 1: The projection function πC . Grey cells indi-
cate symbols in the input and tier strings that are con-
sidered when deciding whether to project σ.

• 〈σ,o, ε, ε〉 for all σ ∈ Σ,

• 〈σ, ε,n, ε〉 for all σ ∈ Σ,

• 〈a, ε, ε, ε〉,

• 〈b, ε, ε, a〉.

The first two of these contexts ensure that any seg-
ment is projected if it occurs at the beginning of
the string or the end of the string. The third con-
text ensures that a is always projected as all occur-
rences of a will be trivially preceded and followed
by ε in the input and preceded on the tier by ε. The
final context ensures that b is projected regardless
of what precedes or follows in the input, but only if
the previous symbol on the tier is a. Given the pre-
vious constraints, this is equivalent to saying that
b is only projected if it is the first b encountered
after seeing an a earlier in the string.

Definition 4. A stringset L ⊆ Σ∗ is input-
output tier-based strictly (i, j, k)-local (IO-TSL-
(i, j, k)) iff there exists an IOSL-(i, j) tier pro-
jection πC and an SL-k language K such that
L := {s ∈ Σ∗ | πC(s) ∈ K}. It is IO-TSL iff it
is IO-TSL-(i, j, k) for some i, j, and k.

Note that TSL-k is identical to IO-TSL-
(1, 1, k), which shows that IO-TSL is indeed a
generalization of TSL.

2.3 Some properties of IO-TSL
It is fairly easy to show that IO-TSL languages are
definable in first-order logic with precedence and
hence star-free. We conjecture that IO-TSL is in
fact a proper subclass of the star-free languages.

Conjecture 1. IO-TSL (Star-Free.

Consider the star-free string language L :=
aL′a∪bL′bwhere L′ is (d+cd+ed+)+. In order to
ensure the long-distance alternation of c and e, one
has to project every c and every e, and in order to

ensure the matching of the first and last segment
those have to be projected too. But then the set
of well-formed tiers is a(ce)+a ∪ b(ce)+b, which
is not in SL because it violates suffix substitution
closure (cf. Heinz, 2018). Hence L is not IO-TSL
(although it is in the intersection closure of TSL).
A fully worked out proof would have to show that
all other IOSL tier projections fail as well.

Like most subregular language classes, IO-TSL
is not closed under relabeling. This follows from
the familiar insight that (aa)+, which isn’t even
star-free, is a relabeling of the SL-2 language
(ab)+. We state a few additional conjectures with-
out further elaboration.

Conjecture 2. IO-TSL is not closed under inter-
section, union, relative complement, or concate-
nation.

Conjecture 3. IO-TSL is incomparable to the fol-
lowing classes:

• locally threshold testable languages (LTT),

• locally testable (LT),

• piecewise testable (PT),

• interval-based strictly piecewise (IBSP;
Graf, 2017, 2018)

• strictly piecewise (SP; Rogers et al., 2010)

If correct, these properties of IO-TSL would
mirror exactly those of TSL, further corroborating
our claim that IO-TSL is a very natural generaliza-
tion of TSL.

That said, IO-TSL is a fair amount more com-
plex than TSL. In the next section, we discuss the
empirical facts of Sanskrit /n/-retroflexion that
motivate the introduction of this additional com-
plexity.

3 Sanskrit n-retroflexion

Sanskrit /n/-retroflexion, also called nati, has
been studied extensively throughout the history
of linguistics, and has received particularly close
scrutiny within generative grammar. The notori-
ous complexity of the phenomenon is the product
of the interaction of multiple (individually sim-
ple) conditions: long-distance assimilation (§3.1),
blocking by preceding coronals (§3.2), mandatory
adjacency to sonorants (§3.3), blocking by pre-
ceding plosives (§3.4), and blocking by following
retroflexes (§3.5).

153

Even a cursory look at the previous literature
is beyond the scope of this paper, so we refer the
reader to Ryan (2017) for a detailed literature re-
view and analysis of the phenomenon. We draw
data from Müller (1886), Hansson (2001), and
Ryan (2017) and use the transcription conventions
from Ryan (2017). Page numbers for the sources
are indicated in the table captions of the data.

3.1 Base pattern

The central aspect of nati is simple: underlyingly
anterior /n/ becomes retroflex [ï] when it is pre-
ceded in the word by a non-lateral retroflex contin-
uant (one of /õ/, /õ

"
/, /õ

"
:/, or /ù/). The retroflex trig-

ger can occur arbitrarily far to the left of the nasal
target. Tables 1 and 2 respectively show the alter-
nations in the instrumental singular suffix /-e:na/
when attached to roots without and with a trigger.
Triggers, blockers, and targets are bolded in all ta-
bles.

Form Gloss
ká:m-e:na ‘by desire’
ba:ï-e:na ‘by arrow’
mu:ãH-e:na ‘by the stupid (one)’
jo:g-e:na ‘by means’

Table 1: Forms with no nati (Ryan, 2017, p. 305)

Form Gloss
naõ-e:ïa ‘by man’
manuùj-e:ïa ‘by human’
õa:gHaV-e:ïa ‘by the Rāghava’
puùpaugH-e:ïa ‘by the heap of flowers’
bõaHmaïja ‘kind to Brahmans’
niùaïïa ‘rested’
akùaïVat ‘having eyes’

Table 2: Basic nati examples (Ryan, 2017, p. 305 and
Müller, 1886, p. 44)

Viewing nati as a phonotactic phenomenon
rather than a mapping from underlying represen-
tations to surface forms, we can formalize it as the
constraint that no [n] may appear in the context
R · · · , where R is a non-lateral retroflex contin-
uant. This does not constitute an analysis, but it
clarifies the formal character of the process. As we
will see in the remainder of this section, though,
the context is in fact much more complicated than
just R · · · .

3.2 Unconditional blocking by intervening
coronals

If a coronal segment (including retroflexes) oc-
curs between the trigger and the target, then nati is
blocked. The only exception to this is the palatal
glide /j/ (cf. Table 2) — this is an important point
that we will return to in §4.3. Crucially, [ï] it-
self is a coronal blocker, meaning the assimilation
process only affects the first in a series of eligible
targets. An exception to this is geminate /nn/ se-
quences, where both instances of /n/ undergo nati
(cf. Table 2; this complication will also be dis-
cussed in §4.3). Examples of nati blocked by an
intervening coronal are shown in Table 3. Leaving
aside geminates for the moment, the illicit context
for [n] now becomes RC∗ , where C matches [j]
and all segments that are not coronals.

Form Gloss
õáth-e:na ‘by chariot’
gaõuã-e:na ‘by Garud

˙
a’

põa-ïina:ja ‘lead forth’
Vaõï-ana:nam no gloss

Table 3: Intervening coronal blocking (Hansson, 2001,
p. 227 and Ryan, 2017, p. 305)

3.3 Mandatory adjacency to sonorant

Next, the /n/ must be immediately followed by
a non-liquid sonorant to undergo nati. More pre-
cisely, the following symbol must be a vowel, a
glide, /m/, or /n/ itself (Whitney, 1889). No other
nasals can occur following /n/ due to independent
phonotactic constraints in the language (Emeneau,
1946). Like the special status of /j/ and gemi-
nates, this will become important in §4.3 but can
be ignored for now.

Examples of cases where nati is blocked by the
following sound, or lack thereof, are shown in Ta-
ble 4. Again updating the illicit context for [n], we
get RC∗ S, where S is a vowel, glide, /m/, or
/n/.

Form Gloss
bõaHman ‘brahman’
tõ
"
=n=t-te ‘split (3Pl middle)’

caõ-a-n-ti ‘wander (3Pl)’

Table 4: Blocking when no non-liquid sonorant follows
(Hansson, 2001, p. 229 and Ryan, 2017, p. 318)

154

3.4 Conditional blocking by preceding velar
and labial plosives

In addition to coronals blocking when they inter-
vene between the trigger and the target, velar and
labial plosives can also block nati, but only when
two conditions are met at the same time: I) the
plosive occurs immediately before the target, and
II) a left root boundary √ intervenes between the
target and trigger. Left root boundaries are gener-
ally omitted for clarity when they occur at the left
edge of a word. Table 5 shows that left root bound-
aries alone are not sufficient to block nati. Table 6
shows cases where a labial or velar plosive blocks
nati across a left root boundary, and Table 7 shows
cases where such a plosive does not block because
no left root boundary intervenes.

Form Gloss
põa-√ïaC-ja-ti ‘vanishes (3s)’
Võtõa-√Háïa ‘Vr

˚
tra-killing’

põa-√mi:ï-a:-ti ‘frustrates (3s)’

Table 5: Nati occurring across left root boundaries
(Ryan, 2017, pp. 320, 321, 324)

Form Gloss
põ-√a:p-no:-ti ‘attains (3s)’
põ-√a:p-nu-a:h ‘should attain (2s opt.)’
põa-√bHag-na ‘broken’

Table 6: Labial/velar blocking with intervening root
boundary (Ryan, 2017, pp. 318, 321)

Form Gloss√õug-ïá ‘break (pass. part.)’
√tõ

"
p-ïV- ‘be satisfied (pres. stem)’

√õé:kïas ‘inheritance’

Table 7: No labial/velar blocking (Ryan, 2017, p. 319)

To accommodate these new facts, we change
the context to Rα S. Here α is any string that
does not contain a coronal and does not match
· · · √ · · ·P , where P is a velar plosive or a labial
plosive.

3.5 Conditional blocking by following
retroflex

There is one final complication: nati is blocked
when a retroflex occurs somewhere to the right of
the target /n/. Like with blocking by plosives,
though, two conditions must be met: I) as above, a

left root boundary separates the trigger and the tar-
get of nati, and II) no coronal intervenes between
/n/ and the blocking retroflex (so coronals “block”
retroflex blocking). Keep in mind that, as in §3.2,
/n/ itself is coronal and thus can act as a blocker,
a point that will be important in §4.

Table 8 shows cases where a following retroflex
blocks in the presence of a left root boundary
intervening between trigger and target, and Ta-
ble 9 shows cases where it does not block be-
cause a coronal intervenes between the target and
the blocker, or no intervening boundary is present.
Note in the final example of Table 9 that an inter-
vening left root boundary between the trigger and
the blocker has no effect — the boundary must oc-
cur before the targeted /n/.

Ryan (2017) notes that it is unclear from the
data whether the retroflex blocking is truly un-
bounded, or if the blocker must occur within a cer-
tain distance of the target. We assume the pattern
is unbounded here, but it does not significantly al-
ter the analysis if this is not the case.

Form Gloss
põa-√naù-úum ‘to vanish (inf.)’
põa-√nõ

"
t- ‘dance forth’

põa-√nakù- ‘approach’

Table 8: Following retroflex blocking (Ryan, 2017,
p. 325)

Form Gloss
põa-√ïe:-tõ

"
‘leader’

√bõa:Hmaï-é:-ùu ‘Brahmins (loc. pl.)’
√põ-ïa-k-ùi ‘unite (2s)’
√puõa:ïa-√õùi ‘ancient rishi’

Table 9: No following retroflex blocking (Ryan, 2017,
p. 325, 326)

With this last piece of data in place, we can fi-
nally give a full description of nati as a phonotac-
tic constraint on the distribution of [n] in surface
forms.

Definition 5 (nati). No [n] may occur in a context
Rα Sβ such that the following hold:

• R is a non-lateral retroflex continuant, and

• S is a vowel, glide, /m/, or /n/ and

• none of the following blocking conditions are
met:

155

– α contains a coronal C, or
– α matches · · · √ · · ·P , where P is a ve-

lar plosive or labial plosive, or
– α contains√, and β contains a retroflex

that is not preceded by a coronal in β.

This description can be translated into a first-
order formula with precedence to show that nati
is star-free. In the next section, we show that it is
also IO-TSL.

4 Formal analysis

The IO-TSL analysis of nati is a bit convoluted,
but more straightforward than one might expect.
All the heavy lifting is done by the tier projection
mechanism (§4.1). In any case where the projec-
tion considers the context at all, it uses a look-
ahead of 1 or 2, a look-back of 1 in the string, a
look-back of 1 on the tier, or a mixture of these
options. In particular, P and C have complex
tier projection conditions. Our projection function
creates tiers of a very limited shape that are easily
shown to be SL-3 (§4.2). While our analysis uses
abstract symbols such as R, P , and C, the com-
plexity of nati remains the same even if one talks
directly about the relevant segments instead (§4.3).

4.1 Tier projection
As contexts make for a verbose description, we opt
for a more informal specification of the IOSL tier
projection. The projection rules for each symbol
are sufficiently simple that this does not introduce
any inaccuracies.

An IOSL-(3, 2) tier projection for nati is shown
below. For each condition we list its individ-
ual complexity. Note that the rules below merely
specify how tiers are constructed, not which tiers
are well-formed. This is left for §4.2.

• Always project R. IOSL-(1,1)

• Project S if it is immediately preceded by [n]
in the input. IOSL-(2,1)

• Project√ if the previous tier symbol is R.
IOSL-(1,2)

• Project P if the previous tier symbol is√ and
the next two input symbols are [n] and S.

IOSL-(3,2)

• Project C if the previous tier symbol is R,√, or S, unless C is [n] and the next input
symbol is S. IOSL-(2,2)

• Project every retroflex (not just those match-
ing R) if the previous tier symbol is S.

IOSL-(1,2)

• Don’t project anything else. IOSL-(1,1)

Table 10 shows variations of the previous data
points with the tiers projected according to the
rules above.

Let us briefly comment on the intuition behind
these projection rules. We always want to project
R since this is the only potential trigger for nati.
For [n], we do not want to project all instances as
this may end up restricting the distribution of an
[n] that is not a suitable target anyways. In ad-
dition, we do not want to project [n] itself as this
would make it impossible to distinguish an [n] that
was projected as a potential nati-target from one
that was projected as an instance of C. So instead,
we project the sonorant after [n]. As a sonorant
has no other reason to appear on the tier, it can act
as an indirect representative of an [n] that may be
targeted by nati.

The left root boundary √ matters only if it oc-
curs between R and [n]. Since we build tiers from
left-to-right, we cannot anticipate the presence of
[n] on the tier, and in the input string there is no up-
per bound on how far [n] might be from√. Hence
we have to project√ after every R, even if R does
not end up triggering nati. A redundant instance
of√ on the tier is no problem.

As for P , its presence matters only when it oc-
curs before a potential nati target, so we project it
only in these configurations. We also impose the
requirement that the previous tier symbol is √ as
P needs a left root boundary between R and [n]
to become a blocker. This kind of mixing of input
and output conditions is not necessary for P , but
it is essential for C.

The coronal C is the strongest blocker. In con-
trast to √, it does not depend on other material
in the string, so it should be projected not only
immediately after R but also if the previous tier
symbol is√ (from which we can infer that the tier
symbol before that is R). A C between [n] and a
retroflex inhibits the latter’s ability to block nati,
so we also need to project C if the previous tier
symbol is S (our tier stand-in for [n]). As arbi-
trary retroflex segments are projected only if the
previous tier symbol is S, projecting C after S
effectively blocks projection of retroflexes. Note
that we do not project C when it is an [n] before

156

S as this is a potential nati-target and hence S is
projected anyways.

4.2 SL grammar
Once the IOSL tier projection is in place, specify-
ing the forbidden substrings is a simple task. Con-
sider a segment [n] that is followed by S and hence
a potential target for nati. If there are any R that
can trigger nati, it suffices to consider the closest
one. Given such a configuration R · · · [n]S, any
tier will have the shape below:

· · ·R (C | √(C | P)) S (C | S | retroflex) · · ·

Here (X | Y) means “X or Y or nothing”.
Based on this abstract template, the following

substrings are illicit because they indicate an [n]
in a configuration where nati should apply:

• R S, and

• R √ S X (where X is n, C, or S).

That these are the only four substrings that need
to be forbidden is illustrated in Table 10. But note
that √ is always immediately preceded by R on
the tier, so the illicit substrings for the second case
can be shortened to √ S n, √ S C, and √ S S.
Therefore the longest forbidden substring has at
most 3 segments and the dependencies over the
tier are SL-3. As a result, nati is IO-TSL-(3,2,3);
these surprisingly low thresholds suggest that nati
is still fairly simple from a formal perspective.

4.3 Removing abstract symbols
There are still a few minor points that merit ad-
dressing. As noted in §2.2, IO-TSL is not closed
under relabeling, so the fact that the abstract pat-
terns used in the previous sections are IO-TSL
does not imply that nati itself is. This is the case
only if one can compile out the abstract symbols
R, S, C, P , and retroflex into specific segments
like [n], [j], and [õ]. No problems arise in cases
where no segment corresponds to more than one
abstract symbol. For example, [j] only matches S.
If [j] were also a coronal blocker, then it would
also match C and the account in the previous sec-
tion would no longer work since it would not be
clear if a [j] on a tier represents a blocker C or a
sonorant S. In such a case, the use of abstract sym-
bols would simplify the pattern in an illicit way.
There are two instances of overlap in our analysis:
R versus arbitrary retroflexes, and [n] belonging
to both C and S.

Regarding the split between R and arbitrary
retroflexes, it is actually unclear from the data
whether the two are distinct classes. The available
data includes only instances of segments matching
R acting as blockers, though Ryan (2017) suggests
based on his analysis that all retroflexes should be
able to block. But even if the two are distinct,
that is unproblematic for our account. The pro-
jection of R is less restricted than that of arbitrary
retroflexes as the latter are only projected if the
previous tier symbol is S. This discrepancy mat-
ters only in cases where a C-segment occurs after
[n]. In this case, arbitrary reflexives do not project
whereas R still does. Projecting an R-segment af-
ter a C has no consequences, though. If the pre-
ceding substring matches √ SC, then projecting
R won’t salvage it. If it does not match this pat-
tern, projecting R won’t make the tier ill-formed.
Hence the minimal difference between R and ar-
bitrary retroflexes — if it exists — is immaterial
for our account.

That [n] belongs to both C and S is not much of
an issue, either. Since S is projected only after [n],
an [n] on the tier could be an instance of S only if
there are [nn] clusters targeted by nati. In such
cases, the entire cluster undergoes nati. For exam-
ple, we see [niùaïïa], not ∗[niùaïna] (cf. Table 2).
There are two solutions to this. One option is to
treat these not as [nn] clusters, but rather as a sin-
gle segment [n:]. As long as the projection of S is
generalized to be sensitive to both [n] and [n:], this
data is handled correctly by our analysis. Alterna-
tively, we could rely on the fact that [nn] clusters
in our data are always followed by S. Hence we
can limit S to vowels, glides, and [m] and still end
up with a sonorant on the tier after each potential
nati-target. Either way there are again safe ways
to deal with the apparent overlap between the ab-
stract symbols.

We find it interesting in connection to this that
[j] is both sonorant and coronal but does not act as
a coronal blocker. If it did, it would belong to both
C and S, without an easy fix to rescue our analy-
sis. Although Ryan (2017) accounts for the special
status of [j] on the basis of its articulatory proper-
ties, the fact that its behavior is also predictable
from a computational perspective is intriguing. Be
that as it may, the important point is that the ac-
count in §4.1 and §4.2 captures nati even if the ab-
stract symbols are compiled out to the actual seg-
ments.

157

Example Tier Forbidden
substring

naõe:ïa aõïn –
∗naõe:na aõan õa
põaïina:ja õïan –
caõanti õtn –
Võtõa√Háïa õtõ√ïn –
∗Võtõa√Hána õtõ√an √an
põ√a:pno:ti õ√po:tn –

Example Tier Forbidden
substring√õugïá õïn –

∗√õugná õán õá
põa√ïe:tõ

"
õ√ïõ

"
n –

∗põa√ne:tõ
"

õ√e:tõ
"
n √e:t

√bõa:Hmaïé:ùu õïùn –
∗√bõa:Hmané:ùu õé:ùn õé:
põa√nakù õ√aùn –

Table 10: Selected data points and ungrammatical variants from Tables 2 to 9 with their tiers and forbidden
subsequences (if any); n is added to each tier for the sake of exposition.

4.4 Relevance and interpretation

Our analysis establishes IO-TSL as a tighter upper
bound on the complexity of nati when construed as
a single phonotactic constraint over strings. This
does not mean, though, that this is the only viable
view of nati, as it could have been analyzed as
a collection of individually simple constraints (cf.
Ryan, 2017), a condition on graph structures in the
sense of Jardine (2017), or a mapping from un-
derlying representations to surface forms. These
are all insightful perspectives, but they are orthog-
onal to our goal of bounding the overall com-
plexity of nati. Our finding that nati (and prob-
ably segmental phonology as a whole) is IO-TSL
is analogous to claims that syntax yields mildly
context-sensitive string languages (Joshi, 1985)
even though the actual representations are trees
with a tree-to-string mapping. The IO-TSL nature
of nati provides a rough complexity baseline on
which more nuanced and linguistically insightful
notions of complexity can be built.

We do find it interesting that IO-TSL as a nat-
ural generalization of TSL is sufficient to cap-
ture nati. But IO-TSL is still too liberal an up-
per bound. Just like the TSL-extensions used in
Baek (2017), De Santo and Graf (2017), and Yang
(2018), IO-TSL allows for unattested phenomena
such as first-last harmony (Lai, 2015). Future
work may identify subclasses of IO-TSL that al-
low for nati but not first-last harmony. IO-TSL in
its current form is nonetheless a fairly restrictive
upper bound on nati.

One final point of contention is our treatment of
nati as a long distance process, rather than local
retroflex spreading as suggested by Ryan (2017).
Unfortunately, there is no clear evidence that the
posited local spreading is visible in the output
string. Spreading of unpronounced material would

be an instance of feature coding, which destroys
subregular complexity because every regular lan-
guage can be made SL-2 this way (see e.g. Rogers
1997). Ryan’s analysis may still be more appropri-
ate from a linguistic perspective, but for our pur-
poses it may incorrectly nullify the complexity of
nati.

5 Conclusion

We have shown that even a highly complex pro-
cess like nati can be regarded as a local depen-
dency over tiers given a slightly more sophis-
ticated tier projection mechanism that considers
both the local context in the input and the preced-
ing symbol(s) on the tier. This extension is natural
in the sense that it co-opts mechanisms that have
been independently proposed in the subregular lit-
erature as a more restricted model of rewrite rules.
Moreover, the complexity is fairly low as nati fits
into IO-TSL-(3, 2, 3). A careful reanalysis of the
data may be able to lower these thresholds even
more by incorporating independent restrictions on
the distribution of some segments. Allowing the
tier projection to proceed from right to left might
also affect complexity.

The effect of the increased power on learnability
is still unknown. IO-TSL-(i, j, k) is a finite class
given upper bounds on i, j, and k, which immedi-
ately entails that the class is learnable in the limit
from positive text (Gold, 1967). This leaves open
whether the class is efficiently learnable, as is the
case for TSL (Jardine and McMullin, 2017) and
the strictly local maps IO-TSL builds on (Chan-
dlee et al., 2014, 2015). But IO-TSL adds two
serious complications: the learner does not have
access to the output of the tier projection function
in the training data, and inferring correct contexts
presupposes correctly built tiers.

158

Acknowledgments

We would like to thank David Goldstein and
Canaan Breiss for helping us better understand
nati.

References
Hyunah Baek. 2017. Computational representation

of unbounded stress: Tiers with structural features.
Ms., Stony Brook University; to appear in Proceed-
ings of CLS 53.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 599–641.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential func-
tions. Transactions of the Association for Compu-
tational Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. Mathematics of Lan-
guage.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. Linguistic Inquiry, 49:23–
60.

Aniello De Santo and Thomas Graf. 2017. Structure
sensitive tier projection: Applications and formal
properties. Ms., Stony Brook University.

M.B. Emeneau. 1946. The nasal phonemes of Sanskrit.
Language, 22(2):86–93.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 10:447–474.

Thomas Graf. 2010. Comparing incomparable frame-
works: A model theoretic approach to phonology.
University of Pennsylvania Working Papers in Lin-
guistics, 16(2):Article 10.

Thomas Graf. 2017. The power of locality domains in
phonology. Phonology, 34:385–405.

Thomas Graf. 2018. Locality domains and phonologi-
cal c-command over strings. To appear in Proceed-
ings of NELS 2017.

Thomas Graf and Nazila Shafiei. 2018. C-command
dependencies as TSL string constraints. Ms., Stony
Brook University.

Gunnar Ólafur Hansson. 2001. Theoretical and Typo-
logical Issues in Consonant Harmony. Ph.D. thesis,
University of California, Berkeley.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frank Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195.
Mouton De Gruyter.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning in the limit with lattice-structured
hypothesis spaces. Theoretical Computer Science,
457:111–127.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33:247–283.

Adam Jardine. 2017. The local nature of tone-
association patterns. Phonology, 34:385–405.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Proceedings of Language and Automata Theory and
Applications, Lecture Notes in Computer Science,
pages 64–76, Berlin. Springer.

Aravind Joshi. 1985. Tree-adjoining grammars: How
much context sensitivity is required to provide rea-
sonable structural descriptions? In David Dowty,
Lauri Karttunen, and Arnold Zwicky, editors, Nat-
ural Language Parsing, pages 206–250. Cambridge
University Press, Cambridge.

Regine Lai. 2015. Learnable vs unlearnable harmony
patterns. Linguistic Inquiry, 46:425–451.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from Uyghur backness
harmony. In Formal Grammar 2018. Lecture Notes
in Computer Science, vol. 10950, pages 62–83.
Springer, Berlin, Heidelberg.

Kevin McMullin. 2016. Tier-Based Locality in Long-
Distance Phonotactics: Learnability and Typology.
Ph.D. thesis, University of British Columbia.

Friedrich Max Müller. 1886. A Sanskrit Grammar
for Beginners: In Devanagari and Roman Letters.
Longmans, Green, and Co., London.

James Rogers. 1997. Strict LT2 : Regular :: Local :
Recognizable. In Logical Aspects of Computational
Linguistics: First International Conference, LACL
’96 (Selected Papers), volume 1328 of Lectures
Notes in Computer Science/Lectures Notes in Arti-
ficial Intelligence, pages 366–385. Springer.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Vischer, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christan Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Lan-
guage, volume 6149 of Lecture Notes in Artificial
Intelligence, pages 255–265. Springer, Heidelberg.

159

Kevin Ryan. 2017. Attenuated spreading in Sanskrit
retroflex harmony. Linguistic Inquiry, 48(2):299–
340.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2018.
Case assignment in TSL syntax: A case study. Ms.,
Stony Brook University and University of Delaware.

William Dwight Whitney. 1889. Sanskrit Grammar.
Oxford University Press, London.

Su Ji Yang. 2018. Subregular complexity in Korean
phonotactics. Undergraduate honors thesis, Stony
Brook University.

160

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 161–166
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Phonological Features for Morphological Inflection

Adam Wiemerslage� and Miikka Silfverberg�,� and Mans Hulden�
Department of Linguistics
University of Colorado�

University of Helsinki�

first.last@colorado.edu

Abstract

Modeling morphological inflection is an im-
portant task in Natural Language Processing.
In contrast to earlier work that has largely used
orthographic representations, we experiment
with this task in a phonetic character space,
representing inputs as either IPA segments or
bundles of phonological distinctive features.
We show that both of these inputs, some-
what counterintuitively, achieve similar ac-
curacies on morphological inflection, slightly
lower than orthographic models. We conclude
that providing detailed phonological represen-
tations is largely redundant when compared
to IPA segments, and that articulatory distinc-
tions relevant for word inflection are already
latently present in the distributional properties
of many graphemic writing systems.

1 Introduction

Models of morphology are important to many
tasks in Natural Language Processing, but also
present new challenges of their own. Morpholog-
ically complex languages require analysis that is
often only captured at the morpheme level, but
is essential for syntactic or semantic representa-
tions. This requires effective morphological anal-
ysis, which often receives less attention than other
subfields of Natural Language Processing. One
relevant task in morphology is that of morpho-
logical inflection: automatically generating the in-
flected form of a lemma according to a given mor-
phological specification. An example of this in
English is ′′walk′′ + 3 + SG + PRES → ′′walks′′.
There has been recent success in adopting the
encoder-decoder architecture (Kann and Schütze,
2016), which has been effective in machine trans-
lation (Cho et al., 2014), to this task.

In this work, we explore representing the in-
puts to such an encoder-decoder model for mor-
phological inflection in two additional ways: IPA

segments and bundles of phonological distinctive
features. Representing the inputs to an inflec-
tion model in phonetic space can unify the charac-
ter inventory between languages with separate or-
thographies. The shared character inventory could
also enable transfer learning in some instances
where it otherwise would be impossible. There are
also confusing idiosyncrasies in some orthogra-
phies that are not necessarily present in an IPA
representation. For example, there are many in-
stances of gemination in English that do not occur
in the phonetic realizations of such words, as in
〈control〉 → 〈controlled〉. English also exhibits
several examples of the same sound expressed by
completely different orthographic realizations as
in 〈fly〉 → 〈flies〉, or conversely 〈arch〉 (/tS/) ∼
〈monarch〉 (/k/). Furthermore, a phonetic repre-
sentation serves as an interface to an even richer
representation of characters: phonological distinc-
tive features.

We explore this by representing each IPA seg-
ment in a sequence as the combination of its dis-
tinctive features. This is potentially useful because
(1) a model can learn representations for a fixed set
of distinctive features, rather than for each unique
IPA segment, and (2) the differences between sim-
ilar phonemes should be more readily apparent in
the distinctive feature representations than the IPA
representations. When tasked with generating the
past tense of the English verb ”stop”, transcribed
as /stAp/, a model may need to distinguish between
both /t/ and /d/ as past tense suffixes, having seen
such examples as ”kick”: /kIk/→ /kIkt/, or ”rig”:
/ôIg/ → /ôIgd/. Rather than the model needing to
learn good representations for both /p/ and /k/ as
unrelated segments that precede a /t/ in the past
tense, a phonological distinctive feature represen-
tation would explicitly capture that they share the
feature [−voice]. This encourages a model to more
quickly find the parameters that correctly gener-

161

https://doi.org/10.18653/v1/P17

ate this voicing assimilation, and produce the form
/stApt/. That is, the model that learns from phono-
logical features should quickly be able to general-
ize that this English past tense is realized as /t/ be-
fore voiceless segments. Similarly, in the example
of ”rob”: /ôAb/→ /ôAbd/, the generated /d/ can be
conditioned on [+voice] rather than the individual
segment /b/.

An alternative hypothesis is that the proposed
distinctive feature representation may, however,
not have such a profound effect on the inflection
model. This is because distributional represen-
tations of IPA segments or phonemic graphemes
have been shown to capture good approximations
of the distinctive feature space (Silfverberg et al.,
2018). In order to test these two hypotheses, we
experiment on a subset of data provided by task 1
of the CoNLL-SIGMORPHON 2017 Shared Task
on Universal Morphological Reinflection (Cot-
terell et al., 2017), which introduced 42 more lan-
guages than the year before (Cotterell et al., 2016)
for a total of 52 languages. We use an existing tool
to perform G2P on the data, and, as a second step,
to produce distinctive feature vectors from the re-
sulting IPA segments. We evaluate the resulting
models on their ability to generate IPA segments.

Related Work Phonetic distributional vectors
have been explored for their effectiveness in sev-
eral NLP applications; especially for informing
scenarios that utilize borrowing or transfer learn-
ing (Tsvetkov et al., 2016). Phonological distinc-
tive features have also been successfully used to
inform NER (Bharadwaj et al., 2016). However,
to our knowledge, there does not seem to be work
in learning distributional properties of phonologi-
cal features that compares them directly to vectors
of IPA segments.

2 Encoder-Decoder Architecture

Our model is implemented as an RNN Encoder-
Decoder with attention, built to imitate the model
introduced by Kann and Schütze (2016), varia-
tions of which found much success in the 2017
CoNLL-SIGMORPHON shared task. The system,
pictured in Figure 1, works by learning an encoder
RNN over a sequence of embeddings for the in-
put characters or morphological tags. In practice,
the encoder is bidirectional. The decoder RNN is
initialized with a sequence boundary token, and
each state of the decoder is predicted based on
the state of the previous timestep, the previous

c a t N

c a t s

E EE E

E EE E

Encoder
Bi-RNN

Decoder
RNN

<EOS>

E

<EOS>

E

<EOS>

E

PL

E

<EOS>

E

Attn

Figure 1: The encoder-decoder with an attention mechanism
used for morphological inflection

[k,æ,t]

-syl
-son
…
-ant
+hi

+syl
+son
…
0ant
-hi

-syl
-son
…
+ant
-hi

Figure 2: PanPhon transforms a sequence of IPA segments
into a matrix of features

output embedding, and all of the encoder states
ei ∈ Encoder. We then use an attention mecha-
nism (Bahdanau et al., 2014) to ‘attend’ over the
encoder states, assigning a score to each ei given
the previous decoder state dj−1. The scoring func-
tion (Luong et al., 2015) is calculated as

score(ei; dj−1) = tanh([dj−1; ei]×W) (1)

whereW is a parameter matrix that is learned dur-
ing training, and [x; y] indicates the concatenation
of x and y. These scores are then normalized by
applying a softmax over all encoder states in En-
coder to compute each εi,j−1.

Finally, the attention vector is computed as
the weighted mean of all encoder states accord-
ing to their normalized score: A(dj−1, E) =∑n

i=0 εi,j−1ei, which is concatenated to the pre-
viously decoded embedding before being passed
through the decoder. We implement this model in
PyTorch (Paszke et al., 2017), using Gated Recur-
rent Units (GRU) (Cho et al., 2014) for the encoder
and decoder, and optimize with stochastic gradient
descent.

3 Embedding Inputs

The inputs to this model are sequences of charac-
ter and tag embeddings. To this end, each Uni-
code character codepoint or tag is a one-hot vec-
tor c, and an embedding matrix E ∈ R|Σ|×n is

162

Medium High
Shared task Text IPA Features Shared task Text IPA Features

English 94.70 89.70 72.50 72.70 97.20 96.60 77.00 76.10
German 80.00 71.80 60.80 59.90 93.00 89.50 82.30 83.20
Hindi 97.40 84.80 89.80 86.50 100.00 99.80 99.60 99.90

Hungarian 75.10 67.10 65.50 63.90 86.80 83.70 82.80 82.60
Persian 91.90 84.10 85.00 82.30 99.90 99.10 99.20 98.70
Polish 79.90 67.10 63.40 64.30 92.80 88.20 88.20 88.90

Russian 84.10 66.90 66.80 67.60 92.80 89.20 86.50 88.90
Spanish 91.70 76.50 82.10 81.30 97.50 95.20 96.40 96.60

AVG 86.85 76.21 72.61 72.73 95.0 92.66 89.00 89.36

Table 1: Overall accuracy for each model (orthographic, IPA-based, and distinctive feature-based), and comparison with the
CoNLL-SIGMORPHON 2017 shared task top performing system for each language.

computed to store the parameters that map the
|Σ|-dimensional one-hot vectors to n-dimensional
dense vectors, where Σ is the character and tag
vocabulary. Similarly we use a matrix I ∈
R|ΣIPA|×n for embedding IPA segments, where
ΣIPA is the IPA segment and tag vocabulary. To
produce the IPA sequence, we use the Python
library Epitran, which performs rule-based G2P
on language specific mappings (Mortensen et al.,
2018).

We then use the Python library PanPhon
(Mortensen et al., 2016), which maps IPA seg-
ments to features as in Figure 2, to obtain vectors
of phonological distinctive features. The features
are represented numerically whereby each index
of the vector corresponds to a specific feature such
as [±coronal] and stores a value from the set {1, 0,
-1}. These values correspond to ‘exhibits feature’,
‘unspecified for given class of sounds’, and ‘does
not exhibit feature’, respectively. In practice we
map -1 to 0 to obtain strictly binary feature vec-
tors. Now, each IPA segment can be represented
as a vector v which has a 1 for each feature that it
exhibits, and a 0 otherwise. The embedding ma-
trix F ∈ R|p|×n, where p is all features, tags, and
symbols is no longer just a lookup for IPA seg-
ments. Tags are still one-hot vectors, and sym-
bols are one-hot vectors for any character that has
no phonological features (e.g. a space, or apostro-
phe). But the vector for an IPA segment now has a
one for each feature that it exhibits, in contrast to
the one-hot vectors.

The operation vF is equivalent to summing
each Fi for which vi = 1. In this way, an IPA
segment is the sum of all of its distinctive feature
embeddings. In practice, we can take the matrix-
matrix product of the entire sequence of feature

vectors and F to calculate the matrix that rep-
resents a sequence of embeddings. The overall
workflow involves passing from orthographic in-
put sequences, through Epitran, and then PanPhon,
and finally to phonological distinctive feature em-
beddings.

4 Experiments and Results

We evaluate these models on 8 languages that
are at the intersection of CoNLL-SIGMORPHON
data, Epitran, and PanPhon supported languages,
selected to exhibit typological diversity. The lan-
guages, split into 2 training settings per the shared
task data: Medium (∼1,000 training examples),
and High (∼10,000 training examples), and their
accuracies are given in Table 1. In the high data
setting using orthographic inputs, our implementa-
tion performed comparably to the best shared task
systems for each language. The slight degrada-
tion in performance can be attributed to the fact
that we did not use ensemble voting, as the top
performing systems in the shared task did (Cot-
terell et al., 2017), and that this is a compar-
ison to the maximum score of 25 systems per
language, which increases the likelihood that the
optimal initialization will have been found. In
the medium setting, the difference in accuracy is
much more apparent. This is due to the fact that
all of the top performing systems in the shared
task also used either some type of data augmenta-
tion method (Zhou and Neubig (2017), Silfverberg
et al. (2017), Sudhakar and Kumar (2017), Kann
and Schütze (2017), Bergmanis et al. (2017)) a
hard alignment method (Makarov et al., 2017), or
both (Nicolai et al., 2017). These results illustrate
the common observation that neural systems re-
quire a large amount of data to be very accurate,

163

ENSEMBLE ORACLE RESULTS

Medium High
All inputs Text All inputs Text

English 94.20 94.20 97.90 97.50
German 79.50 81.20 93.10 94.30
Hindi 94.50 90.30 100.00 100.00

Hungarian 78.60 77.40 90.10 90.10
Persian 91.40 90.40 99.70 99.60
Polish 79.40 78.70 93.70 92.6

Russian 78.30 76.80 94.10 92.50
Spanish 89.2 86.90 98.5 97.0

AVG 85.64 84.49 95.89 95.45

Table 2: Ensemble Oracles for each language. If the cor-
rect word form is predicted by any of the 3 models, then it is
classified as correct. This is compared against 3 text models.

which can be partially addressed by artificially ex-
panding the training data, or enforcing some copy
bias into the system.

For both phonetic representation experiments,
the decoded outputs are in the inventory of IPA
segments, the gold standard of which comes from
the deterministic mappings implemented in Epi-
tran. This means that they differ only in terms
of the input representation in the encoder. Mod-
els trained on both IPA and feature inputs perform
comparably to the text model on both the medium
and the high setting. There are two main points of
interest in the results. (1) The lower performance
on average of the IPA and feature models when
compared to the text model is almost exclusively
due to differences in accuracy for German and En-
glish. We attribute this on the one hand to the
fact that the orthography of English is often dis-
similar to pronunciations and that their orthogra-
phies reflect etymological information which is
useful in determining a word’s inflectional behav-
ior (Scragg, 1974). An example of the discrepancy
between spelling and pronunciation is that the En-
glish vowel space has about 13 phonetic vowels
(Ladefoged and Johnson, 2014), whereas in the
orthographic alphabet, there are only 5. Further-
more, the unstressed vowel, schwa (@), can essen-
tially replace any vowel in an unstressed context.
We observe that the majority of inaccuracies in the
English predictions are related to vowels, and most
commonly to a schwa. This indicates that convert-
ing the character space to IPA can introduce some
new complications. Regarding German, there is
no obvious explanation for the lower accuracy, and
we believe that a more detailed analysis of the G2P
performance is needed in order to explore this. Ex-

periments on orthographically and morphophone-
mically similar languages may also be revealing.

An Ensemble Oracle of all three models is given
in Table 2 in order to check if the systems vary in
what they learn to predict. The results show that
this ensemble outperforms each individual system
for any given language. However, when compared
to an Ensemble Oracle of three text models, the
results are rather similar. The increase in accuracy
may simply be due to varying parameters from
different random initializations, yielding an effect
that is similar to the boosted scores that can be ob-
served in many of the shared task results.

More interesting is the fact that (2) both the IPA
and feature representation seem to yield extremely
similar accuracies with a paired permutation test
p-value of 0.43 over all languages. Even when
the training data is rather sparse as in the medium
setting, the accuracies remain extremely similar.
This suggests that the distributional properties of
IPA segments capture the information expressed
by distinctive features. Any benefit that represent-
ing a segment in terms of its features might have is
already available in the IPA embeddings. To fur-
ther compare these representations, we experiment
with models that combine the IPA and feature rep-
resentations. We attempt to simply add a ‘feature’
to the distinctive feature vectors for each IPA seg-
ment. That is, the feature vector for /@/ would have
a 1 for all of its distinctive features, and an addi-
tional 1 for that specific segment. We also exper-
iment with concatenation of the embedding found
from the feature vector combination and the IPA
embedding. The input to the model is a vector of
double the embedding size to account for concate-
nation. The results, given in Table 3, show that
neither experiment seems to have much effect, and
the accuracies reflect the initial results.

5 Conclusion and Future Work

We have experimented with morphological inflec-
tion on 8 different languages and compared results
between an input space of IPA segments, and one
represented as bundles of phonological distinctive
features. The results show that both types of inputs
behave similarly. This indicates that the distribu-
tional properties of IPA segments align with those
found by phonological distinctive features, at least
to the extent that articulatory information is rele-
vant to inflection. Furthermore, when compared to
a baseline of a purely orthographic space, it is ev-

164

INPUT COMBINATION RESULTS

Medium High
Addition Concat Addition Concat

English 71.10 68.70 77.40 77.70
German 56.60 56.40 84.40 84.50
Hindi 93.00 90.80 99.70 99.70

Hungarian 62.90 63.70 83.50 83.40
Persian 84.20 84.10 99.20 99.60
Polish 60.80 66.60 88.90 89.20

Russian 65.90 64.80 90.50 90.00
Spanish 80.80 84.40 97.80 97.50

AVG 71.91 72.44 90.18 90.20

Table 3: Results for the combination of feature and IPA
embeddings. Addition refers to the inclusion of a specific
phoneme ‘feature’. Concat refers to concatenating the em-
bedding of both input types.

ident that for many languages the results are still
mostly redundant, and if there is a large discrep-
ancy in accuracy it is in favor of the orthographic
inputs.

There is still work to be done to explore if there
are scenarios where bundles of distinctive features
provide an advantage. That is, in the case of trans-
fer learning where the phonology of a language is
known, it becomes possible to approximate vector
representations for unseen segments. Similarly,
distinctive features may be better at representing
segments that rarely appear in a training set for a
given language.

Acknowledgements

The second author was supported by The Society
of Swedish Literature in Finland (SLS). NVIDIA
Corp. donated the Titan Xp GPU used for this re-
search.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Toms Bergmanis, Katharina Kann, Hinrich Schütze,
and Sharon Goldwater. 2017. Training data aug-
mentation for low-resource morphological inflec-
tion. In Proceedings of the CoNLL SIGMORPHON
2017 Shared Task: Universal Morphological Rein-
flection, pages 31–39, Berlin, Germany. Association
for Computational Linguistics.

Akash Bharadwaj, David R. Mortensen, Chris Dyer,
and Jaime G. Carbonell. 2016. Phonologically
aware neural model for named entity recognition in
low resource transfer settings. In Proceedings of the
2016 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1462–1472.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task: Mor-
phological reinflection. In Proceedings of the 14th
SIGMORPHON Workshop on Computational Re-
search in Phonetics, Phonology, and Morphology,
Berlin, Germany. Association for Computational
Linguistics.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, Berlin, Germany. Association for Compu-
tational Linguistics.

Katharina Kann and Hinrich Schütze. 2017. The LMU
system for the CoNLL-SIGMORPHON shared
task on universal morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflec-
tion, pages 40–48, Berlin, Germany. Association for
Computational Linguistics.

Peter Ladefoged and Keith Johnson. 2014. A Course in
Phonetics. Nelson Education.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflec-
tion, pages 49–57, Berlin, Germany. Association for
Computational Linguistics.

David R. Mortensen, Siddharth Dalmia, and Patrick
Littell. 2018. Epitran: Precision G2P for many lan-
guages. In Proceedings of the Eleventh Interna-

165

tional Conference on Language Resources and Eval-
uation (LREC 2018), Paris, France. European Lan-
guage Resources Association (ELRA).

David R. Mortensen, Patrick Littell, Akash Bharadwaj,
Kartik Goyal, Chris Dyer, and Lori Levin. 2016.
PanPhon: A resource for mapping IPA segments
to articulatory feature vectors. In The 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, page 34753484.

Garrett Nicolai, Bradley Hauer, Mohammad Motallebi,
Saeed Najafi, and Grzegorz Kondrak. 2017. If you
can’t beat them, join them: the University of Alberta
system description. In Proceedings of the CoNLL
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection, pages 79–84, Berlin, Ger-
many. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS-W.

Donald George Scragg. 1974. A history of English
spelling, volume 3. Manchester University Press.

Miikka Silfverberg, Lingshuang Jack Mao, and Mans
Hulden. 2018. Sound analogies with phoneme em-
beddings. In Proceedings of the Society for Compu-
tation in Linguistics (SCiL), volume 1, pages 136–
144.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu,
and Lingshuang Jack Mao. 2017. Data augmen-
tation for morphological reinflection. In Proceed-
ings of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection, pages
90–99, Berlin, Germany. Association for Computa-
tional Linguistics.

Akhilesh Sudhakar and Anil Singh Kumar. 2017. Ex-
periments on morphological reinflection: CoNLL-
2017 shared task. In Proceedings of the CoNLL SIG-
MORPHON 2017 Shared Task: Universal Morpho-
logical Reinflection, pages 71–78, Berlin, Germany.
Association for Computational Linguistics.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David R.
Mortensen, Alan W. Black, Lori S. Levin, and Chris
Dyer. 2016. Polyglot Neural Language Models: A
Case Study in Cross-Lingual Phonetic Representa-
tion Learning. In NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, San Diego California, USA,
June 12-17, 2016, pages 1357–1366.

Chunting Zhou and Graham Neubig. 2017. Morpho-
logical inflection generation with multi-space vari-
ational encoder-decoders. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Uni-
versal Morphological Reinflection, pages 58–65,

Berlin, Germany. Association for Computational
Linguistics.

166

Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 167–175
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

Extracting morphophonology from small corpora

Marina Ermolaeva
University of Chicago / Chicago, IL, USA

mermolaeva@uchicago.edu

Abstract
Probabilistic approaches have proven them-
selves well in learning phonological struc-
ture. In contrast, theoretical linguistics usu-
ally works with deterministic generalizations.
The goal of this paper is to explore possi-
ble interactions between information-theoretic
methods and deterministic linguistic knowl-
edge and to examine some ways in which both
can be used in tandem to extract phonological
and morphophonological patterns from a small
annotated dataset. Local and nonlocal pro-
cesses in Mishar Tatar (Turkic/Kipchak) are
examined as a case study.

1 Introduction

Morphophonology, or the interface between mor-
phology and phonology, encompasses a wide
range of phenomena. While this paper primar-
ily focuses on learning phonological rules from a
dataset, it is difficult to draw generalizations based
only on surface strings, since the rules may be
morphologically specific. The challenge goes be-
yond learning which phonotactic sequences are al-
lowed, also incorporating surface realizations of
morphemes and rules governing their distribution.

Large unannotated corpora are used by a large
portion of the existing work on learning phono-
logical patterns e.g. approaches to learning vowel
harmony (Goldsmith and Riggle 2012; Szabó and
Çöltekin 2013; Flinn 2014). However, in the case
of rare languages, a large corpus may be unavail-
able. On the other hand, small hand-annotated
examples or texts are a natural output of linguis-
tic fieldwork and readily available even for under-
resourced and under-studied languages.

Interlinear glossed text is a format tradition-
ally utilized in linguistic papers for presenting lan-
guage data. It annotates each morpheme with a
label, or gloss tag. When the amount of data is in-
sufficient, the role of such linguistic knowledge in

making generalizations becomes more prominent;
see (Wax 2014; Zamaraeva 2016) for approaches
to extraction of morphological rules that take this
path.

When it comes to morphophonology, agglutina-
tive languages are of special interest. They tend
to exhibit a variety of interacting processes which
give rise to multiple surface realizations of most
morphemes.1 A small dataset is very likely to con-
tain only a subset of possible allomorphs – an ad-
ditional challenge for the learning algorithm. As a
case study, this paper focuses on Mishar dialect
of Tatar language (Turkic/Kipchak). The data
sample used here is a hand-glossed collection of
texts elicited from native speakers in the course of
fieldwork (MSU linguistic expedition 1999–2012)
(3090 word tokens; 1740 types).

2 (Morpho)phonological processes

One common type of alternations stems from lo-
cal processes, where the context is immediately
adjacent to the segment undergoing the change.
The same surface segment may arise from differ-
ent processes. For example, the ablative suffix
(1) has different realizations after voiceless con-
sonants, nasals, and elsewhere. The locative mor-
pheme (2) demonstrates only a two-way distinc-
tion after voiceless consonants and elsewhere. The
plural suffix (3) is also sensitive to a two-way dis-
tinction, drawing a line between nasal consonants
and other segments.

(1) a. kibet-tän
shop-ABL

b. k7z-dan
girl-ABL

c. ur7n-nan
place-ABL

1For example, the idea of correlation between agglutina-
tion and vowel harmony goes back to (Baudouin de Courte-
nay 1876, 322–323), and its history and development are doc-
umented in (Plank 1998).

167

https://doi.org/10.18653/v1/P17

(2) a. j7rt-ta
yard-LOC

b. k7z-da
girl-LOC

c. ten-dä
night-LOC

(3) a. at-lar
horse-PL

b. k7z-lar
girl-PL

c. uj7n-nar
game-PL

While this data does hint at certain general phono-
tactic patterns (e.g. a voiceless stop is never fol-
lowed by an affix beginning with a voiced obstru-
ent), the contexts cannot be inferred exclusively
from surface strings; each morpheme has to be
considered separately. Moreover, even the same
set of alternants may be found in multiple pro-
cesses. Consider the following voicing alterna-
tion:

(4) a. matur-l7g-7
pretty-NOMIN-P3

b. jaxš7-l7k-ka
good-NOMIN-DAT

(5) a. kal-gan
stay-PFCT

b. č7k-kan
exit-PFCT

The difference between (4) and (5) lies in the di-
rectionality of the {g, k} alternation: the obstruent
in the former is located at the left edge of the affix
and assimilated to the preceding segment; in the
latter it is sensitive to the voicing of the following
segment.

Another prominent source of allomorphy is
vowel harmony. This process is nonlocal in the
sense that it only affects a subset of segments (in
this case, the set of vowels); all other segments
are transparent and do not interact with the rule
in any way. Vowel harmony can be analyzed of
in terms of underspecification (Archangeli 1988):
vowels in affixes lack some feature specifications,
and their surface realization is dependent on the
closest fully specified vowel.

In Mishar Tatar, vowels are subject to fronting
harmony controlled by the root; most affixes have
front and back allomorphs.

[−BK,
−RND]

[−BK,
+RND]

[+BK,
−RND]

[+BK,
+RND]

[+HI, −LO] i ü 7j u
[−HI, −LO] e (ö) 7 (o)
[−HI, +LO] ä a

Table 1: Mishar Tatar vowels

(6) a. bala-lar-7b7z-ga
child-PL-P1PL-DAT

b. täräz-lär-ebez-gä
window-PL-P1PL-DAT

These phenomena are not completely free of ex-
ceptions and problematic cases. Two instances
of non-canonical vowel harmony in suffixes at-
tached to borrowed roots are presented in (7). Sim-
ilarly, (8a) shows the expected voiced variant of
PFCT arising after a vowel while (8b) demonstrates
the exceptional unvoiced variant in an identical
phonological context. Another issue is true allo-
morphy triggered by morphosyntactic features as
opposed to phonological context; and determin-
ing which is the case is in itself a nontrivial task.
For example, in (9) 2PL is realized differently de-
pending on the TAM (tense/aspect/mood) marker
on the verb.

(7) a. tarix-7
history-P3

b. činovnig-7
official-P3

(8) a. i-kän
AUX-PFCT

b. di-gän
speak-PFCT

(9) a. bar-a-s7z
go-ST.IPFV-2PL

b. bar-d7-g7z
go-PST-2PL

3 Finding alternations

3.1 Alternations as sets
Consider the following rule encoding Mishar Tatar
vowel harmony:

(10)
[
+SYL
0 BK

]
→ [αBK] / [+SYL

αBK] ([−SYL])∗

(11) {e, 7} → e / (e | i | ä | ö | ü) (b | d | g | ...)∗
{e, 7} → 7 / (7 | 7j | a | o | u) (b | d | g | ...)∗

This rule can be represented succinctly using fea-
ture bundle notation (10): any vowel not specified
for [±BK] receives these values from the closest
vowel to the left. However, underspecified vow-
els can be equivalently thought of as sets of fully
specified segments, and the rule as the condition
determining which member of the set appears on
the surface, e.g. (11). An alternation can then
be defined as the set of all surface outcomes of a
process, each associated with a set of contexts that
trigger it.

At this proof-of-concept stage we adopt the fol-
lowing simplifying assumption: alternations occur
between segments (i.e. one-segment substrings),
or between a segment and zero, and the context of
each alternant is a segment, not necessarily adja-
cent to the alternant. Further implications of this
assumption for contexts will be examined in sec-
tion 4.1.

168

3.2 String differences
The learning algorithm proposed here is based
on the notion of string differences introduced by
(Goldsmith 2011). This approach required defin-
ing an alphabet of symbols A and a binary con-
catenation operator • (also represented by sim-
ple juxtaposition). The alphabet is augmented by
adding a null element for concatenation (indicated
∅) as well as inverse for each letter in A. The in-
verse of a ∈ A is a−1, and aa−1 = a−1a = ∅.
Moreover, (ab)−1 = b−1a−1. These definitions
establish group structure over the set of all strings
in the extended alphabet.

The right difference of strings s and t is defined
as s

tR = t−1 • s. Similarly, the left difference of
s and t is s

tL = s • t−1. The following examples
clarify this notation:

(12) jumps
jumpedR = (jumped)−1jumps =

(ed)−1(jump)−1jumps = (ed)−1s = s
ed

(13) undo
redo L = undo(redo)−1 =

undo(do)−1(re)−1 = un(re)−1 = un
re

For our purposes, it is sufficient to interpret string
differences as ordered pairs of strings.2 In its
turn, left/right commonality can be defined as the
longest common prefix/suffix of two strings. The
left commonality of jumps and jumped is jump,
and the right commonality of undo and redo is do.

Given a paradigm (set of strings) P with n el-
ements, its left/right self-difference array is the
n × n array D such that D[i][j] is the left/right
difference of P [i] and P [j]. The array of common-
alities is defined similarly. A paradigm is regular
if each row in its self-difference array has a single
common nominator and all elements in its com-
monality array are identical (ignoring the main di-
agonal).

jump jumps jumped jumping

jump ∅
s

∅
ed

∅
ing

jumps s
∅

s
ed

s
ing

jumped ed
∅

ed
s

ed
ing

jumping ing
∅

ing
s

ing
ed

Figure 1: Regular paradigm: right self-differences
of {jump, jumps, jumped, jumping}

2As Goldsmith (2011) points out, one can also think of
the right difference of s and t as a function that maps t to s.

try tries tried trying

try y
ies

y
ied

∅
ing

tries ies
y

s
d

ies
ying

tried ied
y

d
s

ied
ying

trying ing
∅

ying
ies

ying
ied

Figure 2: Non-regular paradigm: right self-
differences of {try, tries, tried, trying}

This notion of self-difference is still limited to
prefixes and suffixes. Let P = {w1, ..., wn} be a
paradigm whose left and right self-difference ar-
rays are regular, with l and r denoting its (unique)
left and right commonality respectively. Omit-
ting some details for the sake of space, we define
the set of internal difference substrings of P as
{l−1w1r

−1, ..., l−1wnr−1}.
Under the assumptions outlined previously, the

task of identifying alternations reduces to finding
segment-sized (or smaller) differences between re-
alizations of the same morpheme. The following
recursive definition captures this idea:

(14) An alternation is the set of internal differ-
ence substrings of a paradigm that is reg-
ular if any previously determined alterna-
tions are ignored and, moreover, satisfies
two conditions:

(i) the paradigm’s left or right common-
ality is a non-empty string;

(ii) none of the difference substrings are
longer than one character.

3.3 A two-step algorithm

In the input, morphs are arranged into sets by gloss
tag, each morph forming its own group. A frag-
ment of the input is shown below.

(15) Q: {[m 7], [m e]}
PST: {[d 7], [d e], [t 7], [t e]}
P1PL: {[b e z], [e b e z], [7 b 7 z]}

The definition introduced in (14) lends itself nat-
urally to a two-step iterative algorithm that calcu-
lates self-differences for each set of morphs, iden-
tifying alternations as it proceeds. The extrac-
tion step employs the definitions introduced above
to find all possible alternations between groups
within each set. The reduction step collapses all
groups in each set that are identical up to known
alternations, essentially factoring out some of the

169

differences and making more alternations accessi-
ble to subsequent passes. The algorithm alternates
between extraction and reduction until the number
of groups stops decreasing.

Consider the toy example in (15). The first it-
eration starts out with no known alternations; the
only morph set conforming to (14) is Q. The ex-
traction step discovers one alternation: {e, 7}. The
reduction step then collapses all morph groups that
are identical up to this alternation:

(16) Q:
{[m 7,

m e
]}

PST:
{[d 7,

d e

]
,
[t 7,

t e

]}

P1PL:
{[

b e z
]
,
[e b e z,

7 b 7 z

]}

At the second iteration (17), members of the {e,
7} set are now treated as the same segment, and
PST and P1PL satisfy the conditions of (14). They
yield two new alternations, {d, t} and {∅, e, 7},
allowing the reduction step to collapse both PST

and P1PL:

(17) Q:
{[m 7,

m e
]}

PST:

{[
d 7,
d e,
t 7,
t e

]}

P1PL:
{[
∅ b e z,
e b e z,
7 b 7 z

]}

At this point no further reduction is possible,
and the algorithm halts.

3.4 Intermediate results

The Mishar Tatar sample contained 55 different
gloss tags and 160 surface realizations. The algo-
rithm converged after three iterations, collapsing
the morphs into 85 groups.

Correct
{d, n, t}, {d, t}, {∅, k, g}, {l, n},
{k, g}, {∅, e, 7}, {a, ä}, {e, 7}

Incomplete {∅, 7}, {∅, ä}
Incorrect {g, s}, {n, N}

Table 2: Extracted alternations

The following output snippets illustrate the
work of the reduction step. Multiple processes af-
fecting the same morpheme can be learned (18);
this also holds for alternations with zero (19). Not
every set of morphs is reduced to a single group;
the algorithm has successfully learned that the

ATTR gloss corresponds to three different attribu-
tivizer suffixes, each of which has multiple real-
izations (20).

(18) ---- PL
---- Group 0
[['n' 'ä' 'r']
['n' 'a' 'r']
['l' 'ä' 'r']
['l' 'a' 'r']]

(19) ---- ORD
---- Group 0
[['e' 'n' 'č' 'e']
[' ' 'n' 'č' 'e']
['7' 'n' 'č' '7']]

(20) ---- ATTR
---- Group 0
[['s' '7' 'z']
['s' 'e' 'z']]
---- Group 1
[['l' 'e']
['l' '7']]
---- Group 2
[['g' 'e']
['g' '7']
['k' 'e']]

One interesting observation is related to the
learner’s ability to retain group boundaries if the
groups appear to represent distinct morphemes.
This has a practical potential for detecting incon-
sistencies in labelling – such as the COMP gloss
tag being used for the complementizer dip and the
comparative suffix -r{aä}k (21), when CMPR is
expected for the latter (22).

(21) ---- COMP
---- Group 0
[['d' 'i' 'p']]
---- Group 1
[['r' 'ä' 'k']
['r' 'a' 'k']]

(22) ---- CMPR
---- Group 0
[['r' 'a' 'k']]

4 Learning contexts

4.1 Rules and locality
Above, we have introduced a method of detecting
likely phonological processes and collecting them
as sets of alternating segments. This section makes
the next logical step and focuses on patterns gov-
erning the distribution of alternants.

A straightforward way to formalize this task
and define its boundaries is grounded in formal
language theory. Two classes of subregular lan-
guages are particularly relevant to the discussion
of phonology. One of them is Strictly Local lan-
guages (McNaughton and Papert 1971; Rogers
and Pullum 2011). Given an alphabet Σ, a Strictly
k-Local (SL) grammar can be expressed as a set
of strings in Σ of length at most k. The corre-
sponding language is the set of all strings in Σ that
do not contain any of the strings in the grammar.
Tier-based Strictly Local grammars (TSL) (Heinz
et al. 2011) are a generalization of SL grammars.
A k-TSL grammar can also be defined as a set of
illicit strings; however, they only apply to a cer-
tain subset, or tier, of elements in Σ, ignoring any

170

intervening elements that do not belong to the sub-
set.

How can this model be used to produce a practi-
cal representation of a phonological process? One
way is to link each alternant occurring in a sur-
face form to a set of trigger segments, indicating
whether they occur to the left or right. Each al-
ternation should also be associated with a set of
transparent segments – non-tier elements in TSL
terms. This is essentially a bigram model, encod-
ing dependencies between pairs of elements, and
has a clear counterpart in 2-TSL grammars. Given
an alternation with n variants, the process of learn-
ing the rule boils down to determining the direc-
tionality and partitioning the set of segments into
n + 1 subsets of triggers (for each alternant) and
transparent segments.

4.2 Mutual information

Mutual information (MI) is a measure of depen-
dence between two random variables, or the reduc-
tion of uncertainty in one random variable through
the other (Cover and Thomas 2012).

(23) MI(X;Y) =∑
x∈X

∑
y∈Y

p(x, y) log2
p(x,y)
p(x)p(y)

For the task at hand, it is convenient to think of
MI as the expected value of pointwise mutual in-
formation (PMI). In its turn, PMI is an indication
of how much the probability of a particular pair
of events differs from what it is expected to be as-
suming independence (Bouma 2009). Intuitively,
PMI measures correlation (positive or negative)
between events.

(24) PMI(x; y) = log2
p(x,y)
p(x)p(y)

The PMI metric is naturally applicable to learning
of vowel harmony. In our case, the algorithm is
expected to learn the triggers and transparent seg-
ments for each process, which translates into cal-
culating PMI values with respect to each specific
alternation. Instead of the full set of bigrams in
the corpus, the input for this procedure is the set
of bigrams containing an alternant (member of the
alternation in question) and a context segment.

A character bigram can be defined either lo-
cally, as a substring in a word, or nonlocally, as
a subsequence (potentially non-contiguous pair),
using left or right contexts of the alternant. These
two parameters – locality and directionality – yield

four different modes of collecting bigrams; see Ta-
ble 3 for a concrete example.

Left Right
Local š7 7N
Nonlocal #7, b7, a7, š7 7N, 7#

Table 3: Bigrams for {e, 7} in the word baš7N

Consider the voicing alternation {d, t} and the
harmonic pair {e, 7}. Both have triggers to the left
of the target; the former is a local process, while
the latter is nonlocal. Both alternations are present
in the past tense suffix:

(25) a. ker-de
enter-PST

b. k7čk7r-d7
shout-PST

c. 7r7š-t7
scold-PST

d. teš-te
fall-PST

Presented in Figure 3 and Figure 4 are heat maps
showing PMI values calculated for the alternations
in question. High positive values in cells indicate
attraction, whereas negative values correspond to
elements repelling each other. Cells without val-
ues indicate unattested bigrams.

(a) Local process: {d, t} (b) Vowel harmony: {e, 7}

Figure 3: PMI heat maps for local left bigrams;
higher values indicate stronger attraction between
segments

Local bigrams yield a very clear picture for the
voicing alternation {d, t}. In Figure 3a, unex-
pected pairs – voiced trigger and unvoiced alter-
nant, or vice versa – are either absent or have

171

very low PMI values. However, local bigrams do
not perform well on the vowel harmony pair {e,
7}. Figure 3b does indicate correct preference for
some vowels, but the absolute values are compara-
bly high for a number of consonants as well. With
nonlocal bigrams the results are almost reversed.
For {d, t} (Figure 4a), the pattern is obscured.
However, nonlocal processes such as vowel har-
mony yield some correct information: for {e, 7}
(Figure 4b) more vowels and fewer consonants ex-
hibit strong positive or negative correlation ten-
dencies.

(a) Local process: {d, t} (b) Vowel harmony: {e, 7}

Figure 4: PMI heat maps for nonlocal left bigrams

The heat maps demonstrate that PMI values can
be successfully used to match triggers to alter-
nants. What is needed at this point is a procedure
that would assign correct sets of transparent seg-
ments to each process – namely, the empty set for
local processes and the set of consonants for vowel
harmony.

Augmenting local bigrams with the notion of
transparent segments produces a generalization
applicable to both local and nonlocal processes.
A left (right) local bigram consists of an alternant
and the closest non-transparent segment to its left
(right). One option, then, is to compare context
segments directly in terms of how likely they are
to be transparent for a given alternation. A non-
transparent segment is expected to have high ab-
solute PMI values – positive with the alternant it

triggers and negative with all other alternants. The
definition of MI (23) can be rewritten as follows:

(26) MI =
∑
x∈X

p(x)
∑
y∈Y

p(y|x)PMI(x; y)

Fixing x and normalizing the value by its proba-
bility to avoid unnecessarily high scores for rarely
attested segments, we obtain the following metric:

(27) MI(x) =
∑
y∈Y

p(x, y)PMI(x; y)

This allows to rank context segments by their MI
value. The bigrams have to be calculated in the
nonlocal mode to capture information about long-
distance dependencies. Intuitively, the higher a
segment is ranked, the more likely it is to be trans-
parent with respect to the alternation in question.
For each segment, the ranking also shows the al-
ternant that corresponds to the highest PMI value.
The ranking for {e, 7} (left contexts) is shown in
(28).

(28) ---- Alternation: {'e', '7'}:
N: 7 0.00001362
h: e 0.00001943
#: e 0.00003585
d: e 0.00004618
r: e 0.00004704
...
z: e 0.00034681
ö: e 0.00042929
o: 7 0.00051578
7j: 7 0.00051578
k: e 0.00053448
...
u: 7 0.01335405
i: e 0.01762960
ü: e 0.01845926
7: 7 0.03614305
ä: e 0.03741840
e: e 0.04574272
a: 7 0.04901854

As expected, most vowels have high values,
whereas consonants tend to score low. Some vow-
els still end up in the middle – in particular, o and
ö, which are uncharacteristic for this dialect and
generally found in borrowed roots. Provided that
the alternation set itself has been identified cor-
rectly, for every trigger segment the highest PMI
value unerringly points at the correct alternant un-
less the segment is transparent.

4.3 Phonological viability and rule evaluation
Due to the limited data, the learner cannot be
expected to have access to all possible contexts.
Moreover, as shown in (28) above, the rankings
of segments produced by calculating PMI tend to
contain some degree of noise. It is at this point that

172

phonological features come into play. Adopting
the standard textbook definition, a natural class is
a set of segments that share a particular value for
some feature or a set of features (Odden 2013).
A rule is considered phonologically viable just in
case the sets of triggers of all alternants corre-
spond to disjoint natural classes.34

Phonological viability introduces a straightfor-
ward way of producing generalizations. Com-
bined with PMI rankings, it can be used to gener-
ate phonologically meaningful rules for known al-
ternations. First, each trigger set is extended with
segments in its natural class that have not occurred
in the context of the given alternation. Second, any
transparent segments that were accidentally added
to the transparent list is removed from it if they
are also found in one of the expanded trigger sets.
These modifications produce generalized rules.

We use two metrics to evaluate and compare
these rules. The primary objective is to explain
as many instances of the given alternation as pos-
sible. This intuition is easy to formalize: an ex-
ample is explained if it contains a correct trigger
which is either adjacent to the alternant or sepa-
rated only by transparent segments. Another op-
tion is to calculate the average PMI over all (seg-
ment, alternant) pairs, following the standard def-
inition of mutual information shown in (24).

4.4 Assembling the pieces
In order to determine the best cutoff point in
the ranking, each alternation A is processed as
follows. At initialization, MI values are calcu-
lated once with nonlocal bigrams in order to rank
the segments; all subsequent calculations are per-
formed with local bigrams. The set of transparent
segments, TranspA, starts out empty. The algo-
rithm traverses the ranking, starting with the low-
est MI value. At each step, the selected segment is
added to TranspA, and both metrics (mutual infor-
mation and explained examples) are recalculated.
Thus, TranspA is expanded incrementally until it

3This is a simplification, as one of the trigger sets may
form an unnatural class that corresponds to the general case –
a fact captured by the Elsewhere Condition (Kiparsky 1973).
The definition of phonological viability implements the Else-
where Condition to some degree, as no natural class require-
ment is imposed on the set of transparent segments.

4Under this definition, classes of segments specified by
disjunction are generally unnatural. While languages have a
tendency to favor natural classes (definable by feature con-
junction) in their rules (Halle and Clements 1983), exploring
more relaxed definitions for the purposes of determining ac-
ceptable rules is an interesting avenue of future work.

contains all segments in the ranking; every step
produces a new rule with triggers assigned accord-
ing to the current PMI values. If the rule is phono-
logically viable, it is converted into a generalized
rule, and the metrics are recalculated once more.
The procedure is performed twice for each alterna-
tion, on left and right contexts separately. Once it
halts, the best generalized rule is selected – which
means that only phonologically viable configura-
tions are eligible candidates.

The results are summarized in Table 4. For each
alternation, MI and explained examples ratio (EE)
are shown for the best rule based on left and right
contexts. Colored rows indicate that the learner
has both partitioned the set of attested context seg-
ments and determined whether the trigger is to the
left or to the right correctly with respect to the
ground truth.

Alternation MI
(left)

EE
(left)

MI
(right)

EE
(right)

{d, n, t} 1.4277 1.0000 0.0000 0.0000
{d, t} 0.8079 0.9864 0.0421 0.3143
{∅, k, g} 0.4951 0.4909 0.0000 0.0000
{l, n} 0.5547 0.9738 0.0514 0.1154
{k, g} 0.0814 0.1653 0.0000 0.0000
{∅, 7, e} 0.8431 0.6220 0.6205 0.5357
{a, ä} 0.8319 0.9733 0.8331 0.8387
{e, 7} 0.8825 0.9857 0.7148 0.7912

{∅, 7} 0.8113 1.0000 1.0000 1.0000
{∅, ä} 0.1651 0.4688 0.5586 1.0000

Table 4: Rule evaluation for correct and incomplete
alternations

As mentioned in section 2, some alternations
are involved in multiple processes. For instance,
{k, g} conflates two assimilation processes with
different directionality, while {∅, 7, e} corre-
sponds to a combination of a local and nonlocal
processes. As expected, they have lower scores.

The algorithm yields promising results for both
local and nonlocal processes, provided that the al-
ternation set itself is non-problematic. The vowel
harmony case is further illustrated by the final heat
map showing all non-transparent segments in the
best generalized rule for {e, 7} in Figure 5. In par-
ticular, compare Figure 5 to Figures 3b and 4b and
the ranking in (28).

173

Figure 5: Final PMI heat map for vowel harmony:
{e, 7}, left contexts

One way to gain insight into the procedure of
context learning is to plot the step-by-step change
of metric values depending on the set of transpar-
ent segments.

(a) Left contexts

(b) Right contexts

Figure 6: MI and explained examples for {t, d}

Figures 6–7 show graphs for left and right con-
texts with respect to the {t, d} and {e, 7} alterna-
tions. Each graph has context segments, ordered
according to the MI ranking, along its x-axis. Each
point corresponds to a step performed by the al-
gorithm – or, equivalently, to a rule whose set of
transparent segments contains all items on the x-
axis up to and including that point. In addition,
circle markers are present at every phonologically
viable step and indicate values obtained by gener-
alized rules.

Graphs for local and nonlocal processes display
strikingly different behaviour. The typical pic-
ture for a local process is a monotonic sequence:
both metrics start out high but decline steadily as
more segments are declared transparent. For left-
triggered processes, right contexts show notice-
ably lower values throughout the procedure – es-
pecially so if only phonologically viable steps are
considered.

For vowel harmony (Figure 7) the plots start low
and show a distinct peak once a sufficient number
of segments are moved to the transparent set. The
peak corresponds to the last consonant in the rank-
ing.

(a) Left contexts

(b) Right contexts

Figure 7: MI and explained examples for {e, 7}

174

While the values for left contexts are still
higher, the difference is not as great. This is an ex-
pected result: since vowels serve as both triggers
and targets of harmony, most vowels in non-final
syllables would have a harmonizing vowel both to
the left and to the right.

5 Discussion

This paper presents an approach to learning (mor-
pho)phonological phenomena from small anno-
tated datasets that combines information-theoretic
methods with linguistic information. The proposal
includes an algorithm that discovers phonologi-
cal alternations (represented as sets of segments)
shared by multiple morphological paradigms. The
notion of mutual information is used to assign a
set of contexts to each alternant. Possible rules are
then restricted to phonologically plausible config-
urations via a procedure reminiscent of regulariza-
tion in machine learning. This approach is appli-
cable to both local and nonlocal processes.

All these should be taken as interim results. One
option for future work is to explore interaction be-
tween alternation sets. For example, it may be
possible to decompose the complex {∅, e, 7} al-
ternation by first factoring out the known vowel
harmony pattern {e, 7}, leaving a simple local pro-
cess. Other steps that follow directly from the re-
sults described here include predicting and recon-
structing morphs that are absent from the dataset
and, as a more practically oriented goal, identify-
ing inaccuracies and instances of mislabelling in
the data.

References
Diana Archangeli. 1988. Aspects of underspecification

theory. Phonology, 5(2):183–207.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. Proceedings
of GSCL, pages 31–40.

Jan Baudouin de Courtenay. 1876. Rez’ja i rez’jane.
Slavjanskij sbornik, 3:223–371.

Thomas Cover and Joy Thomas. 2012. Elements of in-
formation theory. John Wiley & Sons.

Gallagher Flinn. 2014. Modeling neutrality in Mongo-
lian vowel harmony. Manuscript.

John Goldsmith. 2011. A group structure for strings:
Towards a learning algorithm for morphophonol-
ogy. Technical report, Technical Report TR-2011-
06, Department of Computer Science, University of
Chicago.

John Goldsmith and Jason Riggle. 2012. Information
theoretic approaches to phonological structure: the
case of finnish vowel harmony. Natural Language
& Linguistic Theory, 30(3):859–896.

Morris Halle and George N. Clements. 1983. Prob-
lem book in phonology: a workbook for introduc-
tory courses in linguistics and in modern phonology.
MIT Press.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 58–64, Portland, Oregon, USA. Associa-
tion for Computational Linguistics.

Paul Kiparsky. 1973. “Elsewhere” in phonology. In
Paul. Kiparsky and Stephen R. Anderson, editors,
A festschrift for Morris Halle, pages 93–106. New
York: Holt, Rinehart & Winston.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

MSU linguistic expedition. 1999–2012. Fieldwork ma-
terials. Lomonosov Moscow State University.

David Odden. 2013. Introducing Phonology. Cam-
bridge University Press.

Frans Plank. 1998. The co-variation of phonology with
morphology and syntax: A hopeful history. Linguis-
tic Typology, 2:195–230.

James Rogers and Geoffrey Pullum. 2011. Aural pat-
tern recognition experiments and the subregular hi-
erarchy. Journal of Logic, Language and Informa-
tion, 20:329–342.

Lili Szabó and Çagrı Çöltekin. 2013. A linear model
for exploring types of vowel harmony. Com-
putational Linguistics in the Netherlands Journal,
3:174–192.

David Allen Wax. 2014. Automated grammar engi-
neering for verbal morphology. Ph.D. thesis, Uni-
versity of Washington.

Olga Zamaraeva. 2016. Inferring morphotactics from
interlinear glossed text: combining clustering and
precision grammars. In Proceedings of the 14th
SIGMORPHON Workshop on Computational Re-
search in Phonetics, Phonology, and Morphology,
pages 141–150.

175

Author Index

Çöltekin, Çağrı, 111

Adda, Gilles, 32
Adda-Decker, Martine, 32
Awashima, Hideki, 84

Besacier, Laurent, 32

Cardenas, Ronald, 131

Dolatian, Hossep, 66

Elsner, Micha, 11
Erdmann, Alexander, 54
Ermolaeva, Marina, 167
Eryani, Fadhl, 140
Eskander, Ramy, 78

Godard, Pierre, 32
Graf, Thomas, 151
Granell, Ramon, 125

Habash, Nizar, 54, 140
Heinz, Jeffrey, 66
Hulden, Mans, 161
Hussain, Syed-Amad, 11

Khalifa, Salam, 140
Kirkedal, Andreas Søeborg, 21
Kondrak, Grzegorz, 43

Magri, Giorgio, 1
Mayer, Connor, 151
Maynard, Hélène, 32
Miller, Amanda, 11
Muresan, Smaranda, 78

Najafi, Saeed, 43
Nicolai, Garrett, 43

Obeid, Ossama, 140
Oiwa, Hidekazu, 84

Pater, Joe, 93
Pierrehumbert, Janet, 125
Prickett, Brandon, 93

Rambow, Owen, 78

Rialland, Annie, 32

Silfverberg, Miikka, 161
Sofroniev, Pavel, 111

Taji, Dima, 140
Tikhonov, Aleksey, 117
Traylor, Aaron, 93

Wiemerslage, Adam, 161

Yamashita, Michiharu, 84
Yamshchikov, Ivan, 117
Yvon, François, 32

Zeldes, Amir, 101
Zeman, Daniel, 131

177

	Program
	Efficient Computation of Implicational Universals in Constraint-Based Phonology Through the Hyperplane Separation Theorem
	Lexical Networks in !Xung
	Acoustic Word Disambiguation with Phonogical Features in Danish ASR
	Adaptor Grammars for the Linguist: Word Segmentation Experiments for Very Low-Resource Languages
	String Transduction with Target Language Models and Insertion Handling
	Complementary Strategies for Low Resourced Morphological Modeling
	Modeling Reduplication with 2-way Finite-State Transducers
	Automatically Tailoring Unsupervised Morphological Segmentation to the Language
	A Comparison of Entity Matching Methods between English and Japanese Katakana
	Seq2Seq Models with Dropout can Learn Generalizable Reduplication
	A Characterwise Windowed Approach to Hebrew Morphological Segmentation
	Phonetic Vector Representations for Sound Sequence Alignment
	Sounds Wilde. Phonetically Extended Embeddings for Author-Stylized Poetry Generation
	On Hapax Legomena and Morphological Productivity
	A Morphological Analyzer for Shipibo-Konibo
	An Arabic Morphological Analyzer and Generator with Copious Features
	Sanskrit n-Retroflexion is Input-Output Tier-Based Strictly Local
	Phonological Features for Morphological Inflection
	Extracting Morphophonology from Small Corpora

